
Parallel Gibbs Sampling for Hierarchical Dirichlet
Processes via Gamma Processes Equivalence

Dehua Cheng
University of Southern California

Los Angeles, CA 90089
dehua.cheng@usc.edu

Yan Liu
University of Southern California

Los Angeles, CA 90089
yanliu.cs@usc.edu

ABSTRACT
The hierarchical Dirichlet process (HDP) is an intuitive and
elegant technique to model data with latent groups. How-
ever, it has not been widely used for practical applications
due to the high computational costs associated with infer-
ence. In this paper, we propose an effective parallel Gibbs
sampling algorithm for HDP by exploring its connections
with the gamma-gamma-Poisson process. Specifically, we
develop a novel framework that combines bootstrap and Re-
versible Jump MCMC algorithm to enable parallel variable
updates. We also provide theoretical convergence analysis
based on Gibbs sampling with asynchronous variable up-
dates. Experiment results on both synthetic datasets and
two large-scale text collections show that our algorithm can
achieve considerable speedup as well as better inference ac-
curacy for HDP compared with existing parallel sampling
algorithms.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics

Keywords
Parallel Inference; Hierarchical Dirichlet Process; Topic Model

1. INTRODUCTION
Modeling large, complex, real-world domains often de-

mands powerful models which can handle rich relational
structures. Mixture models, such as those to model groups
of data with shared characteristics by enforcing a shared set
of mixture components, are one of the most intuitive and
also effective solutions. For instance, the latent Dirichlet
allocation (LDA) model has been proven successful in mod-
eling a collection of documents [4] and the nonparametric
extensions with hierarchical Dirichlet processes (HDP) in-
herit the advantage of LDA and allow the flexibility to learn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623708 .

the number of mixture components automatically from the
data [14].

The HDP has achieved success in modeling many differ-
ent types of data. However, the biggest challenge towards
applications is their inability to scale to large datasets. Re-
cently, some excellent work has been conducted to address
this challenging problem, which can be summarized into two
directions. One is the general-purpose implementation of
parallel inference algorithms [7, 8, 9]. These algorithms are
general enough to be applied to any type of graphical mod-
els, but it is difficult for them to achieve the desired speedup
in specific models. The other direction is the approximation
or vanilla parallelism of specific models, such as [10, 2, 16]
for parallel inference of LDA models. Furthermore, [17] pro-
poses an exact parallel sampling algorithm for HDP, which is
the first nontrivial distributed sampling algorithm for HDP
that converges to the true distribution provably. However,
there is still room for improvement since the algorithm suf-
fers from unbalanced workload and increasing rejection rate
of the Metropolis Hasting step with increasing number of
processors.

In this paper, we propose a parallel Gibbs sampling algo-
rithm for HDP by exploring its connection with the gamma-
gamma-Poisson process, which has a rich potential for de-
veloping various parallel inference algorithms. We propose a
parallel sampling algorithm based on the augmented gamma-
gamma-Poisson process model and reconstruct the dataset
using a bootstrap technique which brings the independence
across different mixture components. Therefore we can per-
form independent variable update for each mixture compo-
nent. We also provide theoretical convergence analysis for
the parallel Gibbs sampling algorithm with asynchronous
variable updates, i.e., each variable updates without explicit
coordination, which is common in a distributed system. We
demonstrate the accuracy of our proposed algorithm on the
synthetic datasets and faster convergence rate on large-scale
real world datasets.

The rest of the paper is organized as follows: we first
review the basic ideas in Section 2. In Section 3, we describe
our parallel sampling algorithm based on gamma-gamma-
Poisson process and discuss theoretical convergence analysis.
Finally, we show the experiment results in Section 4.

2. BACKGROUND AND NOTATIONS
A Dirichlet process mixture model (DPMM) is a mix-

ture model with an infinite number of mixture components,
where the Dirichlet process (DP), with the base distribu-
tion H and concentration parameter α, serves as the non-

562

parametric prior of the mixing measure over all components.
Given a dataset {xi}Ni=1 of size N , DPMM assumes that the

ith data point x(i) is generated from the mixture component
η(i) as follows:

G|{α,H} ∼ DP(α,H),

η(i)|G ∼ G,

x(i)|η(i) ∼ p(x(i)|η(i)), i ∈ {1, . . . , N}.
As proved by Ferguson in [5], G =

∑∞
k=1 πkδθk with the

discrete support {θk}∞k=1 ⊂ H where H is the space of all
mixture components, δθk is Dirac-delta function of com-
ponent θk and πk is the associated mixture weight. Each
θk ∈ H represents a mixture component, and each mixture
component has its distribution over the data space p(x|θk).

In some applications, we may be interested in modeling
groups of data with shared mixture components and prior
over mixing measures. Therefore the hierarchical Dirichlet
process (HDP) mixture model is proposed as a hierarchical
structural extension of DPMM [14]. That is, given a dataset

with groups Xd = {x(i)d }
Nd
i=1, with d ∈ {1, . . . , D} as the

group index, and Nd as the size of dth group, HDP assumes
that they are generated as follows:

G0|{α,H} ∼ DP(α,H),

Gd|{γ,G0} ∼ DP(γ,G0),

η
(i)
d |Gd ∼ Gd,

X
(i)
d |η

(i)
d ∼ p(x

(i)
d |η

(i)
d), i ∈ {1, . . . , Nd}.

The upper level DP generates G0 from the mixture com-
ponent space H as the common base measure to ensure that
each group shares mixture components with a positive prob-
ability. Then each group is generated from DPMM based
on the mixture component space G0, with independent con-
centration parameter γ. Topic model is one nice example
for HDP, where each latent topic corresponds to the mix-
ture component, the collection of documents is the groups
of data, and each data point is a word in the document.

The HDP has achieved success in modeling observations
with latent groups in hierarchical structures [14, 13, 12].
However, the computational cost of inference over HDP makes
it infeasible for practical applications. Various inference
techniques have been investigated to solve this problem,
such as variational inference, sampling techniques and so
on. Among them, sampling algorithms have become pop-
ular due to their simplicity and high inference quality [14].
However, they are also known to suffer from the slow conver-
gence rate. Therefore several parallel sampling algorithms
have been proposed to speed up the convergence via parallel
computing paradigm.

Slice sampler [15] is one example of parallel sampling al-
gorithm for DPMM. It reduces the infinite mixture compo-
nent space to a finite subset at each step, where the mixture
component assignment for each data point is conditionally
independent of the rest and thus can be updated simulta-
neously. Parallelizing slice sampler is simple but requires
multiple times of synchronization within each update, which
could lead to significant communication overhead and makes
it impractical for the distributed learning scenario.

In [2], an approximation of the HDP is introduced and a
parallel sampling algorithm is developed for the approximate
model. It divides the data into subsets and each processor
synchronously updates the variable through a Gibbs sam-
pler based on the current state of its local dataset and the

previous state of the global dataset. The processors commu-
nicate with each other asynchronously to ensure the global
convergence. This algorithm is well suited for the parallel
environment with distributed storage but the inference re-
sults may not be as accurate as the original HDP.

The first real-sense parallel sampling algorithm for HDP
has been proposed in [17]. It is based on examining an
equivalent generative model of HDP with auxiliary variables.
Conditioned on the auxiliary variables, each processor can
update its local variables independently. Data points are
assigned to processors based on the status of auxiliary vari-
ables, and each processor learns the mixture component in-
dependently. That is, the algorithm implicitly separates the
mixture components space to each processor. One major
issue with the algorithm is the potential imbalanced work-
load across processors. In addition, the rejection rate of
the Metropolis Hasting step for updating auxiliary variables
could be high and thus resulting in slower convergence rate.

As we can see, most existing work on parallel sampling
for HDP has limitations either in inference accuracy or con-
vergence rate. Given the large demand in practical appli-
cations, seeking an effective parallel sampling algorithm re-
mains an important and challenging task.

3. PARALLEL GIBBS SAMPLING FOR HDP
In this section, we describe in detail our approach: we first

review the gamma-gamma-Poisson process and its equiva-
lence to HDP, and then introduce the parallel Gibbs sam-
pling algorithms on the equivalent model.

3.1 Gamma-Gamma-Poisson Process

Introduction.
A gamma-Poisson process is a two-level hierarchy of com-

pletely random process defined on base measurable space
H[19].It is known that a random process Π′ drawn from
gamma-Poisson process with parameter {m,H} is defined
as follows:

G′ ∼ GaP(H),

Π′ ∼ PoisP(mG′),

where PoisP refers to Poisson process and GaP refers to
Gamma process. If H is discrete and H =

∑∞
k=1 αkδθk ,

where αk is the associated atom weight (which becomes the
mixture weight in the equivalent mixture model of HDP de-
fined later), the generation process of Π′ can also be de-
scribed as:

G′ =

∞∑
k=1

π′kδθk , π′k ∼ Gamma(αk, 1), (1)

and

Π′ =

∞∑
k=1

nkδθk , nk|G′ ∼ Pois(mπ′k). (2)

The gamma-gamma-Poisson process is defined by replac-
ing the based measure H in gamma-Poisson process with
another random measure G′ drawn from a gamma process
GaP(αH). The equivalence between HDP and gamma-gamma-
Poisson process is well-studied in [19] section 3.1. The gen-
erative process of both HDP and gamma-gamma-Poisson
process are summarized in Table 1. Note that unlike Gi,

563

Table 1: Summary of the generative process of HDP
and gamma-gamma-Poisson processes

HDP Gamma-gamma-Poisson Process

G0|{α,H} ∼ DP(α,H) G′0|{α,H} ∼ GaP(αH)

Gd|{γ,G0} ∼ DP(γ,G0) G′d|{G
′
0} ∼ GaP(G′0)

η
(i)
d |Gd ∼ Gd Π′d|{m,G

′
d} ∼ PoisP(mG′d)

X
(i)
d |η

(i)
d ∼ p(x

(i)
d |η

(i)
d) Xd|Π′d ∼ p(X|Π

′
d)

the sum of the weight of G′i is no longer 1, so it does not
represent a distribution. But since G′i is proportional to
Gi, we can obtain Gi easily by normalization. Furthermore,
instead of normalizing the weights explicitly, we can resort
to the property of Poisson process that given the sum of
several independent Poisson random variables, the Poisson
random variables are conditionally distributed as multino-
mial distributions with the normalized weights. Thus the
normalization is achieved implicitly.

An Example of Topic Models.
We take topic models as an example to illustrate the gen-

erative process of gamma-gamma-Poisson process. The up-
per level DP which generates the global topic space G0 in
HDP is replaced by the gamma process with same parame-
ters G′0 =

∑∞
k=1 αkδθk ∼ GaP(αH), where αk represents the

weight for the kth topic. For each document, we first draw
the topic mixing parameter G′d|{G′0} ∼ GaP(G′0). Similar to
eq(1), we can also have G′d =

∑∞
k=1 π

′
dkδθk , where π′dk is the

weight for the kth topic in the dth document. According to
G′d, we use the Poisson process to generate the count mea-
sure Π′d|{m,G′d} ∼ PoisP(mG′d), which can be represented
as Π′d =

∑∞
k=1 ndkδθk . Each ndk has its definitive meaning:

the number of words that belongs to topic k in document d.
Finally, we generate the words for each document according
to ndk and the conditional word distribution given the topic.
Notice that [19] provides similar derivations except that the
last two steps are combined to directly generate ndkx, i.e.,
the number of word x that belongs to topic k in document
d.

3.2 Parallel Gibbs Sampling Algorithm

Motivation.
Even though we establish the equivalence between HDP

and gamma-gamma-Poisson process, these two models, how-
ever, behave differently. For simplicity, we use the topic
models to illustrate the difference. The advantage of gamma-
gamma-Poisson process is that for each different topic, the
generative process is completely independent with each other
in the entire process, which is the merit of composing com-
pletely random processes. Note that when we mention the
kth topic, we are referring to all variables αk, θk, π′dk and
ndk with the same topic index k. This key property lays the
foundation of the parallel Gibbs sampling algorithm.

𝛼

𝜋

𝑥

𝜂 𝜃

𝑛𝑘

𝜋

𝛼

𝑛𝑘

𝑁

𝜃𝑘 𝑥

∞ 𝑛𝑘

𝜋𝑘′

𝑛𝑘 𝜃𝑘

𝑥

∞

𝛼𝑘

𝑁

(a)

𝛼

𝜋

𝑥

𝜂 𝜃

𝑛𝑘

𝜋

𝛼

𝑛𝑘

𝑁

𝜃𝑘 𝑥

∞
𝑛𝑘

𝜋𝑘
′

𝑛𝑘 𝜃𝑘

𝑥

∞

𝛼𝑘

(b)

Figure 1: Graphical model representation of topic
models by (a) HDP and (b) gamma-gamma-Poisson
process for one document.

𝑛𝑑2 𝑛𝑑1

𝑁𝑑

𝑛𝑑𝐾

Figure 2: Dependency between ndk and Nd. With
Nd observed, {ndk}Kk=1 will form a clique. Otherwise,
they are independent with each other.

Another major difference is how we treat the variables
ndk and Nd (see in Figure 1). In HDP, ndk does not directly
appear in the model, but Nd is given. This agrees better
with the real world setting, where the size of the dataset is
usually observed. In gamma-gamma-Poisson process, Nd is
implicitly determined after we generate ndk, and it cannot
be acquired beforehand. This raises one major challenge to
parallel inference algorithms because any explicit assump-
tion on Nd will breakdown the cross-topic independence.
Therefore we develop a technique that combines bootstrap
and Reversible Jump MCMC algorithm to address this par-
ticular challenge.

Algorithm.
The inference task of HDP is defined as follows: given

the hyperparameters of the model and the observation, how
can we infer the parameter θk which characterizes the con-
ditional word distribution given the topic as well as the as-
sociated topic distribution π0k and πdk, d ∈ {1, . . . , D} for
each topic k? The input is a collection of documents. We
represent the dth document by Xd and its length by Nd.

Applying the finite approximation on the number of topic
K as in [19], we have a much simpler model representation
as follows:

αk|α ∼ Gamma(
α

K
, 1),

π′dk|{αk} ∼ Gamma(αk, 1),

θk ∼ Hθ,

564

ndk|{m,π′dk} ∼ Pois(mπ′dk),

Xdk|{θk, ndk} ∼ p(X|θk, ndk),

k ∈ 1, 2, . . . ,K, d ∈ 1, 2, . . . , D.

where Hθ represents the generative model for θk, e.g., the
Dirichlet distribution.

The joint distribution can be computed as

p(ndk, π
′
dk, Xdk, αk, θk) =

K∏
k=1

α
α
K
−1

k

Γ(α
K

)
e−αk (3)

×
K∏
k=1

D∏
d=1

π
′αk−1
dk

Γ(αk)
e−π

′
dk

(mπ′dk)ndk

ndk!
e−mπ

′
dk

×
K∏
k=1

Hθ(θk)×
K∏
k=1

D∏
d=1

ndk∏
i=1

p(x
(i)
dk |θk).

Our goal is to design a parallel sampling algorithm which
can update each topic and its associated variables asyn-
chronously in parallel. Thus, it is important to analyze vari-
able dependence across topics. From the graphical model in
Figure 1(b), we can see that different topics are only con-
nected by their common child nodes x. All θk are dependent
with each other through xdk, which is necessary for learn-
ing topics jointly. But they are independent given the topic
assignment for each word, so we can achieve independent up-
date by grouping the word by topic. All ndk for any given
d are connected by Nd, as shown in Figure 2. This depen-
dence among ndk is the “side effect” of the new model, which
is undesirable and impedes us from developing efficient par-
allel sampling algorithms. Our solution is to “unobserve”
the variable Nd, by constructing a document with flexible
length. Details are provided in the sampling step for updat-
ing ndk.

We propose the updating rules for αk, θk, π′dk and ndk as
follows: (See Algrithm 1 for pseudocode.)

Updating ndk. We update ndk by the Metropolis-Hasting
step based on Reversible Jump MCMC with two equally
weighted proposed jumps: “ndk → ndk+1”(n++

dk) or “ndk →
ndk−1”(n−−dk). In the likelihood function, the factors regard-
ing ndk (given d and k) are

(mπ′dk)ndk

ndk!

ndk∏
i=1

p(x
(i)
dk |θk). (4)

In addition, with the dataset Xd given, the likelihood func-
tion becomes

(mπ′dk)ndk

ndk!

ndk∏
i=1

p
x
(i)
dk

(k), (5)

where px(k) ∝ p(x|θk) is the normalized likelihood of topic
assignment. Such normalization is equivalent as condition-
ing on observation X, which is necessary for deriving correct
acceptance rate since the length of document is different be-
fore and after the jump.

As we can see, the change of ndk also leads to the change of
topic assignment in the dth document, which changes nd∗ in
other topics. Given Xd, this operation cannot be conducted
within the kth topic. Therefore, as discussed above, we need
to construct a new document X ′d of flexible length X ′d based

Algorithm 1 Parallel Sampling Algorithm for Gamma-
Gamma-Poisson Process
1: Inputs: Group of dataset Xd, parameter α,m. Number

of iteration to update ndk in each iteration maxNIter
2: Outputs: Mixture component θk and corresponding

normalized weight π0k, πdk
3: Construct stacks Sd for each dataset d
4: Construct empty collection X ′dk and empty buffer Bdk

for all dataset d and mixture component k, and initialize
ndk to 0

5: Initialize αk, θk, π
′
dk randomly

6: for each mixture component k asynchronously in paral-
lel do

7: repeat
8: for each dataset d do
9: for nIter from 1 to maxNIter do

10: Draw u ∼ Uniform(0, 1)
11: if u < 0.5 then
12: Pop x∗ from Sd and add it to X ′dk with ac-

ceptance rate A++
ndk . If failed, add x∗ to Bdk

13: else
14: Pop x∗ fromX ′dk randomly and add it to Bdk

with acceptance rate A−−ndk . If failed, add x∗

back to X ′dk
15: end if
16: end for
17: Push all element from Bdk to Sd if Bdk exceeds

certain size.
18: Update π′dk by equation 8
19: end for
20: Update αk by equation 9
21: Update θk by equation 10, and update partition

function Z.
22: until convergence
23: end for
24: Normalize {αk} → {π0k} and {π′dk} → {πdk}
25: Return mixture component θk and corresponding

weight πdk

on the original Xd. In this way, we can increase or decrease
ndk without affecting other topics directly.

First, we build a stack Sd to store X ′d. Each element
x∗ ∈ Sd is randomly drawn from Xd with replacement. This
ensures that, for all n, the empirical distribution of the first
n elements in Sd is an approximation to the empirical dis-
tribution of Xd. We also pre-group the elements in X ′d as
X ′dk by the topic assignment.

When we propose an increase on ndk, we pop a new word
x∗ from Sd and accept the increase with acceptance rate
A
n++
dk

as:

A
n++
dk

= min(1,
mπ′dk
ndk + 1

px∗(k)). (6)

If the proposal is accepted, we will add x∗ to X ′dk and assign
it to the kth topic. Otherwise it returns to Sd.

When we propose a decrease on ndk, we randomly choose
one word x∗ from X ′dk. The acceptance rate A

n−−
dk

is

A
n−−
dk

= min(1,
ndk
mπ′dk

1

px∗(k)
). (7)

If the proposal is accepted, we will delete x∗ from X ′dk and
return it to the stack Sd.

565

�
�

���
�

���
�

���
�

�

BufferBufferBufferBuffer

Figure 3: The structure of reconstructed dataset
and data flow.

In our implementation, we also add a buffer Bdk between
X ′dk and Sd. The word returning to Sd will be first stored
at Bdk, and returned to Sd shortly after. This is helpful
to avoid consecutive rejections on outliers. m can be em-
pirically set proportional to 1/K, which increases the ac-
ceptance rate. Note that a larger value of m will impede
convergence at the initial stage, when ndk is small. The
overall flow is illustrated in Figure 3. X ′d serves as an ap-
proximation to the original dataset Xd. There might be bias
in X ′d due to unassigned but visited elements in stack Sd.
The accuracy of this approximation is tested with synthetic
datasets in Section 4.1.

This approach appears to be similar to online algorithms,
but they are fundamental different: in online settings, we
only have one pass of the observations. In our algorithm,
although we feed X ′dk with the data in stream, the rejected
data will return to the stack eventually and similarly for the
deleted data from X ′dk. This is crucial because it helps to
maintain that the empirical distribution of X ′d is close to
Xd, otherwise X ′d could be strongly affected by the selection
bias during the add-and-delete process.

Updating π′dk. In the likelihood function, the factors
regarding π′dk are

π
′αk+ndk−1
dk e−(m+1)π′dk ,

which means that π′dk follows a gamma distribution with
ndk +αk and m+ 1 as its scale and shape parameter respec-
tively. Therefore, we update π′dk based on ndk and αk as
follows

π′dk ∼ Gamma(ndk + αk,m+ 1). (8)

Updating αk. In the likelihood function, the factors re-
garding αk are

α
α
K
−1

k

(Γ(αk))D
eαk

∑D
d=1 log(π

′
dk)−1.

Because αk is usually quite small, the first order Laurent
expansion provides a simple and accurate approximation,
which is Γ(z) ≈ 1/z when |z| < 1. αk is approximately
distributed as

αk ∼ Gamma(
α

K
+D,

D∑
d=1

−log(π′dk)). (9)

Table 2: Rules of update for all variables

Variable Rule of update

ndk
n++
dk with A

n++
dk

n−−dk with A
n−−
dk

π′dk Gamma(ndk + αk,m+ 1)

θk Hθ(θk)
∏D
d=1 p(Xdk|θk)

αk Gamma(α
K

+D,
∑D
d=1−log(π′dk))

Thread 1

��, ��, �′��, ��� 	��

Thread 2

�
, �
, �′�
, ��
 	�

�� �

…
�

Thread 0

��, ��

Thread K

��, ��, �′��, ��� 	��

Figure 4: The thread architecture for the proposed
parallel sampling algorithm

We can either use this approximation, or treat it as the
proposed distribution in a Metropolis-Hasting step.

Updating θk. We update θk based on its posterior dis-
tribution.

θk ∝ H(θk)

ni∏
i=1

p(x
(i)
k |θk). (10)

The updating rules for all variables are summarized in
Table 2.

3.3 Parallel Structure
As mentioned before, our algorithm updates each topic

and its associated variables asynchronously in parallel. Each
topic is assigned to a thread. The architecture is showed is
Figure 4. Moreover, to minimize the possible conflicts when
the same document is accessed by different topics at the
same time, we separate the documents to several disjoint
subsets at step 8 in Algorithm 1. In each iteration, we up-
date the topic only based on a subset of documents and
rotate through all subsets, so the conflict can be avoided
completely. Similar techniques have been used by [18] in a
parallel GPU sampling algorithm for LDA to reduce param-
eter storage redundancy and avoid access conflicts.

The only connection across topics is through computing
term px∗(k) when updating ndk. We store the partition

function Z(x∗) =
∑K
k=1 p(x

∗|θk) locally, so we can obtain
px∗(k) = p(x∗|θk)/Z(x∗). We update Z periodically to en-
sure the accuracy.

Because the updates are made asynchronously for each
topic, we store each topic update with its time stamp. So

566

we can sort the updates according to its time stamp and
reconstruct the parameters for the whole model.

3.4 Convergence Analysis
For Gibbs sampling based parallel sampling algorithm, the

variables are updated asynchronously in parallel, which is
different from that in sequential Gibbs sampling algorithm,
where the order of updates is fixed. The proof of conver-
gence for Gibbs sampler does not generalize to all parallel
Gibbs sampling algorithms. Fortunately, for some of them,
the order of updates has been proven to be irrelevant to a
certain extent. For instance, in chromatic Gibbs sampler
[6], all possible orders of updates within the same color are
indeed equivalent. In this section, we study the convergence
for general parallel sampling algorithm based on Gibbs sam-
pling. There are two differences:

• In a global iteration, some variables have been updated
more than once.

• The order of updates can be different in each global
iteration.

The term“global iteration”is not well defined in asynchronous
settings. Here we use it loosely: we separate the clock time
to disjoint intervals. If in each time interval, every random
variable has been updated at least once, we call such interval
as a global iteration. We also define the order of update as
follows:

Definition 3.1 (Order of update). An order of update is
a sequence of index from the index set of random variables,
where each index must occur at least once.

For example, (1, 2, 1, 3) and (3, 2, 1) are legitimate orders
of update for the index set {1, 2, 3}, while (1, 2, 1) is not.
We model the order of update by a random distribution PO,
which depends on various factors including the algorithm
itself, the computation hardware, the probabilistic model
(i.e. the graph structure of the graphical model), and current
state of the sample. We prove in the following theorem that
if the distribution PO is independent with the current state
of the sample, the convergence is guaranteed.

Theorem 3.1. If a probabilistic model P (·) has positive sup-
port and the distribution PO on order of update is indepen-
dent with the current state of the sample, the convergence
of Gibbs sampler is guaranteed, and it converges to the true
distribution P (·).

Proof. First, we exam the stationary measure of the Markov
chain defined by Gibbs sampler with an arbitrary order of
updates O, we first prove that, if the probabilistic model
P (·) has positive support, the stationary measure is the true
distribution P (·). The proof is very similar to that for Gibbs
sampler. Assume that we have x = (x1, x2, . . . , xn) ∼ P (·),
we update the variables according to the order of updates
O = (i1, i2, . . . , inO). For the first step, we have∑
xi1

p(x1, x2, . . . , xn)p(x∗i1 |x−i1) = p(x1, . . . , x
∗
i1 , . . . , xn),

where x−i represents the set {x1, . . . , xi−1, xi+1, . . . , xn}. So

we have that x(1) = (x1, . . . , x
∗
i1 , . . . , xn) ∼ P (·). Similarly,

after second step, the result x(2) also has the distribution
P (·). By simple induction, we prove that after updating

xnO , we have x∗ = (x∗1, x
∗
2, . . . , x

∗
n) ∼ P (·), which proves

the statement. Note that it indicates that the stationary
measure is invariant to different order of updates, and it is
indeed the true distribution P (·).

With this statement, we then prove our main theorem
with help of the main result in [11], which indicates that
for an inhomogeneous Markov chain, when there exists a
probability measure P (·) such that each of the different steps
corresponds to a nice ergodic Markov kernel with stationary
measure P (·), it will converge to P (·). We have already
proved that P (·) is the stationary measure of any order of
updates, so the Markov kernel at each step has the same
stationary measure P (·), which proves the theorem.

The assumption of the independence with the current
state of the sample is essential to the conclusion, and simi-
lar issue has been discussed in [1] for adaptive MCMC. The
validity of such assumption relies on the algorithm and its
implementation. For example, in LDA, the speed of updat-
ing the word distribution for a topic depends on the current
number of words assigned to the topic. However, such de-
pendence is not strong enough to affect the convergence of
our algorithm, which is confirmed by later experimental re-
sults.

4. EXPERIMENTAL RESULTS
In this section, we first study the accuracy of our parallel

sampling algorithm (G2PP) on the synthetic dataset, then
we test the interpretability of the G2PP on the Bitcoin Blog
dataset, and finally we compare with with other baseline al-
gorithms on large real world dataset in terms of convergence
rate.

We implement the synchronous Gibbs sampler (Synch) [2]
based on the posterior sampling with auxiliary variable al-
gorithm described in [14], the AVparallel algorithm (AVP)
based on the Chinese restaurant franchise (CRF) with global
update scheme proposed in [17] and the slice sampler based
on [15]. All algorithms are implemented in C++. We test
all algorithms under the same hyperparameter setting. Note
that the iteration for G2PP and other algorithms are not
equivalent, so it is unreasonable to compare the performance
based on number of iteration. Therefore, we present our re-
sults based on actual runtime.

In our experiments, the convergence rate of AVP is signifi-
cantly slower than the rest of candidates. The reported con-
vergence time for CRF of a java implementation in the origi-
nal paper is around 4000 minutes on the same NIPS dataset,
which is far longer than the convergence time of other algo-
rithms. The slice sampler also suffers from slow convergence
in the preliminary experiments. Note that AVP and slice
sampler are theoretically accurate. In contrast, G2PP and
Synch are approximate sampling algorithms. Therefore, we
only present the results of G2PP, Synch and Gibbs, which
is Synch with one processor.

4.1 Inference Accuracy
In order to demonstrate the inference accuracy of G2PP,

we design two experiments on the synthetic datasets. The
algorithm performance is measured by the prediction accu-
racy and model perplexity.

567

Table 3: F1 Scores on mixture of Gaussian dataset
by G2PP and Synch

Algorithm F1 score

G2PP 0.94
Gibbs 0.91

Table 4: F1 Scores on LDA dataset by G2PP and
Synch

Algorithm F1 score

G2PP 0.65
Gibbs 0.60
Synch-2 0.57
Synch-4 0.54
Synch-8 0.48

4.1.1 Mixture of Gaussians
We first generate a synthetic dataset with mixture of Gaus-

sian, which consists of 50 bivariate Gaussian distributions,
each with mean distributed according to Norm(0, 10) and
variance of 0.01. The dataset contains one million data
points in total.

We evaluate the results according to the F1 score between
clusters obtained by each algorithm and the ground truth.
We adopt the definition of F1 score in [17], which is defined
on the pairwise observations. We define the precision and
recall as |P (g) ∩P (p)|/|P (p)| and |P (g) ∩P (p)|/|P (g)| respec-

tively, where P (g) is the set of pairs of data point of the
same cluster under the ground truth, and P (p) is all pairs of
data points of the same cluster under the prediction. The
result is shown in Table 3. The F1 scores shown in the ta-
ble represent the average prediction results on the Markov
chain, excluding the burn-in period. We can see that G2PP
yields comparable and even better performance in terms of
prediction accuracy than Gibbs sampler.

4.1.2 Latent Dirichlet Allocation
We also test our algorithm on a second synthetic dataset

generated by latent Dirichlet allocation (LDA). The syn-
thetic corpus contains 1000 documents and 10 latent topics.
Each document is of the same length of 1000. The vocabu-
lary size is set to 1000. The concentration parameters of all
Dirichlet distributions are set to 1. We compare the perfor-
mance of G2PP with Gibbs sampler and synchronous Gibbs
sampler (Synch) [2] on F1 score and model perplexity.

The F1 scores for each method are listed in Table 4 and
the perplexity curves over time is shown in Figure 5. As we
can see, G2PP performs better in both F1 score and per-
plexity. In addition, Synch shows decreasing accuracy when
the number of processors increases, because each processor
owns smaller subset of data.

In summary, we empirically show that our parallel sam-
pling algorithm not only does not compromise on accuracy,
but also may achieve slight improvement in part due to the
bias induced by X ′d (which makes it more robust on outliers).

50 100 150 200 250
Time(Sec.)

860

880

900

920

940

Pe
rp
le
xi
ty

G2PP-1
G2PP-2
G2PP-4
G2PP-8
Gibbs
Synch-2
Synch-4
Synch-8

0

Figure 5: The convergence plot for G2PP and Synch
with 1, 2, 4, 8 processors on LDA dataset.

Table 5: Latent topics Inferred by G2PP on Bitcoin
dataset

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

bitcoin like bitcoin gold security
currency people currency market malware
online bitcoin china price data
payment one bank fed nsa
said see virtual year computer
digital would central economy users
first way exchange us attacks
company could price investors internet
transactionseven chinese bubble information
one re system rate washington

4.2 Interpretability on Real World Dataset
We test our G2PP algorithm on a real world dataset for

topic modeling. We collected the online blogs related to the
Bitcoin posted between Nov. 19th, 2013 and Dec. 20th, 2013
based on Google News search results. Bitcoin is a peer-to-
peer payment system and digital cryptocurrency introduced
as open source software in 2009 by pseudonymous developer
Satoshi Nakamoto, which becomes extremely popular in the
last few months of 2013.

We preprocessed the dataset in a standard manner. We
only consider the blog posts in English, which leads to a
collection of 1899 documents with averaged length of 292
and 7379 unique words. The top 5 latent topics and the
top 10 words associated with each topic by G2PP is listed
in Table 5. We also present the results of Gibbs sampler
in Table 6. Both results are intuitive and reasonable. For
example, in Table 5, Topic 1 is the introduction of Bitcoin,
Topic 3 is the events related to China, which is the main
cause for both soar and drop in Bitcoin price. Moreover,
the resemblance between the results from Gibbs and G2PP
is remarkable, which indicates that the results of G2PP are
as reliable as the Gibbs sampler. Moderate differences in
the word and topic ranking are due to the randomness in
the inference process.

568

Table 6: Latent topics inferred by Gibbs on the Bit-
coin dataset

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

bitcoin one china year data
currency people bitcoin market nsa
exchange like chinese fed company
digital would currency economy internet
value time btc us security
virtual even bank last government
said could said growth snowden
money re trading month privacy
one get yuan week social
way transactionscentral investors online

Table 7: Statistics of NIPS and NYT datasets

Dataset # Documents Vocabulary Size

NIPS1-17 2484 14036
NYTimes news 300000 102660

With the results on the synthetic datasets and this real-
world application dataset, we can safely confirm that the
inference results by G2PP is accurate in terms of both statis-
tical criteria and topic interpretation. Next, we investigate
the performance of convergence rate.

4.3 Convergence Rate
We choose two benchmark datasets, i.e., NIPS1-17 (NIPS)

dataset1 and NYTimes news (NYT) dataset2 for conver-
gence analysis. The statistics of the two datasets are listed
in Table 7.

4.3.1 NIPS 1-17 Dataset
We split the dataset into a training set with 2284 docu-

ments and a test set with 200 documents. We evaluate the
algorithm by the perplexity on the test set. The conver-
gence time and final perplexity are listed in Table 8. The
typical convergence curves are shown in Figure 6. The re-
sult shows that G2PP performs well in terms of convergence
speed, accuracy and scalability with respect to the number
of processors.

Note that as the number of processors increases, the per-
plexity value by Synch increases, which means that the ac-
curacy decreases. Moreover, Synch becomes more likely to
be trapped in local optimal. By “local optimal”, we refer
to the phenomenon that the perplexity stably stays at a
higher level than the known optimal value before reaching
it. For Synch on 16 processors, it is possible that all runs
are trapped in local optimal.

4.3.2 NYTimes news Dataset
NYTimes news dataset is a large dataset contains over 100

million words. The inference of HDP on such a dataset is
extreme time-consuming and impractical. Efficient inference

1http://ai.stanford.edu/~gal/data.html
2http://archive.ics.uci.edu/ml/datasets/Bag+of+
Words[3]

0 500 1000 1500 2000 2500 3000
Time/Sec.

1900

2100

2300

2500

2700

2900

Pe
rp

le
xi

ty

G2PP-16
G2PP-4
G2PP-1
Gibbs
Synch-4
Synch-16

Figure 6: The convergence plot for G2PP and Synch
with 1, 4, 16 processors on NIPS dataset.

Table 8: The experiment results of different sam-
pling algorithms on NIPS dataset. Note that the
results marked by ∗ represent those didn’t converge
within limited time.

Algorithm # Proc. Conv. time(sec.) Perp.

G2PP 1 1467± 345(1164) 2020
G2PP 4 481± 101(306) 2016
G2PP 16 102± 45(63) 2004
Gibbs 1 1920± 880(701) 2060
Synch 2 922± 419(368)∗ 2080
Synch 4 519± 331(188)∗ 2117
Synch 16 85.5± 42(49)∗ 2413

algorithm on such scale will significantly widen the range of
application for the powerful HDP.

We selected a test set of 3000 articles from the dataset and
used the rest as the training set. We evaluate the algorithm
by the perplexity on the test set. The convergence curves
are illustrated in Figure 7. All the results are obtained on
16 processors.

On NYTimes dataset, G2PP can converge in a short time.
While there is no good way (except for running the exper-
iment for infinite time) to tell whether Synch finally con-
verged or trapped in “local optimal”, it is safe to conclude
that G2PP can provide better parameter estimation than
Synch within a reasonable time limit.

4.4 Comparison with Subsampling
In section 4.3, the G2PP algorithm performs consistently

better than other baselines. But the underlying reason is
unclear at this point. The major question is that because
the G2PP performs bootstrap on the original dataset, is the
speedup merely an outcome of subsampling on the original
dataset? As the computation complexity is approximately
proportional to the total length of documents, inference on
the subsampled dataset should yield competitive speedup
at the expenses of inference accuracy. Subsampling on the
original dataset also places an unknown effect on the “local

569

http://ai.stanford.edu/~gal/data.html
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

0 5000 10000 15000 20000 25000 30000
Time/Sec.

5000

6000

7000

8000

Pe
rp

le
xi

ty
G2PP-16
Synch-16

Figure 7: The convergence plot on NYT dataset for
G2PP and Synch with 16 processors.

10
1

10
2

10
3

10
4

Time/Sec.

2000

2200

2400

2600

2800

3000

Pe
rp

le
xi

ty

C=6.25

C=25

C=50

C=60
C=100

C=12.5

#P=1#P=4
#P=16

Gibbs+Subsampling
G2PP

Figure 8: The convergence plot for Gibbs with sub-
sampling on NIPS. #P denotes the number of pro-
cessors, and C is the percentage of subsampling.

optimal” phenomenon. We design a series of experiments to
answer this question.

In one experiment, we test the speedup and the accuracy
of Gibbs algorithm with dataset subsampling. For each run,
we first subsample the training set of NIPS dataset to the
C% of its original length, then we conduct the inference
only based on the subsampled dataset. The perplexity is
tested on same test set as in section 4.3.1. We choose C
from {6.75, 12.5, 50, 60}. The results are illustrated in Figure
8. The results by G2PP on the original dataset are also
included for comparison.

As shown in Figure 8, subsampling provides a flexible
tradeoff between speed and accuracy. Note that the speedup
is not proportional to 1/C, because subsampling affects both
the computational complexity of each iteration and the over-
all convergence rate. By varying the subsampling rate, we
can achieve comparable speedup similar to parallel algo-
rithms with 4 processors on the NIPS dataset. But the ac-
curacy decreases quickly when we further lower the subsam-
pling rate. More importantly, we observe that the G2PP
algorithm provides better trade off between accuracy and

convergence rate comparing to Gibbs sampling with sub-
sampling. This demonstrates that unique factors other than
bootstrapping contribute to the gain in performance by G2PP.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a parallel Gibbs sampling al-

gorithm for HDP based on gamma-gamma-Poisson process.
By actively bootstrapping the dataset, we constructed a
new dataset with flexible size. Together with Reversible
Jump MCMC, we proposed a parallel Gibbs sampling algo-
rithm where each mixture component can update in paral-
lel. The proposed algorithm is also suitable for distributed
system. We showed its accuracy on synthetic datasets and
remarkable speedup comparing with other HDP sampling
algorithms on large scale real world dataset. We also ex-
amined convergence for parallel Gibbs sampling algorithm
with asynchronous variable updates, and we provided the
necessary condition to ensure convergence.

For future work, we will further improve the proposed al-
gorithm from the following perspectives: First, we will study
the systematic approach for setting parameter m; Second,
we will investigate how to choose a dynamic upper bound on
the number of mixture components; Lastly, we will exam-
ine the generality of the gamma-gamma-Poisson process for
parallel inference over other nonparametric mixture models.

6. ACKNOWLEDGMENT
We thank Shang-Hua Teng, Eric Xing, Jun Zhu for dis-

cussions, and Xinran He for proof-reading. The research was
sponsored by the NSF research grants IIS-1134990, NSF re-
search grants IIS-1254206, and Okawa Foundation Research
Award. The views and conclusions are those of the authors
and should not be interpreted as representing the official
policies of the funding agency, or the U.S. Government.

References
[1] C. Andrieu, N. De Freitas, A. Doucet, and M. I.

Jordan. An introduction to mcmc for machine
learning. Machine learning, 50(1-2):5–43, 2003.

[2] A. Asuncion, P. Smyth, and M. Welling.
Asynchronous distributed learning of topic models.
Advances in Neural Information Processing Systems,
21(81-88):17, 2008.

[3] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of Machine Learning
Research, 3:993–1022, 2003.

[5] T. S. Ferguson. A bayesian analysis of some
nonparametric problems. The Annals of Statistics,
pages 209–230, 1973.

[6] J. Gonzalez, Y. Low, A. Gretton, C. Guestrin, and
U. Gatsby Unit. Parallel gibbs sampling: From
colored fields to thin junction trees. Journal of
Machine Learning Research, 2011.

[7] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash
for optimally parallelizing belief propagation. In In
Artificial Intelligence and Statistics, Clearwater
Beach, Florida, April 2009.

[8] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron.
Distributed parallel inference on large factor graphs.

570

In Conference on Uncertainty in Artificial Intelligence,
Montreal, Canada, July 2009.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence,
Catalina Island, California, July 2010.

[10] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed inference for latent dirichlet allocation.
Advances in Neural Information Processing Systems,
20(1081-1088):17–24, 2007.

[11] L. Saloff-Coste and J. Zúñiga. Convergence of some
time inhomogeneous markov chains via spectral
techniques. Stochastic processes and their applications,
117(8):961–979, 2007.

[12] K.-A. Sohn and E. P. Xing. A hierarchical dirichlet
process mixture model for haplotype reconstruction
from multi-population data. The Annals of Applied
Statistics, pages 791–821, 2009.

[13] E. Sudderth, A. Torralba, W. Freeman, and
A. Willsky. Describing visual scenes using transformed
dirichlet processes. Advances in Neural Information
Processing Systems, 18:1297, 2006.

[14] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei.
Hierarchical dirichlet processes. Journal of the
American Statistical Association, 101(476), 2006.

[15] S. G. Walker. Sampling the dirichlet mixture model
with slices. Communications in Statistics-Simulation
and Computation, 36(1):45–54, 2007.

[16] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y.
Chang. Plda: Parallel latent dirichlet allocation for
large-scale applications. In Algorithmic Aspects in
Information and Management, pages 301–314.
Springer, 2009.

[17] S. Williamson, A. Dubey, and E. P. Xing. Parallel
markov chain monte carlo for nonparametric mixture
models. In Proceedings of the 30th International
Conference on Machine Learning, pages 98–106, 2013.

[18] F. Yan, N. Xu, and Y. Qi. Parallel inference for latent
dirichlet allocation on graphics processing units. In
Advances in Neural Information Processing Systems,
pages 2134–2142, 2009.

[19] M. Zhou and L. Carin. Augment-and-conquer negative
binomial processes. In Advances in Neural Information
Processing Systems, pages 2555–2563, 2012.

571

	Introduction
	Background and Notations
	Parallel Gibbs Sampling for HDP
	Gamma-Gamma-Poisson Process
	Parallel Gibbs Sampling Algorithm
	Parallel Structure
	Convergence Analysis

	Experimental Results
	Inference Accuracy
	Mixture of Gaussians
	Latent Dirichlet Allocation

	Interpretability on Real World Dataset
	Convergence Rate
	NIPS 1-17 Dataset
	NYTimes news Dataset

	Comparison with Subsampling

	Conclusion and Future Work
	Acknowledgment

