
Factorized Sparse Learning Models with Interpretable High
Order Feature Interactions

Sanjay Purushotham∗
University of Southern

California
Los Angeles, CA, USA
spurusho@usc.edu

Martin Renqiang Min†
NEC Labs America
Princeton, NJ, USA

renqiang@nec-labs.com

C.-C. Jay Kuo
University of Southern

California
Los Angeles, CA, USA
cckuo@sipi.usc.edu

Rachel Ostroff‡
SomaLogic, Inc.

Boulder, CO, USA
rostroff@somalogic.com

ABSTRACT
Identifying interpretable discriminative high-order feature
interactions given limited training data in high dimensions
is challenging in both machine learning and data mining. In
this paper, we propose a factorization based sparse learn-
ing framework termed FHIM for identifying high-order fea-
ture interactions in linear and logistic regression models,
and study several optimization methods for solving them.
Unlike previous sparse learning methods, our model FHIM
recovers both the main effects and the interaction terms ac-
curately without imposing tree-structured hierarchical con-
straints. Furthermore, we show that FHIM has oracle prop-
erties when extended to generalized linear regression models
with pairwise interactions. Experiments on simulated data
show that FHIM outperforms the state-of-the-art sparse lear-
ning techniques. Further experiments on our experimen-
tally generated data from patient blood samples using a
novel SOMAmer (Slow Off-rate Modified Aptamer) technol-
ogy show that, FHIM performs blood-based cancer diagno-
sis and bio-marker discovery for Renal Cell Carcinoma much
better than other competing methods, and it identifies inter-
pretable block-wise high-order gene interactions predictive
of cancer stages of samples. A literature survey shows that
the interactions identified by FHIM play important roles in
cancer development.
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1. INTRODUCTION
Identifying interpretable high-order feature interactions is

an important problem in machine learning, data mining, and
biomedical informatics, because feature interactions often
help reveal some hidden domain knowledge and the struc-
tures of problems under consideration. For example, genes
and proteins seldom perform their functions independently,
so many human diseases are often manifested as the dysfunc-
tion of some pathways or functional gene modules, and the
disrupted patterns due to diseases are often more obvious at
a pathway or module level. Identifying these disrupted gene
interactions for different diseases such as cancer will help
us understand the underlying mechanisms of the diseases
and develop effective drugs to cure them. However, identi-
fying reliable discriminative high-order gene/protein or SNP
interactions for accurate disease diagnosis such as early can-
cer diagnosis directly based on patient blood samples is still
a challenging problem, because we often have very limited
patient samples but a huge number of complex feature in-
teractions to consider.

In this paper, we propose a sparse learning framework
based on weight matrix factorizations and `1 regularizations
for identifying discriminative high-order feature interactions
in linear and logistic regression models, and we study sev-
eral optimization methods for solving them. Experimen-
tal results on synthetic and real-world datasets show that
our method outperforms the state-of-the-art sparse learning
techniques, and it provides ‘interpretable’ blockwise high-
order interactions for disease status prediction. Our pro-
posed sparse learning framework is general, and can be used
to identify any discriminative complex system input inter-
actions that are predictive of system outputs given limited
high-dimensional training data.

Our contributions are as follows: (1) We propose a method
capable of simultaneously identifying both informative single
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discriminative features and discriminative block-wise high-
order interactions in a sparse learning framework, which can
be easily extended to handle arbitrarily high-order feature
interactions; (2) Our method works on high-dimensional in-
put feature spaces and ill-posed problems with much more
features than data points, which is typical for biomedical
applications such as biomarker discovery and cancer diag-
nosis; (3) Our method has interesting theoretical properties
for generalized linear regression models; (4) The interactions
identified by our method lead to biomedical insight into un-
derstanding blood-based cancer diagnosis.

2. RELATED WORK
Variable selection has been a well studied topic in statis-

tics, machine learning, and data mining literature. Gener-
ally, variable selection approaches focus on identifying dis-
criminative features using regularization techniques. Most
recent methods focus on identifying discriminative features
or groups of discriminative features based on Lasso penalty
[18], Group Lasso [21], Trace-norm [6], Dirty model [8] and
Support Vector Machines (SVMs) [16]. A recent approach
[20] heuristically adds some possible high-order interactions
into the input feature set in a greedy way based on lasso pe-
nalized logistic regression. Some recent approaches [2],[3] en-
force strong and/or weak heredity constraints to recover the
pairwise interactions in linear regression models. In strong
heredity, an interaction term can be included in the model
only if the corresponding main terms are also included in
the model, while in weak heredity, an interaction term is
included when either of the main terms are included in the
model. However, recent studies in bioinformatics has shown
that feature interactions need not follow heredity constraints
for manifestation of the diseases, and thus the above ap-
proaches [2],[3] have limited chance of recovering relevant
interactions. Kernel methods such as Gaussian Process [4]
and Multiple Kernel Learning [10] can be used to model
high-order feature interactions, but they can only tell which
orders are important. Thus, all these previous approaches
either failed to identify specific high-order interactions for
prediction or identified sporadic pairwise interactions in a
greedy way, which is very unlikely to recover the ‘inter-
pretable’ blockwise high-order interactions among features
in different sub-components (for example: pathways or gene
functional modules) of systems. Recently, [14] proposed an
efficient way to identify combinatorial interactions among
interactive genes in complex diseases by using overlapping
group lasso and screening. However, they use prior infor-
mation such as gene ontology in their approach, which is
generally not available or difficult to collect for some ma-
chine learning problems. Thus, there is a need to develop
new efficient techniques to automatically capture the impor-
tant ‘blockwise’ high-order feature interactions in regression
models, which is the focus of this paper.

The remainder of the paper is organized as follows: in sec-
tion 3 we discuss our problem formulation and relevant no-
tations used in the paper. In section 4, we discuss the main
idea of our approach, and in section 5 we give a overview of
theoretical properties associated with our method. In sec-
tion 6, we present the optimization methods which we use to
solve our optimization problem. In section 7, we discuss our
experimental setup and present our results on synthetic and
real datasets. Finally, in section 8 we conclude the paper
with discussions and future research directions.

3. PROBLEM FORMULATION
Consider a regression setup with a training set of n sam-

ples and p features, {(X(i), y(i))}, where X(i) ∈ Rp is the ith

instance (column) of the design matrix X (p × n), y(i) ∈ R
is the ith instance of response variable y (n × 1), and i =
1, . . . , n. To model the response in terms of the predictors,
we can set up a linear regression model

y(i) = βTX(i) + ε(i), (1)

or a logistic regression model

p(y(i) = 1|X(i)) =
1

1 + exp(−βTX(i) − β0)
, (2)

where β ∈ Rp is the weight vector associated with single
features (also called main effects), ε ∈ Rn is a noise vector,
and β0 ∈ R is the bias term. In many practical fields such
as bioinformatics and medical informatics, the main terms
(the terms only involving single features) are not enough to
capture complex relationship between the response and the
predictors, and thus high-order interactions are necessary.
In this paper, we consider regression models with both main
effects and high-order interaction terms. Equation 3 shows
a linear regression model with pairwise interaction terms.

y(i) = βTX(i) + X(i)TWX(i) + ε(i), (3)

where W(p × p) is the weight matrix associated with the
pairwise feature interactions. The corresponding loss func-
tion (the sum of squared errors) is as follows (we center the
data to avoid an additional bias term),

Lsqerr(β,W) =
1

2

n∑
i=1

||y(i)−βTX(i)−XT (i)WX(i)||22. (4)

We can similarly write the logistic regression model with
pairwise interactions as follows,

p(y(i)|X(i)) =

1

1 + exp(−y(i)(βTX(i) + X(i)TWX(i) + β0))

(5)

and the corresponding loss function (the sum of the negative
log-likelihood of the training data) is,

Llogistic(β,W, β0) =

n∑
i=1

log(1 + exp(−y(i)(βTX(i)

+X(i)TWX(i) + β0)). (6)

4. OUR APPROACH
In this section, we propose an optimization-driven sparse

learning framework to identify discriminative single features
and groups of high-order interactions among input features
for output prediction in the setting of limited training data.
When the number of input features is huge (e.g. biomed-
ical applications), it is practically impossible to explicitly
consider quadratic or even higher-order interactions among
all the input features based on simple lasso penalized linear
regression or logistic regression. To solve this problem, we
propose to factorize the weight matrix W associated with
high-order interactions between input features to be a sum
of K rank-one matrices for pairwise interactions or a sum
of low-rank high-order tensors for higher-order interactions.
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Each rank-one matrix for pairwise feature interactions is rep-
resented by an outer product of two identical vectors, and
each m-order (m > 2) tensor is represented by the outer
product of m identical vectors. Besides minimizing the loss
function of linear regression or logistic regression, we penal-
ize the `1 norm of both the weights associated with single
input features and the weights associated with high-order
feature interactions. Mathematically, we solve the optimiza-
tion problem to identify the discriminative single and pair-
wise interaction features as follows,

{β̂, âk} = arg min
ak,β

Lsqerr(β,W)

+ λβ‖β‖1 +

K∑
k=1

λak‖ak‖1
(7)

where W =
∑K
k=1 ak � ak, � represents the tensor prod-

uct/outer product, and β̂, âk represent the estimated pa-
rameters of our model and let Q represent objective function
of (7) . For logistic regression, we replace Lsqerr(β,W) in
(7) by Llogistic(β, W, β0). We call our model Factorization-
based High-order Interaction Model (FHIM).

Proposition 4.1. The optimization problem in Equation
7 is convex in β and non-convex in ak.

Because of the non-convexity property of our optimization
problem, it is difficult to propose optimization algorithms
which guarantee convergence to global optima. Here, we
adopt a greedy alternating optimization methods to find the
local optima for our problem. In the case of pairwise inter-
actions, fixing other weights, we solve each rank-one weight
matrix each time. Please note that our symmetric posi-
tive definite factorization of W makes this sub-optimization
problem very easy. Moreover, for a particular rank-one
weight matrix ak�ak, the nonzero entries of the correspond-
ing vector ak can be interpreted as the block-wise interaction
feature indices of a densely interacting feature group. In the
case of higher-order interactions, the optimization procedure
is similar to the one for the pairwise interactions except that
we have more rounds of alternating optimization. The pa-
rameter K of W is generally unknown in real datasets, thus,
we greedily estimate K during the alternating optimization
algorithm. In fact, the combination of our factorization for-
mulation and the greedy algorithm is effective for estimating
the interaction weight matrix W. β is re-estimated when
K is greedily added during the alternating optimization as
shown in algorithm 1.

Algorithm 1 Greedy Alternating Optimization

1: Initialize β to 0, K = 1 and aK = 1
2: While (K==1) || (aK−1 6= 0 for K > 1)
3: Repeat until convergence
4: βtj = arg minj Q(βt1, ..., β

t
j−1, β

t−1
j+1, β

t−1
p ),ak

t−1)

5: atk,j = arg minj Q((atk,1, ..., a
t
k,j−1, a

t−1
k,j+1, a

t−1
k,p ),βt)

6: End Repeat
7: K = K + 1; aK = 1
8: End While
9: Remove aK and aK−1 from a.

5. THEORETICAL PROPERTIES
In this section, we study the asymptotic behavior of FHIM

for the likelihood-based generalized linear regression models.

The lemmas and theorems proved here are similar to the
ones shown in the paper [3]. However, in their paper the au-
thors make an assumption on the strong heredity (i.e. inter-
action term coefficients are dependent on the main effects),
which is not assumed in our model since we are interested in
identifying all high-order interactions irrespective of hered-
ity constraints. Here, we discuss the asymptotic properties
w.r.t to the main effects and factorized co-efficients.

Problem Setup: Assume that the data Vi = (Xi, yi), i =
1, ...n are collected independently and Yi has a density of
f(g(Xi), yi) conditioned on Xi, where g is a known regres-
sion function with main effects and all possible pairwise
interactions. Let β∗j and a∗k,j denote the underlying true
parameters satisfying block-wise properties implied by our
factorization. Let Qn(θ) denote the objective with negative
log-likelihood and θ∗ = (β∗T ,α∗T )T , where α∗ = (a∗k), k =

1, ...,K. We consider the estimates for FHIM as θ̂n:

θ̂n = arg min
θ
Qn(θ) (8)

= arg min
θ
− 1

n

n∑
i=1

(L(g(Xi), yi) + λβ |β|+
∑
k

λαk |αk|

where L(g(Xi), yi) is the loss function of generalized linear
regression models with pairwise interactions. In the case of
linear regression, g(·) takes the form of Equation (3) without
the noise term ε and L(·) takes the form of Equation (4).
Now, let us define

A1 = {j : β∗j 6= 0}
A2 = {(k, l) : α∗k,l 6= 0},
A = A1 ∪ A2

(9)

whereA1 contains the indices of the main terms which corre-
spond to the nonzero true coefficients, and similarly A2 con-
tains the indices of the factorized interaction terms whose
true co-efficients are non-zero. Let us define

an = max{λβj , λ
αk
l : j ∈ A1, (k, l) ∈ A2}

bn = min{λβj , λ
αk
l : j ∈ Ac1, (k, l) ∈ Ac2}

(10)

Now, we show that our model possesses the oracle properties
for (i) n → ∞ with fixed p and (ii) pn → ∞ as n → ∞
under some regularity conditions. Please refer to Appendix
for proofs of the lemmas & theorems of sections 5.1 and 5.2.

5.1 Asymptotic Oracle Properties when n→∞
The asymptotic properties when sample size increases and

the number of predictors is fixed are described in the follow-
ing lemmas and theorems. FHIM possesses oracle properties
[3] under certain regularity conditions (C1)-(C3) shown be-
low. Let Ω denote the parameter space for θ.

(C1) The observations Vi : i = 1, ..., n are independent
and identically distributed with a probability density f(V,θ),
which has a common support. We assume the density f sat-
isfies the following equations:

Eθ
[∂ log f(V,θ)

∂θj

]
= 0 for j = 1, ..., p(K + 1),

and

Ijk(θ) =Eθ
[∂ log f(V,θ)

∂θj

∂ log f(V,θ)

∂θk

]
=Eθ

[
− ∂2 log f(V,θ)

∂θj∂θk

]

554



(C2) The Fisher Information Matrix

I(θ) = E
[(∂ log f(V,θ)

∂θ

)(∂ log f(V,θ)

∂θ

)T ]
is finite and positive definite at θ = θ∗.

(C3) There exists an open set ω of Ω that contains the
true parameter point θ∗ such that for almost all V the den-
sity f(V,θ) admits all third derivatives (∂3f(V,θ))/(∂θj
∂θk∂θl) for all θ ∈ ω and any j, k, l = 1, ..., p(K + 1). Fur-
thermore, there exist functions Mjkl such that∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(V,θ)

∣∣∣∣∣ ≤Mjkl(V) for all θ ∈ ω

where mjkl = Eθ∗ [Mjkl(V)] < ∞. These regularity condi-
tions are the existence of common support and first, second
derivatives for f(V,θ); Fisher Information matrix being fi-
nite and positive definite; and existence of bounded third
derivative for f(V,θ). These regularity conditions guaran-
tee asymptotic normality of the ordinary maximum likeli-
hood estimates [11].

Lemma 5.1. Assume an = o(1) as n → ∞. Then under
regularity conditions (C1)-(C3), there exists a local mini-

mizer θ̂n of Qn(θ) such that ||θ̂n − θ∗|| = OP (n−1/2 + an)

Theorem 5.2. Assume
√
nbn → ∞ and the minimizer

θ̂n given in lemma 5.1 satisfies ||θ̂n − θ∗|| = OP (n−1/2).
Then under regularity conditions (C1)-(C3), we have

P (β̂AC
1

= 0)→ 1, P (α̂AC
2

= 0)→ 1

Lemma 5.1 implies that when the tuning parameters associ-
ated with the non-zero coefficients of main effects and pair-
wise interactions tend to 0 at a rate faster than n−1/2, then
there exists a local minimizer of Qn(θ), which is

√
n−consis-

tent (the sampling error is Op(n
−1/2)). Theorem 5.2 shows

that our model removes noise consistently with high proba-
bility (→ 1). If

√
nan → 0 and

√
nbn →∞, then lemma 5.1

and theorem 5.2 imply that the
√
n−consistent estimator θ̂n

satisfies P (θ̂Ac = 0)→ 1.

Theorem 5.3. Assume
√
nan → 0 and

√
nbn →∞. Then

under the regularity conditions (C1)-(C3), the component

θ̂A of the local minimizer θ̂n (given in lemma 5.1) satisfies

√
n(θ̂A − θ∗A)→d N(0, I−1(θ∗A)),

where I(θ∗A) is the Fisher information matrix of θA at θA =
θ∗A assuming that θ∗Ac = 0 is known in advance.

Theorem 5.3 shows that our model estimates the non-zero
coefficients of the true model with the same asymptotic dis-
tribution as if the zero coefficients were known in advance.
Based on theorems 5.2 and 5.3, we can say that our model
has the oracle property [3], [5], when the tuning param-
eters satisfy the conditions

√
nan → 0 and

√
nbn → ∞.

To satisfy these conditions, we have to consider adaptive
weights wβj , w

αk
l [23] for our tuning parameters λβ , λαk (see

appendix for more details). Thus, our tuning parameters
are:

λβj =
logn

n
λβw

β
j , λ

αk
l =

logn

n
λαkw

αk
l

5.2 Asymptotic Oracle Properties When pn →
∞ as n→∞

In this section, we consider the asymptotic behavior of our
model when the number of predictors pn grows to infinity
along with the sample size n. If certain regularity conditions
(C4)-(C6) (shown below) hold, then we can show that our
model possesses the oracle property.

We denote the total number of predictors by pn. We
denote all the quantities that change with sample size by
adding n as their subscript. A1,A2,A are defined as in sec-
tion 5 and let sn = |An|. The asymptotic properties of
our model when the number of predictors increases along
with the sample size are described in the following lemma
and theorem. The regularity conditions (C4)-(C6) are given
below: Let Ωn denote the parameter space for θn.

(C4) The observations Vni : i = 1, ..., n are independent
and identically distributed with a probability density fn(Vn,
θn), which has a common support. We assume the density
fn satisfies the following equations:

Eθn

[∂ log fn(Vn,θn)

∂θnj

]
= 0 for j = 1, ..., pn,

and

Ijk(θn) =Eθn

[∂ log fn(Vn,θn)

∂θnj

∂ log fn(Vn,θn)

∂θnk

]
=Eθn

[
− ∂2 log fn(Vn,θn)

∂θnj∂θnk

]
(C5) In(θn) = E[( ∂ log fn(Vn1,θn)

∂θn
)( ∂ log fn(Vn1,θn)

∂θn
)T ] satis-

fies
0 < C1 < λminIn(θn) ≤ λmaxIn(θn) < C2 < ∞ for all
n, where λmin(.) and λmax(.) represent the smallest and
largest eigenvalues of a matrix respectively. Moreover, for
any j, k = 1, ..., pn,

Eθn

{
∂ log fn(Vn1,θn)

∂θnj

∂ log fn(Vn1,θn1)

∂θnk

}2

< C3 <∞,

and

Eθn

{
∂2 log fn(Vn1,θn)

∂θnj∂θnk

}
< C4 <∞

(C6) There exists a large open set ωn ⊂ Ωn ∈ Rpn which
contains the true parameters θ∗n such that for almost all Vni

the density admits all third derivatives ∂3fn(Vni,θn)/∂θnj
∂θnk∂θnl for all θn ∈ ωn. Furthermore, there are functions
Mnjkl such that∣∣∣∣∣∂3fn(Vni,θn)

∂θnj∂θnk∂θnl

∣∣∣∣∣ ≤Mnjkl(Vni)

for all θn ∈ ωn and

EθnM
2
njkl(Vni) < C5 <∞

for all pn, n, and j, k, l.

Lemma 5.4. Assume that the density fn(Vn, θ
∗
n) satisfies

some regularity conditions (C4)-(C6). If
√
nan → 0 and

p5n/n→ 0 as n→∞, then there exists a local minimizer θ̂n
of Qn(θ) such that ||θ̂n − θ∗n|| = OP (

√
pn(n−1/2 + an))
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Theorem 5.5. Suppose that the density fn(Vn, θ
∗
n) sat-

isfies some regularity conditions (C4)-(C6). If
√
npnan → 0,√

n/pnbn → ∞ and p5n/n → 0 as n → ∞, then with prob-

ability tending to 1, the
√
n/pn-consistent local minimizer

θ̂n in Lemma 5.4 satisfies the following:
• Sparsity: θ̂nAc

n
= 0

• Asymptotic normality:
√
nAnI

1
2
n (θ̂nAn − θ∗nAn

)→d N(0, G)

where An is an arbitrary m× sn matrix with finite m such
that AnA

T
n → G and G is a m×m nonnegative symmetric

matrix and In(θ∗nAn
) is the Fisher information matrix of

θnAn at θnAn = θ∗nAn
. Since the dimension of θ̂nAn → ∞

as sample size n → ∞, we could consider arbitrary linear
combination Anθ̂nAn for the asymptotic normality of our
model’s estimates. Similar to section 5.1, to satisfy oracle
property, we have to consider an adaptive weights wβnj , w

αk
nl

[23] for our tuning parameters λβ , λαk as:

λβnj =
log(n)pn

n
λβw

β
nj , λ

αk
n,l =

log(n)pn
n

λαkw
αk
nl

6. OPTIMIZATION
In this section, we outline three optimization methods

that we employ to solve our objective function (7), which
corresponds to Line 4 and 5 in Algorithm 1. [15] provides
a good survey on several optimization approaches for solv-
ing `1-regularized regression problems. In this paper, we
use the sub-gradient and co-ordinate wise soft-thresholding
based optimization methods since they work well and are
easy to implement. We compare these methods in the ex-
perimental results in section 7.

6.1 Sub-Gradient Methods
Sub-gradient based strategies treat the non-differentiable

objective as a non-smooth optimization problem and use
sub-gradients of the objective function at the non-differentiable
points. For our model, the optimality conditions w.r.t pa-
rameter vectors β and ak can be written out separately
based on the objective function (7). Optimality conditions
w.r.t ak is:{

∇jL(ak) + λaksgn(akj) = 0 |akj | > 0
|∇jL(ak)| ≤ λak akj = 0

where L(ak) is the loss function of our linear regression
model or logistic regression model in Equation (7) w.r.t ak.
Similarly, optimality conditions can be written for β. The
sub-gradient ∇sjf(ak) for each akj is given by

∇sjf(ak) =
∇jL(ak) + λaksgn(akj), |akj | > 0
∇jL(ak) + λak , akj = 0,∇jL(ak) < −λak
∇jL(ak)− λak , akj = 0,∇jL(ak) > λak
0, −λak ≤ ∇jL(ak) ≤ λak

where

∇jL(ak) =
1

2

∑
i

(−2X
(i)
j XT (i)ak)[y(i) − βTX(i)

−XT (i)WX(i)].

for our linear regression model. The negation of the sub-
gradient represents the steepest descent direction. Similarly

the sub-gradients for β ( ∇sjf(β) ) can be calculated. Differ-
ential of the loss function of the linear regression in Equation
(7) w.r.t β is given by

∇jL(β) =
1

2

∑
i

(−2X
(i)
j )[y(i) − βTX(i) −XT (i)WX(i)]

6.1.1 Orthant-Wise Descent (OWD)
Andrew and Gao [1] proposed an effective strategy for

solving large-scale `1-regularized regression problems based
on choosing an appropriate steepest descent direction for
the objective function and taking a step like a Newton it-
eration in this direction (with an L-BFGS Hessian approxi-
mation [12]). The orthant-wise learning descent method for
our model takes the following form

β ← PO[β − γβPS [H−1
β ∇

sf(β)]]

ak ← PO[ak − γakPS [H−1
ak
∇sf(ak)]]

where PO and PS are two projection operators and Hβ is the
positive definite approximation of Hessian of quadratic ap-
proximation of objective function f(β), and γβ and γak are
step sizes. PS projects the Newton-like direction to guaran-
tee that it is in the descent direction. PO projects the step
onto the orthant containing β or ak and ensures that line
search does not cross points of non-differentiability.

6.1.2 Projected Scaled Sub-Gradient (PSS)
Schmidt [15] proposed optimization methods called Pro-

jected Scaled Sub-Gradient methods where the iterations
can be written as the projection of a scaling of a sub-gradient
of the objective. Please refer to [1] and [15] for more details
on OWD and PSS methods.

6.2 Soft-thresholding
Soft-thresholding based co-ordinate descent optimization

method can be used to find β,ak updates in the alternating
optimization algorithm for our FHIM model. The β updates
are β̃j and are given by

β̃j(λβ)←S
(
β̃j(λβ) +

n∑
i=1

Xij(yi −
∑
k 6=j

Xjkβ̃k

−
∑
k

XikWXki), λβ
)

where W =
∑
k ak � ak, and S is the soft-thresholding

operator [7]. Similarly, the updates for ak are ãkj and given
by

ãkj(λak )←S
(
ãkj(λak ) +

n∑
i=1

Xij(
∑
k

p∑
r=1

akrXir)[yi−∑
k 6=j

Xjkβ̃k −
∑
k

XikW∼jXki], λak

)
where W∼j is W with jth column and jth row elements are
all zero.

7. EXPERIMENTS
In this section, we use synthetic and real datasets to demon-

strate the efficacy of our model (FHIM), and compare its
performance with LASSO [18], All-Pairs Lasso [2], Hierar-
chical LASSO [2], Group Lasso [21], Trace-norm [9], Dirty
model [8] and QUIRE [14]. For all these models, we perform
5 runs of 5-fold cross-validation on training dataset (80 %)
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to find the optimal parameters and evaluate prediction error
on a test dataset (20 %). We search tuning parameters for
all methods using grid search and for our model the param-
eters λβ and λak are searched in the range of [0.01, 10]. We
also discuss the support recovery of β and W for our model.

7.1 Datasets
We use synthetic datasets and a real dataset for classifi-

cation and support recovery experiments. We give detailed
description of these datasets below.

7.1.1 Synthetic Dataset
We generate the predictors of the design matrix X using a

normal distribution with mean zero and variance one. The
weight matrix W was generated as a sum of K rank one
matrices i.e. W =

∑K
k=1 aka

T
k . β,ak were generated as a

sparse vector from a normal distribution with mean 0 and
variance 1, while noise vector ε is generated from a normal
distribution with mean 0 and variance 0.1. Finally, the re-
sponse vectors y of the linear and logistic regression models
with pairwise interactions were generated using Equations
(3) and (5) respectively. We generated several synthetic
datasets by varying number of instances (n), number of vari-
ables/predictors (p), rank of W i.e. K and sparsity level of
β, ak. We denote the combined total predictors (that is
main effects predictors + predictors for interaction terms)
by q, here q = p(p + 1)/2. Sparsity level (non-zeros) was
chosen as 2 ∼ 4% for large p(> 100), and 5 ∼ 10% for small
p(< 100) for both β,ak. In this paper, we show results for
synthetic data in these settings: Case (1) n > p and q > n
(high-dimensional setting w.r.t combined predictors) and,
Case (2) p > n (high-dimensional w.r.t original predictors).

7.1.2 Real Dataset
To predict cancer progression status directly from blood

samples, we generated our own dataset. All samples and
clinical information were collected under Health Insurance
Portability and Accountability Act compliance from study
participants after obtaining written informed consent under
clinical research protocols approved by the institutional re-
view boards for each site. Blood was processed within 2
hours of collection according to established standard oper-
ating procedures. To predict RCC status, serum samples
were collected at a single study site from patients diagnosed
with RCC or benign renal mass prior to treatment. Defini-
tive pathology diagnosis of RCC and cancer stage was made
after resection. Outcome data was obtained through follow-
up from 3 months to 5 years after initial treatment. Our
RCC dataset contains 212 RCC samples from benign and 4
different stages of tumor. Expression levels of 1092 proteins
based on a high-throughput SOMAmer protein quantifica-
tion technology are collected. The number of Benign, Stage
1, Stage 2, Stage 3 and Stage 4 tumor samples are 40; 101;
17; 24 and 31 respectively.

7.1.3 Experimental Design
We use linear regression models (Equation 3) for all the

following experiments and we only use logistic regression
models (Equation 5) for synthetic data experiments shown
in table 2. We evaluate the performance of our method
(FHIM) by the following experiments:

1. Prediction error and support recovery experiments on
synthetic datasets

2. Classification experiments using RCC samples: We
perform three stage-wise binary classification experi-
ments using RCC samples:
(a) Case 1: Classification of Benign samples from

Stage 1− 4 samples.
(b) Case 2: Classification of Benign and Stage 1 sam-

ples from Stage 2− 4 samples.
(c) Case 3: Classification of Benign, Stage 1, 2 sam-

ples from Stage 3, 4 samples.

7.1.4 Performance on Synthetic dataset
We evaluate the performance of our model (FHIM) on

synthetic dataset by the following experiments: (i) Com-
parison of optimization methods presented in section 6, (ii)
Prediction error on the test data for q > n and p > n (high-
dimensional settings), (iii) Support recovery accuracy of β,
W and (iv) Prediction of rank of W using greedy approach.

Table 3 shows the prediction error on test data when
different optimization methods (discussed in section 6) are
used for our model (FHIM). From table 3, we see that both
OWD and PSS methods perform nearly similar (OWD is
marginally better), and are better than the soft-thresholding
method. This is because, in soft-thresholding, co-ordinate
updates of variables might not be accurate in high dimen-
sional settings (i.e. the solution is affected by the path taken
during updates). We observed that soft-thresholding in gen-
eral is slower than OWD and PSS methods. For all the other
experiments discussed in this paper, we choose OWD as the
optimization method for FHIM. Table 1 and Table 2 shows

Figure 1: Support Recovery of β (90 % sparse) and
W (99 % sparse) for synthetic data Case 1: n > p
and q > n where n = 1000, p = 50, q = 1275.

Figure 2: Support Recovery of W (99.5 % sparse)
for synthetic data Case 2: p > n where p = 500,
n = 100. Online supplementary materials contain
high-quality images for this figure.

the performance comparison (in terms of prediction error
on test dataset) of FHIM for linear and logistic regression
models with respect to the state-of-the-art approaches such
as Lasso, Fused Lasso, Trace-Norm and Hierarchical Lasso
(HLasso is a general version of SHIM [3]). From tables 1 and
2, we see that FHIM generally outperforms all the state-of-
the-art approaches for both linear and logistic pairwise re-
gression models. For q > n, we see that test data prediction
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n, p, K FHIM Fused Lasso Lasso HLasso Trace norm Dirty Model

q > n

1000, 50, 1 338.4(14.5) 425.9(20.7) 474.7(15.3) 354.32 (24.82) 464.4(36.3) 613.5(0.76)
1000, 50, 5 343.7(12.9) 1888.3(121.1) 1922.9(143.9) 889.1 (112.5) 1822.6(99.8) 2453.8(0.76)

10000, 500, 1 1093.1(19.5) 2739.57(155.1) 3896.3(129.5) - 3887.9(101.1) 4674.7(0.8)
10000, 500, 5 1090.76(12.21) 22720(597.8) 23279.6(231.3) - 22916.5(321.4) 29214(0.8)

p > n
100, 500, 1 230.49 (50.3) 1157.2(355.0) 1335.0(159.2) - 1160.3(299.7) 1651.9(62.6)
100, 1000, 1 340.1 (40.02) 770.9(127.6) 879.1(180.3) - 699.9(208.7) 808.1(5.1)
100, 2000, 1 907.8 (100.1) 1022.3(406.2) 919.2(132.1) - 880.42(471.6) 1916.7(63.4)

Table 1: Performance comparison for synthetic data on linear regression model with high-order interactions.
Prediction Error (MSE) and Std. deviation of MSE (shown inside brackets) on test data is used to measure
the model’s performance. For p >= 500, Hierarchical Lasso (HLasso) has heavy computational complexity,
hence we don’t show it’s results here.

n, p, K FHIM Fused Lasso Lasso HLasso Trace norm

q > n

1000, 50, 1 0.127 (0.009) 0.128 (0.017) 0.156 (0.017) 0.136 (0.02) 0.128 (0.016)
1000, 50, 5 0.189 (0.03) 0.227 (0.024) 0.292 (0.042) 0.257 (0.022) 0.503 (0.027)

10000, 500, 1 0.135 (0.002) 0.265 (0.007) 0.161 (0.012) - 0.225 (0.077)
10000, 500, 5 0.390 (0.05) 0.514 (0.006) 0.507(0.108) - 0.514 (0.006)

p > n
100, 500, 1 0.325 (0.04) 0.352 (0.086) 0.4323(0.054) - 0.40(0.079)
100, 1000, 1 0.390 (0.056) 0.409(0.086) 0.458(0.083) - 0.438(0.011)

Table 2: Performance comparison for synthetic dataset on logistic regression model with high-order interac-
tions. Misclassification Error on test data is used to measure the model’s performance

error for FHIM is consistently lower compared to all other
approaches. For p > n, FHIM performs slightly better than
other approaches, however, the prediction error for all the
approaches is high since it’s hard to accurately recover the
coefficients of main effects and pairwise interactions in very
high-dimensional settings.

From figure 1 and table 4, we see that our model performs
very well (F1 score close to 1) in the support recovery of β
and W for the q > n setting. From figure 2 and table 5,
we see that our model performs fairly well in the support
recovery of W for p > n setting. We observe that when the
tuning parameters are correctly chosen, support recovery of
W works very well when W is low-rank (see table 4 and 5),
and the F1 score for the support recovery of W decreases
with increase in rank of W. Table 5 shows that for q > n the
greedy strategy of FHIM accurately recovers the rank K of
W, while for p > n, the greedy strategy might not correctly
recover K. This is because the tensor factorization is not
unique and slightly correlated variables can enter our model
during optimization.
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Figure 3: Comparison of the classification per-
formances of different feature selection approaches
with our model in identifying the different stages
of RCC. We perform five fold cross validation five
times and average AUC score is reported.

7.1.5 Classification Performance on RCC
In this section, we report systematic experimental results

on classification of samples from different stages of RCC.
The predictive performance of the markers and pairwise in-
teractions selected by our model (FHIM) is compared against

the markers selected by Lasso, All-Pairs Lasso [2], Group
Lasso, Dirty model [8] and QUIRE. We use SLEP [13], MAL-
SAR [22] and QUIRE packages for the implementation of
these models. The overall performance of the algorithms
are shown in Figure 3. In this figure, we report average
AUC score for five runs of 5-fold cross validation experi-
ments for cancer stage prediction in RCC. In 5-fold cross
validation experiments, we train our model on the four folds
to identify the main effects and pairwise interactions and
we use the remaining one fold for testing prediction. The
average AUC achieved by features selected with our model
are 0.68, 0.89 and 0.84 respectively for the three cases dis-
cussed in section 7.1.3. We performed pairwise t-tests for
the comparisons of our method vs. the other methods, and
all p-values are below 0.0075. From figure 3, it is clear that
our model outperforms all the other algorithms that do not
use prior feature group information for all the three clas-
sification cases of RCC prediction. In addition, our model
has similar performance to the state-of-the-art technique -
QUIRE [14], which uses Gene Ontology based functional an-
notation for grouping and clustering of genes to identify high
order interactions.

 

IL5RA ACE2 

CHEK2 PES1 

AIP CD97 

CXC3L1 IL6ST 

Figure 4: Examples of functional modules for RCC
Case 3, induced by markers and interactions discov-
ered by our model and enriched in pathways and
functions associated with RCC

7.1.6 Informative interactions discovered by FHIM
An investigation of the pairwise interactions identified by

our model on RCC dataset reveals that many of these inter-
actions are indeed relevant to the prediction of cancer. Fig-
ure 4 shows some of the interactions associated with higher
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weighted pairwise co-efficients for Case 3 of RCC classifica-
tion experiment. The interactions include CX3CL1- CD97,
CHEK2-IL5RA which are known to be related to proteins in
blood. CX3CL1 was recently found to promote breast can-
cer [17], while CD97 was found to promote colorectal cancer
[19]. We believe these protein interactions might lead to re-
nal cell cancer. Further investigations of the interactions
identified by our model might reveal novel protein interac-
tions associated with renal cell cancer and thus leading to
testable hypothesis.

7.1.7 Time Complexity
FHIM has O(np) time complexity for algorithm 1. In gen-

eral, FHIM takes more time than the Lasso approach since
we do alternating optimization of β, ak. For q ∼ n setting
with n = 1000, q = 1275, our OWD learning optimiza-
tion method on Matlab takes around ∼ 1 minute for 5-fold
cross-validation, while for p > n with p = 2000, n = 100, our
FHIM model took around 2 hours for 5-fold cross-validation.
Our experiments were run on intel i3 dual-core 2.9 GHz CPU
with 8 GB RAM.

n, p OWD Soft-thres PSS
-holding

100, 500 230.5 276.2 239.5
100, 1000 340.1 710.5 358.7
100, 2000 907.8 1174.1 927.4

Table 3: Comparison of optimization methods for
our FHIM model based on test data prediction error

n, p Sparsity K Support recovery
β,ak β,W (F1 score)

1000, 50 5, 5 1 1.0, 1.0
1000, 50 5, 5 3 1.0, 0.95
1000, 50 5, 5 5 1.0, 0.82

10000, 500 10, 20 1 0.95, 0.72
10000, 500 10, 20 3 0.80, 0.64
10000, 500 10, 20 5 0.72, 0.55

Table 4: Support recovery of β,W

n, p true estimated W support recovery
K K F1 score

1000, 50 1 1 1.0
1000, 50 3 3 1.0
1000, 50 5 5 0.8
100, 100 1 2 0.75
100, 500 3 2 0.6
100, 1000 5 4 0.5

Table 5: Recovering K using greedy strategy

8. CONCLUSIONS
In this paper, we proposed a factorization based sparse

learning framework called FHIM for identifying high-order
feature interactions in linear and logistic regression mod-
els, and studied several optimization methods for our model.
Empirical experiments on synthetic and real datasets showed
that our model outperforms several well-known techniques
such as Lasso, Trace-norm, GroupLasso and achieves com-
parable performance to the current state-of-the-art method
- QUIRE, while not assuming any prior knowledge about the
data. Our model gives ‘interpretable’ results for high-order
feature interactions on RCC dataset which can be used for
biomarker discovery for disease diagnosis.
In the future, we will consider the following directions: (i)
We will consider factorization of the weight matrix W as

W =
∑
k akb

T
k and higher-order feature interactions, which

is more general, but the optimization problem is non-convex;
(ii) We will extend our optimization methods from Single-
Task Learning to Multi-Task Learning; (iii) We will con-
sider groupings of features for both Single Task Learning
and Multi-Task Learning.
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APPENDIX
A. PROOFS FOR SECTION 5.1

Proof of Lemma 5.1:. Let ηn = n−1/2 + an and {θ∗ +
ηnδ : ||δ|| ≤ d} be the ball around θ∗, where δ = (u1, ..., up,
v11, ....vKp)

T = (uT ,vT )T . Define

Dn(δ) ≡ Qn(θ∗ + ηnδ)−Qn(θ∗)

Where Qn(θ∗) is defined in equation (8). For δ that satisfies
||δ|| = d, we have

Dn(δ) =− Ln(θ∗ + ηnδ) + Ln(θ∗)

+ n
∑
j

λβj (|β∗j + ηnuj | − |β∗j |)

+ n
∑
k,l

λ
αk
l (|α∗k,l + ηnvkl)| − |α∗k,l|

≥ − Ln(θ∗ + ηnδ) + Ln(θ∗)

+ n
∑
j∈A1

λβj (|β∗j + ηnuj | − |β∗j |)

+ n
∑

(k,l)∈A2

λ
αk
l (|α∗k,l + ηnvkl)| − |α∗k,l|

≥ − Ln(θ∗ + ηnδ) + Ln(θ∗)

− nηn
∑
j∈A1

λβj |uj | − nηn
∑

(k,l)∈A2

λ
αk
l |vkl|

≥ − Ln(θ∗ + ηnδ) + Ln(θ∗)

− nη2n(
∑
j∈A1

|uj |+
∑

(k,l)∈A2

|vkl|)

≥− Ln(θ∗ + ηnδ) + Ln(θ∗)− nη2n(|A1|+ |A2|)d

=− [∇Ln(θ∗)]T (ηnδ)− 1

2
(ηnδ)T [∇2Ln(θ∗)]

(ηnδ)(1 + op(1))− nη2n(|A1|+ |A2|)d

We used Taylor’s expansion in above step. We split the
above into three parts and we get:

K1 =− ηn[∇Ln(θ∗)]T δ

=−
√
nηn(

1√
n
∇Ln(θ∗))T δ

=−Op(nη2n)δ

K2 =
1

2
nη2n{δT [− 1

n
∇2Ln(θ∗)δ](1 + op(1))}

=
1

2
nη2n{δT [I(θ∗)δ](1 + op(1))}

K3 =− nη2n(|A1|+ |A2|)d

Thus,

Dn(δ) ≥K1 +K2 +K3

=−Op(nη2n)δ +
1

2
nη2n{δT [I(θ∗)δ](1 + op(1))}

− nη2n(|A1|+ |A2|)d

We see that K2 dominates the rest of the terms and is
positive since I(θ) is positive definite at θ = θ∗ from regu-
larity condition (C2). Therefore, for any given ε > 0 there
exists a large enough constant d such that

P{ inf
||δ||=d

Qn(θ∗ + ηnδ) > Qn(θ∗)} ≥ 1− ε

This implies that with probability at-least 1−ε, there exists a
local minimizer in the ball {θ∗+ηnδ : ||δ|| ≤ d}. Thus, there

exists a local minimizer of Qn(θ) such that ||θ̂n − θ∗|| =
Op(ηn).

Proof of Theorem 5.2:. Let us first consider P (α̂Ac
2

=
0)→ 1. It is sufficient to show that for any (k, l) ∈ Ac2

∂Qn(θ̂n)

∂αk,l
< 0 for − εn < α̂k,l < 0 (11)

∂Qn(θ̂n)

∂αk,l
> 0 for εn > α̂k,l > 0 (12)

with probability tending to 1, where εn = Cn−1/2 and C > 0
is any constant. To show (12), notice

∂Qn(θ̂n)

∂αk,l
=− Ln(θ̂n)

∂αk,l
+ nλ

αk
l sgn(α̂k,l)

=− Ln(θ∗)

∂αk,l
−
p(K+1)∑
j=1

∂2Ln(θ∗)

∂αk,l∂θj
(θ̂j − θ∗j )
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−
p(K+1)∑
j=1

p(K+1)∑
m=1

∂3Ln(θ̃)

∂αk,l∂θj∂θm
(θ̂j − θ∗j )(θ̂m − θ∗m)

+nλ
αk
l sgn(α̂k,l)

where θ̃ lies between θ̂n and θ∗. By regularity conditions
(C1)-(C3) and the Lemma 5.1, we have

∂Qn(θ̂n)

∂αk,l
=
√
n{Op(1) +

√
nλ

αk
l sgn(α̂k,l)}

As
√
nλ

αk
l → ∞ for (k, l) ∈ Ac2 from the assumption, the

sign of ∂Qn(θ̂n)
∂αk,l

is dominated by sgn(α̂k,j). Thus,

P

(
∂Qn(θ̂n)

∂αk,l
> 0 for 0 < α̂k,l < εn

)
→ 1 as n→∞

(11) has identical proof as above. Also, P (β̂Ac
1

= 0) → 1

can be proved similarly since in our model β and α are
independent of each other.

Proof of Theorem 5.3. Let Qn(θA) denote the objec-
tive function Qn only on the A−component of θ, that is
Qn(θ) with θAc . Based on Lemma 5.1 and Theorem 5.2, we

have P ( ˆθAc = 0)→ 1. Thus,

P
(

arg min
θA

Qn(θA) = (A− component of

arg min
θ
Qn(θ))

)
→ 1

Thus, θ̂A should satisfy

∂Qn(θA)

∂θj

∣∣∣
θA=θ̂A

= 0 ∀j ∈ A (13)

with probability tending to 1. Let Ln(θA) and Pλ(θA) de-
note the log-likelihood function of θA and the penalty func-
tion of θA respectively so that we have

Qn(θA) = −Ln(θA) + nPλ(θA)

From (13), we have

∇AQn(θ̂A) = −∇ALn(θ̂A) + n∇APλ(θ̂A) = 0, (14)

with probability tending to 1.
Now, consider by Taylor expansion of first term and second
terms at θA = θ∗A, we get the following:

−∇ALn(θ̂A) =−∇ALn(θ∗A)− [∇2
ALn(θ∗A) + op(1)]

(θ̂A − θ∗A)

=
√
n

[
− 1√

n
∇ALn(θ∗A)+

I(θ∗A)
√
n(θ̂A − θ∗A) + op(1)

]

n∇APλ(θ̂A) =n

{[
λβj sgn(βj)

λ
αk
l sgn(αk,l)

]
j∈A1,(k,l)∈A2

+op(1)(θ̂A − θ∗A)

}
=
√
nop(1)

since
√
nan = o(1) and ||θ̂A − θ∗A|| = Op(n

−1/2)

Thus, we get,

0 =
√
n

[
− 1√

n
∇ALn(θ∗A)

+I(θ∗A)
√
n(θ̂A − θ∗A) + op(1)

]
Therefore, from central limit theorem,

√
n(θ̂A − θ∗A)→d N(0, I−1(θ∗A))

The proofs for lemma and theorem of section 5.2 are along
the same lines as above. Please refer to Appendix section C
for more details.

B. COMPUTING ADAPTIVE WEIGHTS
Here, we explain how the adaptive weights wβj , w

αk
l can

be calculated for tuning parameters λβ , λαk in Theoretical
properties (Theorems 5.3 & 5.5) of Section 5. Let q be the to-
tal number of predictors, let n be total number of instances.
When n > q, we can compute the adaptive weights wβj , w

αk
l

for tuning parameters λβj , λ
αk
l using ordinary least squares

(OLS) estimates of the training observations.

λβj =
logn

n
λβw

β
j , λ

αk
l =

logn

n
λαkw

αk
l

where

wβj = | 1

β̂OLSj

|, w
αk
l = | 1

α̂k
OLS
l

|,

When q > n, the OLS estimates are not available and so we
compute the weights using the ridge regression estimates,
that is, replacing all the above OLS estimates with the ridge
regression estimates. The tuning parameter for ridge re-
gression can be selected using cross-validation. Note, we
find α̂k

OLS
j by taking least squares w.r.t to each αk where

k ∈ [0,K] for some K ≥ trueK. Without loss of generality
we can assume K = trueK for proving the Theoretical prop-
erties in section 5. Even if K ≥ trueK, it does not affect the
Theoretical properties since the cardinality of A2(|A2|) does
not affect the root-n consistency (see, proof of lemma 5.1).
In practice, K is greedily chosen by algo. 1 in our paper.

C. SUPPLEMENTARY MATERIALS
For interested readers, we provide online supplementary

materials at http://www.cs.toronto.edu/~cuty/FHIM_Supp.
pdf with detailed proofs for Lemma 5.4 and Theorem 5.5.
These proofs do not affect the understanding of this paper.
We also provide high quality images for figure 1 in the sup-
plementary materials. We provide more details about the
experimental settings for state-of-the-art techniques used in
this paper.
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