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ABSTRACT

In the past few years, the government and other agencies
have publicly released a prodigious amount of data that can
be potentially mined to benefit the society at large. How-
ever, data such as health records are typically only provided
at aggregated levels (e.g. per State, per Hospital Referral
Region, etc.) to protect privacy. Unfortunately aggregation
can severely diminish the utility of such data when mod-
eling or analysis is desired at a per-individual basis. So,
not surprisingly, despite the increasing abundance of aggre-
gate data, there have been very few successful attempts in
exploiting them for individual-level analyses. This paper
introduces LUDIA, a novel low-rank approximation algo-
rithm that utilizes aggregation constraints in addition to
auxiliary information in order to estimate or “reconstruct”
the original individual-level values from aggregate data. If
the reconstructed data are statistically similar to the origi-
nal individual-level data, off-the-shelf individual-level mod-
els can be readily and reliably applied for subsequent predic-
tive or descriptive analytics. LUDIA is more robust to non-
linear estimates and random effects than other reconstruc-
tion algorithms. It solves a Sylvester equation and leverages
multi-level (also known as hierarchical or mixed-effect) mod-
eling approaches efficiently. A novel graphical model is also
introduced to provide a probabilistic viewpoint of LUDIA.
Experimental results using a Texas inpatient dataset show
that individual-level data can be reasonably reconstructed
from county-, hospital-, and zip code-level aggregate data.
Several factors affecting the reconstruction quality are dis-
cussed, along with the implications of this work for current
aggregation guidelines.
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1. INTRODUCTION

Individual-level datasets that contain one or more records
per person are rich sources for data mining applications.
In the healthcare domain, the application of advanced data
mining methods on individual level records across large pop-
ulations can enable major breakthroughs in both personal-
ized and population-level healthcare, leading to much im-
proved, more cost-effective and timely diagnoses and inter-
ventions [33]. However, such data often contain a substan-
tial amount of privacy-sensitive attributes. In practice, pri-
vacy concerns are typically addressed through multiple Sta-
tistical Disclosure Limitation (SDL) techniques [10], such
as data aggregation [1], data swapping [8, 13], top-coding,
feature generalization such as k-anonymity [36] or I-diversity
[28], and additive random noise with measurement error [17].
Each method has distinct utility and risk aspects. Often an
appropriate mix of disclosure limitation techniques is care-
fully chosen by domain experts and statisticians. For ex-
ample, Centers for Medicare and Medicaid Services applied
six different SDL techniques when publishing synthetic pub-
lic use files': variable reduction, suppression, substitution,
imputation, data perturbation, and coarsening.

Among various SDL approaches, data aggregation is cur-
rently the most widely used. Data aggregation is a process
of summarizing individual-level data into a small set of rep-
resentative values such as mean and median statistics com-
puted over groups that are typically geographically or ad-
ministratively defined (such as county, hospital group, state,
etc). This process is straightforward to apply on diverse
datasets: wireless sensor networks [22], regional healthcare
statistics [7], and government data [9]. Moreover, such ag-
gregate data can be efficiently and effortlessly generated in
RDBMS [29] and statistical programming languages [37].
Data collecting agencies publish various aggregate datasets
at different levels of aggregation (including individual-level
for non-sensitive information). In particular, the U.S. gov-
ernment’s open data project, data.gov has recently released
a substantial amount of regional and topic-based aggregate
data regarding agriculture, education, and energy. Centers
for Disease Control and Prevention annually publishes vari-
ous regional statistics related to aging, cancer, and diabetes.
Other notable sources of aggregated health data are dart-
mouthatlas.org and healthdata.gov.

The use of aggregate data is typically limited to group-
level studies, often referred to as ecological studies for his-

! http://www.cms.gov/Research-Statistics-
Data-and-Systems/Statistics-Trends-and-
Reports/SynPUFs/DE_Syn PUF.html



Table 1: Illustrative health data files: artificial individual-
level data (left) and aggregate-level summary (right) [24].

ID Age Length State State  Avg. Hospital Charge
1 19 1 day TX CA $ 2,706

2 35 2 days CA FL $ 1,809

3 3 10 days FL NY $ 1,954

6 68 100 days FL TX

$ 2,001

toric reasons. Applying the result from aggregate data to
individual-level inference often results in the classic prob-
lem of ecological fallacy [35]. Ecological fallacy occurs when
aggregate-level statistics are misinterpreted as individual-
level inferences. For example, the high correlation between
“per capita consumption of dietary fat” and “breast can-
cer” in different countries [6] does not imply that dietary fat
causes breast cancer.

There have been many attempts to circumvent the ecolog-
ical fallacy while analyzing aggregate data. This is because
individual-level data acquisition is usually expensive, and it
is sometimes legally and ethically implausible. Duncan [11]
developed the method of bounds that uses the constraints
of contingency tables, but the bounds are often uninforma-
tive in real applications [14]. The constancy assumption,
suggested by Goodman [21], allows an individual-level in-
terpretation of ecological regression. Suppose that we want
to check the relationship between Length of Stay (LoS) and
Hospital Charge (HC) variables from state-level aggregate
data:

Hcstate ~ Cstate + ﬂstateLOSstate

The constancy assumption states that daily hospital charge
rates are the same across different states i.e. [state = 5 and
cstate = €. Of course, this assumption is rarely true in real
datasets; for this example, it is more natural to assume that
each state has a different daily charge rate, thereby indi-
cating that multi-level modeling can be used [19]. Such an
approach, however, is under-identified and can’t be solved
using aggregate data, since we have more parameters than
observations. King [25, 26] proposed a Bayesian prior-based
multi-level approach to overcome the limitation of Good-
man’s assumption, but Freedman [15] criticized that King’s
method cannot be validated on the basis of aggregate data.

We provide a novel approach for addressing the ecological
fallacy dilemma by leveraging available sources of individual-
level data for which the values of the partitioning or aggrega-
tion variable is known. For example, an aggregation variable
can indicate state, county, or zip codes, that can be used to
link to aggregate-level dataset that is aggregated along such
geographical regions. In practice, it is not difficult to collect
multiple datasets with different levels of aggregations from
multiple agencies, so little added data-collection expense is
involved.

Table 1 shows a simple, illustrative example of two health
datasets. Non-sensitive fields are published at individual-
level, while a sensitive field (hospital charge) is aggregated
over the partition variable “state”. Our approach is sub-
stantially different from previous ecological fallacy solutions
where only aggregate data were considered.

We use a two-stage approach to avoid the ecological fal-
lacy. We first reconstruct the masked individual-level vari-
ables from aggregate data, then apply multi-level regression
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models to the reconstructed data. In other words, we first
synthesize “pseudo individual-level” data that are statisti-
cally similar to the original (unseen) individual-level data.
Not only multi-level regression models, but also numerous
off-the-shelf data mining algorithms can be easily applied to
such pseudo individual-level data. Our reconstruction algo-
rithm is based on two key observations:

e Aggregation is a linear transformation, thus it pre-
serves several algebraic properties including the asso-
ciative property.

e Using a proper data model, additional individual-level
data can provide statistical clues for the reconstruc-
tion of the masked columns. From the previous hos-
pital charge example, if we know a priori that hospi-
tal charge (aggregate-level) is a function of length of
stay (individual-level), we roughly expect that a per-
son with a longer stay may have paid more than a
person who stayed only a day. We demonstrate that
such clues can be captured using a low rank model.

We demonstrate our reconstruction algorithm on both sim-
ulated and real datasets. Many factors contribute to the re-
construction quality, for example, the number of data points
per aggregation and correlation strength with other columns.
These factors will be illustrated in Section 6 using Texas In-
patient Public Use Files. The main contributions of this
paper are:

e We formulate a data model, LUDIA, that reconstructs
individual values from aggregate values.

e We derive efficient algorithms for solving optimization
problems associated with LUDIA.

e We show that our reconstructed data can capture aggregate-

level random effects, thus the reconstructed data can
be used for multi-level analyses as well as more sophis-
ticated data mining applications.

The first two contributions will be illustrated in Section 3,
the last contribution will be explained in Section 4. Ex-
perimental results are provided in Section 6, followed by
discussions in Section 7.

2. PRELIMINARIES & RELATED WORK

This section starts by setting up the notation of this pa-
per, and visiting two key existing approaches for tackling
aggregate data. We extend these approaches to reconstruct
the original individual-level data, and briefly discuss their
modeling assumptions and limitations.

Aggregation is a compressive linear transformation, which
we denote as A. For example, suppose that there are five
individuals from two different groups: the first two from
Group A and the last three from Group B. Individual-level

observations, say y = [1 2 3 4 5]T7 can be aggregated
into two groups by multiplying an aggregation matrix de-
fined as follows:

s= Ff] =Ay= [1(/)2 1(/)2 1?3 1?3 1?3 Y

Table 2 summarizes the notation of this paper.



Table 2: Notation. For simplicity but without loss of gener-
ality, we use d = 1 in this paper.

Symbol  Explanation

X n X m, individual-level matrix

X 1 X m, ith row of X

y n X d, masked individual-level vector
A p X n, aggregation matrix

s p X d, aggregate-level vector i.e. Ay
U, v n X r, m X r low-rank matrices

Individual-level Data Aggregation Error
>

Tree —®

_ =~ Other Reconstruction Algorithms
P LUDIA: Low-rank Factorization

- using Different Levels of Aggregation
Modeling Error

Figure 1: Reconstruction triangle and LUDIA.

The processes of aggregation and reconstruction can be
illustrated as follows:

compressive linear

(Compression) Ay

. ~ low-rank modelin
(Reconstruction) y rans moce ™8 Recon(s, A, X)

where X represents individual-level data, and Recon is a re-
construction algorithm. To give a brief overview, our recon-
struction algorithm, LUDIA (Low-rank factorization Using
Different levels of Aggregation), is a constrained low-rank
factorization algorithm that can capture multi-level effects.
Figure 1 illustrates the overall idea of LUDIA and other re-
construction algorithms. We have two sources of errors that
construct our reconstruction triangle: aggregation and mod-
eling errors. LUDIA reduces the aggregation error using a
low-rank model, but the LUDIA error is lower-bounded by
the modeling error.

To illustrate existing approaches for aggregate data, let
us consider the previous “hospital charge vs. length of stay”
example. When using aggregate data, three approaches have
been popular:

e The neighborhood model [16], proposed by Freedman,
will imply that hospital charges are more influenced by
geographical attributes rather than the length of stay
variable, since each geographical partition is assumed
to contain a homogeneous population group.

e Ecological regression [20], suggested by Goodman, will
assume that the effect size of length of stay is the
same across different states, based on the constancy
assumption. According to the constancy assumption,
geographical partitions are treated as different batches
of i.i.d. experiments.

e Ecological inference, also known as King’s method [26],
combines the method of bounds and Goodman’s eco-
logical regression. King’s method is a multi-level ap-
proach that models different effect sizes for different
states. The multi-level parameters are first charac-
terized by their acceptable regions using the method
of bounds, then their joint distributions are modeled
under three assumptions [27]: uni-modal joint distri-
bution, absence of spatial correlation, and indepen-
dence between multi-level coefficients and dependent
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variables. However, these assumptions are not verifi-
able on the basis of aggregate-level data [15], and this
method requires manual tuning of the parameter dis-
tributions. In short, ecological inference is a method
with many knobs and unverifiable assumptions, and we
do not include this method in our baseline methods.

These previous approaches have been developed to tackle
aggregate data, and need to be slightly modified to syn-
thesize individual-level data. Imagine that we now obtained
individual-level length of stay data®? X and each individual’s
location information A. To reconstruct the masked hospi-
tal charge data y, two direct extensions from the previous
approaches can be considered:

e Moore-Penrose (MP) solution is an extension of the
neighborhood model. As the neighborhood model only
focuses on the aggregation matrix A, the reconstructed
values are obtained by applying the Moore-Penrose
pseudo-inverse of A to the aggregate data:

yup = ATs
where AT = A(AAT)™.

e Ecological Regression (ER) solution is an extension of
Goodman’s ecological regression. Assuming that the
effect sizes are the same across different states, we ob-
tain the regression parameter B from the aggregate
data, then apply to the individual-level covariate:

VER = EERX

where Bpr = (ZTZ)7'Z"s and Z is the aggregate-
level representation of X i.e. AX.

MP and ER exhibit different failure modes. MP ignores
the effects of individual-level covariates, which may substan-
tially leverage the utility of aggregate data. On the other
hand, ER relies on the constancy assumption, which is rarely
true in real settings.

For our hospital charge example, daily charge rates are
significantly different across city and rural areas (see Sec-
tion 6). This geographical variation on daily charge rates
can be expressed as follows:

e; ~ N(0, 0'2)
~ N(0,0.D)

Yi = inBstatc + Cstate +e;
ﬂstate = ﬂglobal + Tstate
<statc ~ N(Oy 0?)

where (state and 7y, represent state-level biases for the in-
tercept and slope; they are called random intercept and ran-
dom slope, respectively. Assuming that we have two states
A and B, and individuals listed by state, this multi-level
approach [18] can be written in a matrix form:

nstate

Y1 X1 X1 0 1 0
Y2 X2 X2 0 1 0 MNa
. . . n
: = : ﬂglobal + . : Cf +E
Yn—1 Xn—1 0 Xn—1 01 CB

?Note: This simple example has only one individual level
(LoS) and one aggregated (HC) feature, and one level of ag-
gregation, called “State”, so as to convey the concepts most
easily. Our approach readily generalizes to multiple indi-
vidual and aggregate variables as well as multiple levels of
aggregations, as will be seen later



We define new matrices v (random effects) and G (covari-
ates for random effects) to obtain a compact form:

y:Xﬂglobal—’_G'y—’_E (1)

Aggregate data are obtained through the aggregation oper-
ation as follows:

Ay = Axﬁglobal + AGA/ + AE
S = Zﬂglobal + AGA/ + AE

As can be seen, the ER solution is valid only if

=

e v =0 (no random effect)
e (AX)'AX) '(AX) Ay = (X'X)"'XTy

These two conditions are rarely realistic in real applications.

MP and ER are formulated based on two orthogonal as-
sumptions. MP assumes that only geographical partitions
affect the dependent variable, while ER posits that geo-
graphical partitions are merely random groupings. These
assumptions are necessary to obtain some meaningful results
from aggregate data, as the ecological fallacy is, in fact, the
problem of statistical under-identification [34]. However, the
direct extensions from the previous approaches do not utilize
the full potential of auxiliary individual-level data.

A recent breakthrough in the use of aggregate data to aug-
ment individual-level models was made by Park and Ghosh
[30, 32, 31]. The suggested model, CUDIA, is a probabilis-
tic clustering algorithm that utilizes both aggregated and
individual-level data. CUDIA models the data points as
being generated from a mixture of exponential family dis-
tributions. The parameters of CUDIA are estimated us-
ing a Monte-Carlo Expectation Maximization (MCEM) al-
gorithm. Although CUDIA can reasonably reconstruct the
data based on the estimated cluster centers, the primary ob-
jective of CUDIA is still clustering rather than reconstruc-
tion. Furthermore, the presented MCEM algorithm is not
scalable to large-scale data. We show that CUDIA is, in fact,
a special case of LUDIA with a non-negative constraint on
U (see Section 5). LUDIA generalizes CUDIA with a more
flexible representation of U. This generalization provides
an efficient optimization algorithm that is suitable for large-
scale data.

3. LUDIA

LUDIA is a low-rank factorization algorithm using aggre-
gate data. We first describe the underlying data model of
LUDIA, then formulate LUDIA’s objective function. Be-
cause of the non-trivial aggregation constraint, we derive a
customized minimization approach that uses the Sylvester
equation.

3.1 Low-rank Data Model

LUDIA employs a bottom-up approach starting from in-
dividual level data. We first design a data model for a com-
plete matrix D = [X y} , then formulate an objective func-
tion when y is masked and only s = Ay is provided. The
data model for LUDIA is based on the low-rank approxima-
tion theory as follows:

X y]=UV +E=U[V] v/]|+E (2)

where U € R"*", V € R™*" E € R"*™, and r < min(n,m).

Note that we divided V into two block matrices: V, and
vy, so that X ~ UV, and y = Uv,.
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The main objective of this paper is to reconstruct the
masked values, y. In theory, under certain assumptions such
as an underlying low-rank structure and a uniform missing
mechanism, missing values in a matrix can be reconstructed.
Candes and Recht [5] showed that, for matrix entries that
are missing at random, they can be exactly recovered if the
number of observations exceed a certain threshold value.
However, the settings for the matrix completion problem
are not suitable for our problem, since we consider a situ-
ation wherein one or more columns of a matrix is entirely
missing, but its aggregated statistics are given.

We approximate the original matrix using two low-rank
matrices. This problem is different from the matrix com-
pletion problem [23]. Low-rank approximation is typically
posed as a minimization problem as follows:

min [|[D — D||} s.t. rank(D) <r

where D and D are both n xm matrices, and r < min(n, m).
The Eckart-Young-Mirsky theorem [12] says that rank r ap-
proximation of the data matrix D is given as follows:

D=Urv' = Uur'’2r”»vhH=uv'"

where U, I, V are nxr, r xr, m X r truncated Singular Vec-
tor Decomposition matrices, respectively. The data model
in Equation 2 is, however, inapplicable to our reconstruction
application. The model should instead reflect the constraint
that y is masked and only s = Ay is provided.

3.2 Aggregation Constraint

A novel optimization problem for three latent matrices y,
U, and V is proposed as follows:

mi X y]-UV'|;

min || [X ] I* o

subject to Ay =s

A simultaneous minimization over y, U, and V is a difficult
non-convex optimization problem. However, minimization
over one set of variables alone is a convex problem.

We tackle this problem by removing the equality con-
straint. The equality constraint on y can be eliminated if we
fix the other two variables. Given that U and V are fixed,
the optimality condition [4] is given as:

Ay*=s and Vf(y")+A ¥ =0

where f(Y) = [|[X = UV |% + [ly — Uvy |3 and ¥* € R?
is a dual variable. Y™ is optimal if and only if there exists
W* satisfying the optimality conditions. It turns out that,
for this system, y* can be solved in a closed form.

To eliminate the constraint, we solve Karush-Kuhn-Tucker
(KKT) equations as follows:

Vily ) +AT®" =2y" —2Uv, + AT¥" =0

We multiply A on both sides of the second KKT equation,
and solve for ¥*:

2Ay" —2AUv, + AAT ¥ =0
¥ =—2(AAT) (s — AUv,)
Thus, the optimal y™ is:

y'=Uv, +AT(AAT) (s — AUv,) (4)



We plug the optimal y* into the original objective function
to obtain:

win X~ UV.[} + (s — AUv,) (AAT) (s - AUV,)
(5)

We have thus transformed the original objective function
with three variables and an equality constraint into a simpler
unconstrained objective function with two variables.

3.3 Objective Function

Although we simplified the constrained optimization prob-
lem to the non-constrained optimization problem in Equa-
tion 5, solving the objective function poses another chal-
lenge. Intuitively, one can approach the problem using an
alternating minimization approach over U and V. Solv-
ing for U, however, does not have a closed form solution,
because the low rank matrix U is surrounded by A and
vy. Using a divide-and-conquer approach, we can solve for
one row u; of U, and iterate over the entire rows. This
divide-and-conquer approach is, however, susceptible to the
sequence of rows, and cannot be generalized to an arbitrary
aggregation matrix.

We propose a simple and efficient optimization solution
by introducing an auxiliary variable II = AU where we
treat IT as an independent variable. We also relax the hard
relationship between Il and U as a penalty term.

Combining these two tricks, our new objective function is
written as follows:

amin (X~ UV 4 VW (s - Iv]) [ + |AU - I
(6)
where W = (AAT)~!. This objective function is LUDIA’s

objective function, and denote as £(U, V,II). We now ap-
ply our alternating minimization technique to Equation 6.

3.3.1 Solving for U

First, we derive the partial derivative of the LUDIA ob-
jective function with respect to U:

dL(U, V,II)
U

Rearranging the terms, we obtain:

UV, V,+ATAU=XV,+A'II

=-XV,4+UV, ]V, +ATAU-ATII=0

This is a type of a Sylvester equation [2]. This form of
equation widely appears in the field of control theory [3],
and the continuous Lyapanov equation is a special case of
the Sylvester equation. If V] V, and AT A have no common
eigenvalues, a unique solution exists and it is given as:

vee(U) = (V, V. ®L, +1. @ ATA) 'vec(XV, + AII)

where vec is a vectorization operator, and ® represents the
Kronecker product. For example, vec(U) is defined as:

vec(U) = [uu

3.3.2 Solving for 11
Next, we derive a partial derivative of the LUDIA objec-

tive function with respect to IT:
0L(U,V,II)
oI1

T
Un,1 U1L,2 UL,ry e - un,’r}

=-W(s—Iv, )v, — AU+ I =0
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Rearranging the terms, we obtain another Sylvester equa-
tion:

WIlv, v, + IT = Wsv, + AU
The solution is given as:

vec(Il) = (I, @ I, + vyTvy ® W) 'vec(Wsv, + AU)
3.3.3 Solving for v

Finally, we derive closed form update equations for two
block matrices V. and v,. The partial derivative with re-
spect to V is given as:

oL(U,V,1I)
oV,

Rearranging the terms, we obtain:

V.,=(U'U)"'U'X

=-U'(X-UV,)=0

Similarly, the partial derivative with respect to v is:

OL(U,V,1I)

T T
Dv, =-II W(s—1IIv, ) =0

Thus, the update form is:
v, = (II"WII) 'II" Ws
3.4 Algorithm

Algorithm 1 summarizes our alternating minimization ap-
proach combining three different minimization equations for
U, II, and V. The algorithm takes three input matri-
ces: individual-level matrix X, aggregation matrix A, and
aggregate-level matrix s. The output of the algorithm is the
reconstructed individual-level data y. The algorithm does
not require any other parameters.

Algorithm 1: LUDIA Estimation Algorithm

Data: X, A,s

Result: y

r = rank(X));

y=Ats;

U,V = SVD([X 37] ,rank = r);

II = AU;

while not converged do
vec(U) = (V] Vo @I+ I, @ ATA) " vec(XV, + A TII);
vec(Il) = (I, @ I, + v;vy ® W)~ lvec(Wsvy + AU);
Vv, =(UTU)"'UTX;
vy =(MTAATI)IIITAATs;

end

y = UV?;r ;
// correction equation;
Y=y +At(s—Ay)

The initialization of U and V is based on the MP solution.
We first pseudo-reconstruct the masked individual-level data
using MP, then run SVD on the pseudo-complete matrix.
The rank parameter of the SVD algorithm is given as the
rank of X. This setting captures both our low-rank data
model and a linear model defined as y = X3. If this linear
model is the true underlying data model for the data, then
the rank of the complete matrix is the same as the rank of
X.

The last line of the algorithm calibrates the final output.
Recall that the optimal y* was given in Equation 4. This



correction equation ensures that the aggregation of the re-
constructed values are the same as the given aggregate data
i.e. s = Ay. However, if the aggregate values do not nec-
essarily need to match the reconstructed values (possibly
from noise or sub-sampling), we can ignore the last line of
the algorithm.

4. EXTENSIONS

We illustrate two extensions of the LUDIA algorithm.
The first extension shows that LUDIA can directly incor-
porate multi-level data models. This extended reconstruc-
tion method can capture group-level effects, which were not
possible in classical frameworks. The second extension ex-
plores whether we can improve the reconstruction quality if
we have multiple levels of aggregate data.

4.1 Multi-level Modeling

The ecological fallacy problem is essentially “statistical
under-identification” [34]. For aggregate data analyses, the
maximum degrees of freedom are limited by the number
of partitions. Individual-level analyses, such as multi-level
models [19], often require more parameters than the num-
ber of partitions. This under-identification problem is tradi-
tionally approached by more assumptions; Goodman’s and
King’s assumptions are two extreme cases. These assump-
tions are usually unrealistic, and they are almost impossible
to verify on the basis of aggregate data.

Smartly utilizing auxiliary individual-level data can pro-
vide higher degrees of freedom than the number of parti-
tions. The key observation comes from the connection be-
tween the degrees of freedom and the rank of a full matrix.
Suppose that a target y is a function of r degrees of freedom.
Then the rank of the full matrix [X y] is r, since y can
be expressed by a linear combination of X. Analogously, if
a target is a multi-level function of r variables and p lev-
els, then the degrees of freedom for this model is given by
(r x p). To capture the variability of the target, the corre-
sponding full matrix needs to have the rank of (r x p). In
this section, we show that this rank augmentation can be
seamlessly integrated with the LUDIA framework.

As illustrated in Equation 1, a multi-level model can be
compactly written as:

sz,B—FG"/-&-E%[X G} {5]

where v € R™™! is a random effect vector, and G € R™*! rep-
resents encoded covariates according to . For this model,
the degrees of freedom are given as (r+1) where r = rank(X).
The full matrix has (r 41+ 1) columns, and this matrix can
be written as a product of two rank (r 4 [) matrices.

To fully reconstruct the masked individual-level data, the
rank of our low-rank model should be at least (r + ). This
can be achieved by augmenting the data by [:

~ =~ V;r vxl V;
[X G y] = [U U} |:V12 V:v3 Vt—lr:|
where U € R™X! V.. € R and v, € RYXL
Although one can run LUDIA with these augmented terms,
we show that a simple post-processing approach can mimic
the result from this augmentation. The block matrix V, can
be treated as a nuance parameter, since it does not directly
affect the reconstruction of y. The trick is to specify our
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low-rank matrices to be of a specific form as follows:

v, 0 v,
X G y]~[U G}[Ow g vﬂ
Then we do not need to estimate U and \7%7 but only vg.
The augmented term v, needs to minimize the second term
of Equation 6:

-
min [VW(s - AU 6] %))

The solution for this minimization problem is given as fol-

lows:

Ve = ((AG)"WAG) '(AG)"W(s — AUv,)
Using this v,, we calibrate the reconstruction of y:
y=Uv, + GV,

This adjustment equation mimics the original augmentation.

This data augmentation technique for multi-level model-
ing is not suitable for the MP and ER frameworks. MP
only focuses on the aggregation matrix, and does not in-
volve individual-level covariates. Adding the augmented
block matrix G requires a different approach. The num-
ber of covariates in ER is upper-bounded by the number
of partitions. The simplest multi-level model, a random in-
tercept model, requires the number of covariates to be the
same as the number of partitions. LUDIA utilizes the full
potential of individual-level covariates, and thus it can be
easily extended to more complex models.

4.2 Aggregation Stacking

Thus far, we have considered only one source of aggregate
data. There can be many levels of groupings based on geog-
raphy, administration, or other factors. This section answers
how one can further improve the reconstruction quality with
additional aggregate data.

The key trick is to stack two aggregate-level datasets and
create a new aggregate dataset. Algorithm 2 illustrates this
approach. In the algorithm, we have two sources of aggre-
gate data: (Ai,s1) and (Ag,s2). For example, there can
be county-level and state-level aggregate data, respectively.
This kind of augmentation can further improve the recon-
struction accuracy. This is because we have more constraints
on y, and the degrees of freedom for y decrease accordingly.

Algorithm 2: LUDIA with Aggregation Stacking

Data: X, A1,s1,As,s2
Result: y

_ A _ |s1].
A= {AJ and s = |:52},
y = LUDIA(X, A, s);

S. PROBABILISTIC INTERPRETATION

This section presents a probabilistic interpretation of the
proposed LUDIA objective function. Figure 2a shows our
low-rank model for the complete data. Note that the node
for y is not shaded, since the variable is masked. To in-
corporate the aggregation constraint, we draw another plate
that represents groupings. Figure 2b illustrates the graphi-
cal model for LUDIA. Each u; in a group is assumed to be
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Figure 2: Probabilistic Models for LUDIA.

drawn from a multivariate Gaussian centered at 7r,. Thus,
the log-likelihood log p(U, V,II | X, s) of LUDIA is written
as:

-(X-UV,) =X -UV;)
—(s— HvyT)TE?jl(s — HVJ)
— (II — AU) "3, '(IT — AU) + const.

In our setting, each row of X isi.i.d., thus ¥, can be modeled
as an identity matrix I,,. Before characterizing 3, we first
show that AAT is invertible and positive-semidefinite. This
property can be shown from the fact that rank(A) = p and
AAT € RP*P, Moreover, the (p,p)th diagonal component
of (AAT)™! is the same as n,, the number of data points in
group p. Thus, AAT can replace 3. Finally, if we assume
that 3, = I, then this log-likehood is actually a negative
of the LUDIA objective function.

To show the connection to CUDIA, let us assume that we
restrict the shape of U to be as follows:

Uc st wu; €{0,1} and ZUij =1
J

In other words, each column of U becomes an indicator col-
umn for clusters. The rank parameter r of LUDIA is now
interpreted as r different clusters, and V represents cluster
centers. If we plug in this constraint to the LUDIA’s log-
likelihood function, we obtain the log-likelihood of CUDIA.
Although this formulation may provide a different perspec-
tive on combining multiple sources of data, the minimiza-
tion of the CUDIA objective function is more complicated
to solve because of the non-negative constraint. Thus, CU-
DIA requires a computationally heavy MCEM algorithm,
or greedy deterministic algorithm [31]. As the non-negative
case is a special case of U, we also have:

ID-UV' |} <|D-UcV'[3

This is why the CUDIA imputation is not so suitable for
complex modeling such as multi-level modeling and non-
linear estimates, while the LUDIA reconstruction provides
valid inferences in such situations (see Section 6).

6. EXPERIMENTAL RESULTS

We provide experimental results using simulated data and
Texas Inpatient Discharge data. A simulated dataset is used
to illustrate the differences between ER, MP, and LUDIA.
Next, we illustrate reconstruction tasks using actual health
data. In this set of experiments, we mask sensitive columns,
then show how well LUDIA can reconstruct the masked orig-
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inal values for different analytical tasks including non-linear
estimates and multi-level modeling.

6.1 Simulated Data

We generate four different simulated datasets as follows:

e Low-Rank (LR) model emulates the model assumption
of LUDIA. The parameters are given as r = 2 and
m = 4. The equation for simulated data is as follows:

X y]=UV' +E

where U and V are drawn from the standard normal
distribution, and the noise matrix E is drawn from a
normal distribution with 0.4 standard deviation.

e Fixed Effect (FE) model emulates the model assump-
tion of ER. We generate individual-level matrices with
m = 2 from the standard normal distribution. The
model equation is:

y=c+XB+E

where E is drawn from a normal distribution with 0.2
standard deviation.

e Random Intercept (RE1) and Random Slope (REZ2)
model check whether the LUDIA’s multi-level argu-
ment is valid. The model equation is:

y=c+XB8+Gy+E

where -« is drawn from a normal distribution with 0.2
standard deviation.

We fix the number of partitions to be five, and vary the num-
ber of total data points. Aggregation matrices are generated
using random assignment of partitions.

Figure 3 shows the reconstruction errors for different simu-
lated data and reconstruction methods. Each cell represents
a different simulated dataset, and the horizontal axes repre-
sent the number of data points per partition. The lower the
curve is, the better the reconstruction quality is. MP is not
affected by the number of data points per partition, but its
performance is the worst from the experiments. The per-
formance of ER is comparable with that of LUDIA for the
FE dataset, but it does not capture the low-rank structure
and random effects. For the random effect datasets, ER is
largely affected by the number of data points per partition.
LUDIA shows robust and stable performances over different
datasets.

Figure 4 shows the reconstructed values compared to the
original values from the RE1 dataset. The leftmost first
two cells show the reconstructed values from MP and ER,
respectively. In this figure, we show three different initial-
ization methods for LUDIA: MP, ER, and random initial-
ization methods. The alternating minimization approach of
LUDIA does not guarantee the convergence to the global
optimum, and the algorithm is susceptible to initial points.
All three initialization methods provide comparable perfor-
mances, and it would be worthwhile to investigate the better
choice of initialization methods. The rest of the experiments
use the MP initialization to maintain the consistency of our
algorithm.
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Figure 4: Reconstructed vs. original. We show three differ-
ent initializations for LUDIA: MP, ER, and random initial-
izations. All these three LUDIA reconstructions are closer
to the original values, and the MP initialization performs
the best.

6.2 Texas Inpatient Data

We use Texas Inpatient Public Use Data File [38] from the
Texas Department of State Health Services (DSHS). Hos-
pital billing records collected from 1999 to 2007 are pub-
licly available through their website. Each yearly dataset
contains about 2.8 millions events with more than 250 fea-
tures including hospital name, county, patient ZIP codes,
etc. Specifically, we use the inpatient records from Central
Texas in the fourth quarter of 2006. Except for a few exempt
hospitals, all the hospitals in Texas reported inpatient dis-
charge events to DSHS. The public use data file we use is a
subset of the DSHS’s hospital discharge database. Our pri-
mary interest is the hospital charge for normal delivery. We
aggregate the individual-level hospital charges at county-,
hospital-, and ZIP code-levels. We assume that some of the
individual-level covariates are available such race, specialty
unit, length of stay variables.

Hospital charge is primarily a function of length of stay,
but it is substantially different across regions and is also
affected by many other factors:

HC = BrospitarLoS™ + unit + severity + ... + error

where HC and LoS represent Hospital Charge and Length
of Stay, respectively. Note that the coefficient for LoS is
indexed by hospital, since daily charge rate is a function of
hospital. The distribution of HC is, in fact, similar to a log-
normal distribution. It is a better practice to log-transform
the data, before applying a linear model:

log HC = log Bhospital + vlog LoS + ... + Error’
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Table 3: Reconstruction Accuracy of the Texas dataset

Level Model MAE MSE
MR 0.648 (£ 0.75)  0.976 (& 3.28)
County ER  0.466 (+ 0.45) 0.422 (+ 0.87)
LUDIA 0514 (+ 0.48)  0.497 (+ 1.14)
MR 0.609 (£ 0.69) 0.851 (& 2.92)
Hospital ER 0513 (+0.49) 0.501 (+ 1.10)
LUDIA 0.435 (+ 0.40) 0.348 (+ 0.68)
MR 0.580 (£ 0.69) 0.824 (£ 2.92)
Patient ZIP ER  0.319 (£ 0.28) 0.184 (& 0.38)
LUDIA 0.289 (+ 0.26) 0.152 (+ 0.34)
75 T T & 400 Tue I L ‘
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Figure 5: (a) Reconstructed vs. original for the 3 models.
(b) Estimated histograms of daily hospital charges. LUDIA
histogram is the closest to the original.

This log-transformed linear model turns out to be a simple
random intercept model.

Table 3 shows the reconstruction errors from three differ-
ent levels of aggregation. Except for the county-level case,
the LUDIA-reconstructed values are the closest to the origi-
nal values with smallest variances. ER performs slightly bet-
ter than LUDIA for the county-level aggregate data. This is
because the multi-level effects at county-level are not distinc-
tive enough i.e. the constancy assumption can be applied.
Figure 5a illustrates the reconstructed values compared to
the original values. If reconstruction is perfect, points should
lie on the dotted diagonal lines. As can be seen, the MP re-
constructions do not capture the tails. This is because, when
the HC values are averaged, those tail values are typically
cancelled out, and MP cannot infer beyond the provided
average statistics. The ER reconstructions perform reason-
ably well, but does not capture the multi-level bias. LUDIA
provides better estimates for the original values in terms of
Mean Absolute Error (MAE).

The advantages of LUDIA are even more highlighted when
calculating non-linear estimates. As an illustrative example,
suppose that we want to estimate average daily charges. To
calculate this value, we first need to reconstruct individual-
level hospital charges, and then divide the reconstructed
charges by the individual-level length of stay variable. In
other words, average daily charges are calculated as follows:

1« HC

Average Daily Charge = —
n < LoS;

Figure 5b show the histograms of the estimated average daily
charges. As can be seen, the histogram from LUDIA cap-
tures the asymmetrical shape of the original histogram.

As shown in Section 4, multi-level modeling can be di-
rectly integrated with LUDIA. We extract rural counties of
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Figure 6: Multi-level modeling and the mean squared errors,
shown as “MSE(Random Effects)”, between the original ran-
dom effects and estimated random effects. LUDIA’s random
effects are almost the same as the original.

Central Texas, and compare the hospital charges by apply-
ing a random intercept model. Figure 6 shows the fitted
lines from the multi-level models. As can be seen, the orig-
inal data clearly show the random intercept terms. It was
impossible to estimate the slope term from the MP recon-
structed values. For the ER reconstructed values, although
the global model was similar to the original data, we cannot
visually check the random intercepts. This is because ER ig-
nores the information from the aggregation matrix. On the
other hand, LUDIA provides almost the exact same random
effect coefficients.

Reconstructed values from aggregate data can be used in
various data mining applications. In this paper, we show a
simple predictive analysis when a target column is provided
in an aggregate form. By reconstructing the individual-level
target values from the aggregate data, we can train a model,
and then apply the model to test data as follows:

1. Combine the aggregate and individual-level data, then
reconstruct the masked column

2. Train a predictive model using the pseudo complete
data

3. For new data points, predict the target values using
the trained model

We first divided the Texas inpatient dataset into a training
(80%) and a hold-out (test, 20%) set. Assuming the to-
tal charges (target) are provided in only an aggregate form,
we reconstruct the target using three different algorithms.
We trained a Lasso regression model, and then measured
the predictive accuracies of the target. Figure 7 shows the
results from the test set. As can be seen, the LUDIA-
reconstructed training dataset provides the best Lasso model
in terms of MAEs. In this example, we included the perfor-
mance of a model that is trained on CUDIA-reconstructed
data. The CUDIA-reconstructed dataset provides better
predictive accuracies than the MP- and ER-reconstructed
training datasets. However, CUDIA is still a clustering al-
gorithm, and the reconstruction from CUDIA is based on es-
timated cluster centers. Although CUDIA provides homoge-
nous cluster centers, it does not generate fine-grained recon-
struction like LUDIA. The predictive Lasso model trained on
the CUDIA-reconstructed dataset exhibits higher MAE and
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Figure 7: Predictive performance of the Lasso (glmnet)
models trained on the reconstructed data. Absolute errors
are measured using a hold-out dataset.

variances than the model trained on the LUDIA-reconstructed
dataset.

7. DISCUSSION

The implication of our research can be viewed from two
perspectives.

Utility perspective. Our method allows aggregated
data to be effectively utilized in individual-level inferential
tasks. This is particularly important since standard impu-
tation techniques do not make use of the summary statistics
provided by aggregated data that are widely available for
social good. Many machine learning algorithms that require
completely observed data can now be directly applied to the
LUDIA-reconstructed data.

Privacy perspective. Although the reconstructed val-
ues are not guaranteed to be identical to the true values,
it is clear that the estimated values are correlated with the
actual values. If additional theoretical guarantees are de-
veloped, data aggregation may be no longer perfectly safe
from privacy attacks. With enough auxiliary information, it
is possible that private information gets revealed using tech-
niques similar to LUDIA. This implies that, in the future,
reconstruction performance will need to be considered prior
to data aggregation, to guarantee that privacy requirements
are met.

The proposed LUDIA framework can be extended to more
complex data models. It is also worthwhile to investigate
more efficient solutions for the Sylvester equation. One can
also explore theoretical reconstruction guarantees that de-
pend on the characteristics of the datasets and of the aggre-
gation matrices.
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