
Safe and Efficient Screening For Sparse
Support Vector Machine

Zheng Zhao, Jun Liu, James Cox
SAS Institute Inc. 600 Research Drive, Cary, NC 27513

{zheng.zhao, jun.liu, james.cox}@sas.com

ABSTRACT
Sparse support vector machine (SVM) is a robust predictive
model that can effectively remove noise and preserve signals.
Like Lasso, it can efficiently learn a solution path based on
a set of predefined parameters and therefore provides strong
support for model selection. Sparse SVM has been success-
fully applied in a variety of data mining applications in-
cluding text mining, bioinformatics, and image processing.
The emergence of big-data analysis poses new challenges for
model selection with large-scale data that consist of tens of
millions samples and features. In this paper, a novel screen-
ing technique is proposed to accelerate model selection for
`1-regularized `2-SVM and effectively improve its scalability.
This technique can precisely identify inactive features in the
optimal solution of a `1-regularized `2-SVM model and re-
move them before training. The technique makes use of the
variational inequality and provides a closed-form solution
for screening inactive features in different situations. Every
feature that is removed by the screening technique is guar-
anteed to be inactive in the optimal solution. Therefore,
when `1-regularized `2-SVM uses the features selected by
the technique, it achieves exactly the same result as when it
uses the full feature set. Because the technique can remove a
large number of inactive features, it can greatly increase the
efficiency of model selection for `1-regularized `2-SVM. Ex-
perimental results on five high-dimensional benchmark data
sets demonstrate the power of the proposed technique.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—feature evaluation and selection

Keywords
Screening, sparse support vector machine, feature selection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623686.

1. INTRODUCTION
Sparse predictive modeling algorithms provide powerful

tools to analyze high-dimensional data and generate results
that have high-degree of interpretability and robustness [5,
11]. In general, an `1-regularized sparse predictive modeling
algorithm can be formulated as minw loss(w)+λ‖w‖1. Here
w ∈ Rm contains the model coefficients, loss (w) is a loss
function, and λ ≥ 0 is the regularization parameter that bal-
ances between the loss function and the regularizer. When
the hinge loss or its square form is used as the loss func-
tion, the resulting sparse model is the `1-regularized support
vector machine (SVM) [4, 18, 2, 6, 16]. An `1-regularized
SVM model can simultaneously perform model fitting by
margin maximization and remove noisy features by soft-
thresholding. It has been successfully applied in a variety of
data mining applications that include text mining, bioinfor-
matics, and image processing. Compared to other variances
of sparse SVM model [15, 8, 1], `1-regularized SVM enjoys
two major advantages. First, it defines a convex problem;
therefore, an optimal solution can always be achieved with-
out any relaxation of the original problem. Second, its op-
timization is simple, and a well implemented `1-regularized
SVM solver can readily handle large-scale problems with
tens of millions samples and features [6].

The value of the regularization parameter λ is crucial to
the performance of an `1-regularized SVM. To achieve good
performance, model selection is often used to help choose an
appropriate λ value. For example, given a series of regular-
ization parameters, λ1 > λ2 > . . . > λk, the corresponding
solutions, w∗1 ,w

∗
2 , . . . ,w

∗
k, can be obtained and the best so-

lution can be chosen by using a prespecified criterion, such
as the accuracy or the area under the curve (AUC) that is
achieved by the resulting models on holdout samples.

Big-data analysis requires a higher standard of efficiency
for predictive modeling. When data are huge, the computa-
tional cost of model selection can be prohibitive. An intu-
itive question is to ask whether the solution obtained in the
kth step of model selection can be used in the (k+ 1)th step
to speed up computation. For Lasso [11], the answer leads to
the state-of-the-art screening techniques to accelerate model
selection [17, 7, 14, 12, 10]. The key idea is that, given a
solution w∗1 for λ = λ1, one can identify many features that
are guaranteed to have zero coefficients in w∗2 when λ = λ2.
By removing a large number of these inactive features, the
cost for computing w∗2 can be greatly reduced.

Although screening algorithms have been designed for Lasso,
very little research has been done for screening for `1-regularized
SVMs except in [7], which proposes a safe screening tech-

542

nique for `1-regularized `1-SVM. This paper presents a novel
screening technique that is designed to speed up model se-
lection for `1-regularized `2-SVM. The technique makes use
of the variational inequality [9] for constructing a tight con-
vex set, which can be used to compute bounds for screening
features. Features that are removed by this technique are
guaranteed to be inactive in the optimal solution. Therefore,
the screening is “safe.” Experimental results on five high-
dimensional benchmark data sets demonstrate that the pro-
posed screening technique can dramatically speed up model
selection for `1-regularized `2-SVM by efficiently removing
a large number of inactive features.

2. `1-REGULARIZED `2-SVM
Assume that X ∈ IRm×n is a data set that contains n sam-

ples, X = (x1, . . . ,xn), and m features, X =
(
f>1 , . . . , f

>
m

)>
.

Assume also that y = (y1, . . . , yn) contains n class labels,
yi ∈ {−1,+1}, i = 1, . . . , n. Let w ∈ IRm be the m-
dimensional weight vector, let ξi ≥ 0, i = 1, . . . , n be the
n slack variables, and let b ∈ IR and λ ∈ IR+ be the bias
and the regularization parameter, respectively. The primal
form of the `1-regularized `2-SVM is defined as:

min
ξ,w

1

2

n∑
i=1

ξ2i + λ||w||1, (1)

s.t. yi
(
w>xi + b

)
≥ 1− ξi, ξi ≥ 0.

Eq. (1) specifies a convex problem that has a non-smooth
`1 regularizer, which enforces that the solution is sparse. Let
w?(λ) be the optimal solution of Eq. (1) for a given λ. All
the features that have nonzero values in w?(λ) are called
active features, and the other features are called inactive.
Let α ∈ IRn be the n-dimensional dual variable. By apply-
ing the Lagrangian multiplier [3], the dual of the problem
defined in Eq. (1) can be obtained as:

min
α
‖α− 1‖22, (2)

s.t. ‖f̂>j α‖ ≤ λ, j = 1, . . . ,m,
n∑
i=1

αiyi = 0, α < 0.

Here, f̂ = Yf , and Y = diag(y) is a diagonal matrix. By
defining α = λθ, Eq. (2) can be reformulated as:

min
θ
||θ − 1

λ
||22, (3)

s.t. ‖f̂>j θ‖ ≤ 1, j = 1, . . . ,m,
n∑
i=1

θiyi = 0, θ < 0.

In the primal formulation for the `1-regularized `2-SVM,
the primal variables are b, w, and ξ. And in the dual for-
mulation, the dual variables are α or θ. When b and w are
known, ξ, α, and θ can be obtained as:

ξi = αi = λθi = max
(

0, 1− yi
(
w>xi + b

))
. (4)

The relation between α and w can be expressed as:

α> f̂j =

{
sign (wj)λ, if wj 6= 0
[−λ,+λ], if wj = 0

, j = 1, . . . ,m. (5)

The relation between θ and w can be expressed as:

θ> f̂j =

{
sign (wj), if wj 6= 0
[−1,+1], if wj = 0

, j = 1, . . . ,m. (6)

λmax is defined as the smallest λ value that leads to w = 0
when it is used in Eq. (1). Given an input data set (X,y),
λmax can be obtained in a closed form as:

λmax =

∥∥∥∥∥
n∑
i=1

(
yi −

n+ − n−
n

)
xi

∥∥∥∥∥
∞

, (7)

where n+ and n− denote the number of positive and negative
samples, respectively. And when λ ≥ λmax, the optimal
solution of the problem defined in Eq. (1) can be written as:

w? = 0, b? =
(n+ − n−)

n
. (8)

Denote m =
∑n
i=1

(
yi − n+−n−

n

)
xi. The first feature to

enter the model is the one that corresponds to the element
that has the largest magnitude in m.

3. EFFICIENT AND SAFE SCREENING FOR
`1-REGULARIZED `2-SVM

Eq. (6) shows that the necessary condition for a feature

f to be active in an optimal solution is |θ> f̂ | = 1. On the

other hand, for any feature f , if |θ> f̂ | < 1, it must be inac-
tive in the optimal solution. Given a λ value, this condition
can be used to develop a screening rule for removing inactive
features to speed up training for the `1-regularized `2-SVM.
The key is to compute the upper bound of |θ> f̂ | for features.
A feature can be safely removed if its upper bound value is
less than 1. The cost of computing the upper bounds can
be much lower than training `1-regularized `2-SVM. There-
fore, screening can greatly lower the computational cost by
removing many inactive features before training. To bound
the value of |θ> f̂ |, it is necessary to construct a closed con-
vex set K that contains θ. The upper bound value can be
then computed by maximizing |θ> f̂ | over K.

3.1 Constructing the Convex Set K

In the following, Eq. (3) and the variational inequality [9]

are used to construct a closed convex set K to bound |θ> f̂ |.
Proposition 3.1 introduces the variational inequality for a
convex optimization problem.

Proposition 3.1. Let θ? be an optimal solution of the
following convex optimization problem:

min g(θ), s.t. θ ∈ K,

where g is continuously differentiable and K is closed and
convex. Then the following variational inequality holds:

∇g (θ?)
>

(θ − θ?) ≥ 0, ∀θ ∈ K.

The proof of this proposition can be found in [9].
Given λ2 < λmax, assume that there is a λ1, such that

λmax ≥ λ1 > λ2 and its corresponding solution θ1 is known1.
The reason to introduce λ1 is that when λ1 is close to λ2 and
θ1 is known, θ1 can be used to construct a tighter convex
set that contains θ2 to bound the value of |θ>2 f̂ |.
1When λ1 = λmax, θ1 is given in Eq. (4).

543

θ1
θ2

Figure 1: The K in a two-dimensional (2D) space
when different t values are used. The red circle cor-
responds to t = 0, and the blue circle corresponds to

t = 1 +
(

1
λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
−θ1

∥∥∥
2

.

Let θ1 and θ2 be the optimal solutions of the problem
defined in Eq. (3) for λ1 and λ2, respectively. Assume that
λ1 > λ2 and that θ1 is known. The following results can be
obtained by applying Proposition 3.1 to the convex problem
defined in Eq. (3) for θ1 and θ2, respectively:

(
θ1 −

1

λ1

)>
(θ − θ1) ≥ 0, (9)(

θ2 −
1

λ2

)>
(θ − θ2) ≥ 0. (10)

By substituting θ = θ2 into Eq. (9), and θ = θ1 into
Eq. (10), the following equations can be obtained:

(
θ1 −

1

λ1

)>
(θ2 − θ1) ≥ 0, (11)(

θ2 −
1

λ2

)>
(θ2 − θ1) ≤ 0. (12)

In the preceding equations, θ1, λ1, and λ2 are known.
Therefore, Eq. (11) defines an n-dimensional halfspace and
Eq. (12) defines an n-dimensional hyperball. Because θ2
needs to satisfy both equations, it must reside in the inter-
section of the halfspace and the hyperball. Obviously, this
region is a closed convex set, and it can be used as K to
bound |θ>2 f̂ |. Fig. 1 shows an example of the K in a two-
dimensional space. In the figure, Eq. (11) defines the area
below the blue line, Eq. (12) defines the area in the red circle,
and K is indicated by the shaded area.

Besides the n-dimensional hyperball defined in Eq. (12),
it is possible to derive a series of hyperballs by combining
Eq. (11) and Eq. (12). Assume that θ? is the optimal solu-
tion of Eq. (3) and t ≥ 0. It is easy to verify that θ? is also

the optimal solution of the following problem:

min
θ

∥∥∥∥θ − (t1λ + (1− t)θ?
)∥∥∥∥2

2

, (13)

s.t. ‖f̂>j θ‖ ≤ 1, j = 1, . . . ,m,
n∑
i=1

θiyi = 0, θ < 0.

By applying Proposition 3.1 to the problem defined in Eq. (13)
for θ1, and θ2, the following results can be obtained:(

θ1 −
(
t1

1

λ1
+ (1− t1)θ1

))>
(θ − θ1) ≥ 0, (14)(

θ2 −
(
t2

1

λ2
+ (1− t2)θ2

))>
(θ − θ2) ≥ 0. (15)

Let t = t1
t2
≥ 0. By substituting θ = θ2 and θ = θ1 into

Eq. (14) and Eq. (15), respectively, and then combining the
two inequalities, the following equations can be obtained:

Bt =
{
θ2 : (θ2 − c)> (θ2 − c) ≤ l2

}
, (16)

c =
1

2

(
tθ1 − t

1

λ1
+

1

λ2
+ θ1

)
, l =

1

2

∥∥∥∥tθ1 − t 1

λ1
+

1

λ2
− θ1

∥∥∥∥
2

.

As the value of t changes from 0 to ∞, Eq. (16) generates
a series of hyperballs. When t = 0, c = 1

2
(1
λ2

+ θ1) and

l = 1
2
‖ 1
λ2
− θ1‖2. This corresponds to the hyperball defined

by Eq. (12). The following theorems provide some insights
about the properties of the hyperballs generated by Eq. (16):

Theorem 3.2. Let a =
1
λ1
−θ1∥∥∥ 1

λ1
−θ1

∥∥∥
2

. The radius of the hy-

perball generated by Eq. (16) reaches it minimum when

t = 1 +

(
1

λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
− θ1

∥∥∥
2

.

Let ĉ be the center of the ball and l be the radius. When the
minimum is reached, they can be computed as:

ĉ =
1

2

(
1

λ2
− 1

λ1

)
Pa (1) + θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ .

Here, Pu (v) = v − v>u

‖u‖22
u is an operator that projects v to

the null-space of u. Since ‖a‖2 = 1, Pa (1) = 1−
(
a>1

)
a.

Proof. The theorem can be proved by minimizing the r
defined in Eq. (16).

Theorem 3.3. Let the intersection of the hyperplane(
θ1 − 1

λ1

)>
(θ2 − θ1) = 0 and the hyperball defined by Eq. (16)

be Pt. The following equation holds:

Pt1 = Pt2 , for ∀t1, t2 ≥ 0, t1 6= t2.

Proof. The theorem can be proved by showing that Pt

is independent of t.

This theorem shows that the intersection between the hy-
perball Bt and the hyperplane (θ1 − 1

λ1
)> (θ2 − θ1) = 0 is

the same for different t values.

544

Theorem 3.4. Let the intersection of the halfspace
(θ1− 1

λ1
)> (θ2 − θ1) ≥ 0 and the hyperball defined by Eq. (16)

be Qt. The following inequality holds:

Qt1 ⊆ Qt2 , for ∀t1, t2 ≥ 0, t1 ≤ t2.

Proof. The theorem can be proved by showing that ∀t1,
t2 ≥ 0 and t1 ≤ t2, if θ2 ∈ Qt1 , then θ2 ∈ Qt2 also holds.

This theorem shows that the volume of Qt becomes larger
when t becomes larger. And Qt1 ⊆ Qt2 if t1 ≤ t2.

Fig. 1 shows two circles in a 2D space. The red circle
corresponds to the one obtained by setting t1 = 0 in Eq. (16).
The blue circle corresponds to the one obtained by setting

t2 = 1 +

(
1

λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
− θ1

∥∥∥
2

in Eq. (16). It can be observed that the intersections of the
two circles pass the line (θ1 − 1

λ1
)> (θ2 − θ1) = 0. This is

consistent with Theorem 3.3. Also since t1 ≤ t2, Qt1 ⊆ Qt2 ,
which is consistent with Theorem 3.4.

Thereom 3.4 suggests that Qt=0 should be used to con-
struct K, because when t = 0, the volume of Qt is mini-
mized. The equality θ>y = 0 in Eq. (3) of the dual formu-
lation can also be used to further reduce the volume of K.

K =

{
θ2 : (θ2 − c)> (θ2 − c) ≤ l2,

(
θ1 −

1

λ1

)>
(θ2 − θ1) ≥ 0, θ>2 y = 0

}
.

Here c = 1
2

(
1
λ2

+ θ1
)

and l = 1
2

∥∥∥ 1
λ2
− θ1

∥∥∥
2
. Let θ2 = c+r,

a =
1
λ1
−θ1∥∥∥ 1

λ1
−θ1

∥∥∥
2

, and b = 1
2

(
1
λ2
− θ1

)
. K can be written as:

K =

{
θ2 : θ2 = c + r, ‖r‖2 ≤ ‖b‖2,

a> (b + r) ≤ 0, (c + r)> y = 0

}
. (17)

Theorem 3.3 shows that when t varies, the intersection of
the hyperball Bt and the hyperplane (θ1− 1

λ1
)> (θ2 − θ1) =

0 remains unchanged. This suggests that if the maximum
value of |θ> f̂ | is achieved with a θ that is in this area, no
matter which Bt is used, the maximum value will be the
same. This property can be used to simplify the computa-
tion. Section 3.2.4 will show that when the maximum value
of |θ> f̂ | is achieved with a θ on the intersection of the hy-
perball Bt=0 and the hyperplane (θ1 − 1

λ1
)> (θ2 − θ1) = 0,

the computation of the maximum value can be simplified by

switching to Bt with t = 1 +
(

1
λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
−θ1

∥∥∥
2

.

3.2 Computing the Upper Bound
Given the convex set K defined in Eq. (17), the maximum

value of
∣∣∣θ>2 f̂

∣∣∣ can be computed by solving the problem:

max
∣∣∣(c + r)> f̂

∣∣∣ (18)

s.t. a> (b + r) ≤ 0 , ‖r‖2 − ‖b‖2 ≤ 0, (c + r)> y = 0.

In Eq. (18), θ2 = c + r. Also, r is unknown, and f̂ , a, b, c,
and y are known. Since the following equation holds:

max |x| = max {−min(x),max(x)}
= max {−min(x),−min(−x)} ,

max
∣∣∣(c + r)> f̂

∣∣∣ can be decomposed to two subproblems:

m1 = −minθ>2 f̂ = −min r> f̂ − c> f̂ (19)

s.t. a> (b + r) ≤ 0 , ‖r‖2 − ‖b‖2 ≤ 0, (c + r)> y = 0,

m2 = maxθ>2 f̂ = −min r>
(
−f̂
)

+ c> f̂ (20)

s.t. a> (b + r) ≤ 0 , ‖r‖2 − ‖b‖2 ≤ 0, (c + r)> y = 0,

and

max
∣∣∣θ>2 f̂

∣∣∣ = max
∣∣∣(c + r)> f̂

∣∣∣ = max (m1,m2) .

Eq. (19) and Eq. (20) suggest that the key to bound
∣∣∣θ>2 f̂

∣∣∣
is to solve the following problem:

min r> f̂ (21)

s.t. a> (b + r) ≤ 0, ‖r‖2 − ‖b‖2 ≤ 0, (c + r)> y = 0.

Its Lagrangian L (r, α, β, ρ) can be written as:

r> f̂ +αa> (b + r) +
1

2
β
(
‖r‖22 − ‖b‖22

)
+ ρ (c + r)> y. (22)

And the Karush-Kuhn-Tucker (KKT) conditions are:

(dual feasibility) α ≥ 0, β ≥ 0, (23)

(primal feasibility) ‖r‖22 − ‖b‖22 ≤ 0, (24)

a> (b + r) ≤ 0, (25)

(c + r)> y = 0, (26)

(complementary slackness) αa> (b + r) = 0, (27)

β
(
‖r‖22 − ‖b‖22

)
= 0, (28)

(stationarity) ∇rL (r, α, β, ρ) = 0. (29)

Since ‖r‖22 ≤ ‖b‖22, the problem specified in Eq. (21) is
bounded from below by −‖b‖2‖f‖2. Thus, minr L (r, α, β, ρ)
is also bounded from below.

According to whether the inequality constraints are ac-
tive, the problem can have different minimum values. This
requires a discussion of the following four different cases:
(1), β = 0, f̂ + αa + ρy 6= 0; (2), β = 0, f̂ + αa + ρy = 0;
(3), β > 0, α = 0; (4), β > 0, α > 0. The following
sections study these cases in detail.

3.2.1 The Case β = 0, f̂ + αa + ρy 6= 0

In this case, set r = t (f + αa + ρy), and let t → −∞.
Then L (r, α, 0, ρ)→ −∞. This contradicts the observation
that minr L (r, α, β, ρ) must be bounded from below. So

when f̂ + αa + ρy 6= 0, β must be positive.

3.2.2 The Case β = 0, f̂ + αa + ρy = 0

Let Pu (v) = v − v>u
‖u‖22

u be the projection of v onto the

null-space of u. Given f̂ + αa + ρy = 0, it is easy to verify
that αPy (a) = −Py(f̂). This suggests that αPy(a) and

Py

(
f̂
)

are colinear. Also since α ≥ 0, the following must

545

hold:

Py (a)> Py

(
f̂
)

‖Py (a) ‖‖Py

(
f̂
)
‖

= −1.

Given αPy (a) = −Py

(
f̂
)

, α can be computed by:

α = −
Py (a)> Py

(
f̂
)

‖Py (a) ‖22
=
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
.

Similarly, the value of ρ can be computed by:

ρ = − f̂>y

‖y‖22
− α a>y

‖y‖22
= − f̂>y

‖y‖22
−
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
a>y

‖y‖22
By plugging β = 0 and the obtained value of α and ρ into
Eq. (22), L (r, α, 0, ρ) can be written as:

L (r, α, 0, ρ) = −
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
a>θ1 − c> f̂ (30)

It can be verified that in this case, all KKT conditions
specified in Eq. (23)–Eq. (29) are satisfied. Since the prob-
lem defined in Eq. (19) is convex and its domain is also
convex, Eq. (30) defines the minimum value of the problem.
The following theorem summarizes the result when β = 0.

Theorem 3.5. When
Py(a)>Py(f̂)
‖Py(a)‖‖Py(f̂)‖

= −1, r> f̂ achieves

its minimum value at β = 0, which can be computed as:

min
r

r> f̂ = −
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
a>θ1 − c> f̂ .

And in this case, the value of the dual variables are:

α =
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
, β = 0, ρ = − f̂>y

‖y‖22
−
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
a>y

‖y‖22
.

Since α =
‖Py(f̂)‖2
‖Py(a)‖2

> 0, the minimum value is achieved on

the hyperplane defined by a> (b + r) = 0.

Corollary 3.6. When
|Py(a)>Py(f̂)|
‖Py(a)‖‖Py(f̂)‖

= 1, r> f̂ achieves

its maximum value at β = 0. In this case −minθ> f̂ can be
computed as:

−minθ>2 f̂ = −min r> f̂ − c> f̂ =
‖Py

(
f̂
)
‖2

‖Py (a) ‖2
a>θ1. (31)

maxθ>2 f̂ can be computed by replacing f̂ with−f̂ in Eq. (31).

In the computation, ‖Py

(
f̂
)
‖2 are independent to λ1, λ2,

and θ1. Therefore, it can be precomputed. ‖Py (a)‖2 and
a>θ1 are shared by all features. These properties can be
used to accelerate the computation.

3.2.3 The Case: β > 0, α = 0

In this case, since β > 0 and α = 0, the minimum value
of r> f̂ is achieved on the boundary of the hyperball. In
Figure 1, this corresponds to the arc of the red circle under
the blue line. Plugging α = 0 in Eq. (22) results in:

L (r, 0, β, ρ) = r> f̂ +
1

2
β
(
‖r‖22 − ‖b‖22

)
+ ρ (c + r)> y (32)

The dual function g (0, β, ρ) can be obtained by setting

∇rL (r, 0, β, ρ) = f̂ + βr + ρy = 0⇒ r = − 1

β

(
f̂ + ρy

)
.

Since β > 0, ‖b‖2 = ‖r‖2. Therefore β can be written as:

β =
‖f̂ + ρy‖2
‖b‖2

Plugging the obtained r and β into L (r, 0, β, ρ) leads to:

g (ρ) = min
r
L (r, 0, β, ρ) = −‖b‖2‖f̂ + ρy‖2 + ρc>y. (33)

The dual function can be maximized by setting ∂g(ρ)
∂ρ

= 0.

Also since b>y = c>y, the following equation holds:

−‖b‖2
ρy>y + f̂>y

‖f̂ + ρy‖2
+ b>y = 0. (34)

Squaring both sides of the equation and solving the ob-
tained equation leads to the result:

ρ = − f̂>y

y>y
±
‖Py

(
f̂
)
‖2

‖Py (b) ‖2
b>y

y>y
.

To obtain this equation, the following facts are used:

b>b−
(
b>y

)2
y>y

=

∥∥∥∥b− b>y

y>y
y

∥∥∥∥2
2

= ‖Py (b)‖22 ,

f̂> f̂ −

(
f̂>y

)2
y>y

=

∥∥∥∥∥f̂ − f̂>y

y>y
y

∥∥∥∥∥
2

2

=
∥∥∥Py

(
f̂
)∥∥∥2

2
.

Since (c + r)> y = 0 and r = − 1
β

(
f̂ + ρy

)
, it can be

verified that β = f̂>y+ρy>y
c>y

. To ensure that β is positive,

the following equation must hold:

ρ = − f̂>y

y>y
+
‖Py

(
f̂
)
‖2

‖Py (b) ‖2
b>y

y>y
. (35)

And in this case, β can be written in the form:

β =
‖f̂ + ρy‖2
‖b‖2

=
‖Py

(
f̂
)
‖2

‖Py (b) ‖2
(36)

To compute max
ρ
g (ρ), first, Eq. (34) can be rewritten as:

‖b‖2‖f̂ + ρy‖2 = ‖b‖22
ρy>y + f̂>y

b>y
. (37)

Plugging Eq. (35) and Eq. (37) into Eq. (33) leads to:

max
ρ
g (ρ) = −‖b‖22

ρy>y + f̂>y

b>y
+ ρb>y

= −‖Py (b)‖2
∥∥∥Py

(
f̂
)∥∥∥

2
− f̂>yb>y

y>y

Since f̂>yb>y
y>y

= f̂>b−P>y (b)Py

(
f̂
)

, max
ρ
g (ρ) can also be

written in the following form:

max
ρ
g (ρ) = −‖Py (b)‖2

∥∥∥Py

(
f̂
)∥∥∥

2
+Py (b)> Py

(
f̂
)
− f̂>b.

It can be verified that in this case, all the KKT conditions
specified in Eq. (23)–Eq. (24) and Eq. (26)–Eq.(29) are sat-
isfied. The additional condition for Eq. (25) to be satisfied

546

can be derived as follows. First setting the derivative of
Eq. (22) to be zero leads to the following equation:

r = − 1

β

(
f̂ + αa + ρy

)
Plugging this equation to a> (b + r) ≤ 0 results in:

α ≥ βa>b− a>f − ρa>y.

If βa>b− a>f − ρa>y > 0, α > 0 must hold. According
to the complementary slackness condition, a> (b + r) = 0.
Therefore, α = βa>b− a>f − ρa>y > 0. However, this
contradicts the requirement that α = 0. On the other
hand, if βa>b− a>f − ρa>y ≤ 0, α = 0 must hold. Oth-
erwise, α > 0 and α = βa>b− a>f − ρa>y ≤ 0 form a
contradiction. Therefore, to satisfy Eq. (25), the condition
βa>b− a>f − ρa>y ≤ 0 must be true. Plugging Eq. (35)
and Eq. (36) in βa>b− a>f − ρa>y ≤ 0 leads to:

∥∥∥Py

(
f̂
)∥∥∥

2
Py (a)>

 Py (b)

‖Py (b)‖2
−

Py

(
f̂
)

∥∥∥Py

(
f̂
)∥∥∥

2

 ≤ 0

Under this condition, the KKT condition a> (b + r) ≥ 0
must be satisfied. The following theorem summarizes the
result for the case β > 0 and α = 0.

Theorem 3.7. When Py (a)>
(

Py(b)

‖Py(b)‖
2

− Py(f̂)
‖Py(f̂)‖

2

)
≤

0, r> f̂ achieves its minimum value at β > 0 and α = 0:

min
r

r> f̂ = −‖Py (b)‖2
∥∥∥Py

(
f̂
)∥∥∥

2
+ Py (b)> Py

(
f̂
)
− f̂>b

(38)
In this case, the values of the dual variables are:

α = 0, β =
‖Py

(
f̂
)
‖2

‖Py (b) ‖2
, ρ = − f̂>y

y>y
−
‖Py

(
f̂
)
‖2

‖Py (b) ‖2
b>y

y>y
. (39)

Corollary 3.8. When Py (a)>
(

Py(b)

‖Py(b)‖
2

− Py(f̂)
‖Py(f̂)‖

2

)
≤

0, r> f̂ achieves its minimum value at β > 0 and α = 0. And
in this case, −minθ> f̂ can be computed as:

−minθ>2 f̂ = −min r> f̂ − c> f̂

= ‖Py (b)‖2
∥∥∥Py

(
f̂
)∥∥∥

2
− Py (b)> Py

(
f̂
)
− f̂>θ1 (40)

maxθ>2 f̂ can be computed by replacing f̂ with−f̂ in Eq. (40).

In the computation,
∥∥∥Py

(
f̂
)∥∥∥

2
does not rely on λ1, λ2

and θ1. Therefore, it can be precomputed. Py (a)> Py (b)
and ‖Py (b)‖2, although rely on λ1, λ2 or θ1, are shared
by all features and only need to be computed once. These
properties can be used to accelerate computation.

3.2.4 The Case: β > 0, α > 0

In this case, the minimum value of r> f̂ is achieved on the
intersection of the boundary of the hyperball and the hy-
perplane. In Figure 1, this corresponds to the two points
on the intersection of the red circle and the blue line. It
turns out that when β > 0 and α > 0, deriving a closed
form solution for the problem specified in Eq. (19) is diffi-
cult. Theorem 3.3 suggests that when the minimum value
is achieved on the intersection of the hyperball and the hy-
perplane, one could switch the hyperball used in Eq. (19) to

simplify the computation. It turns out that a closed form
solution can be obtained by using the hyperball Bt with

t = 1 +
(

1
λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
−θ1

∥∥∥
2

. This corresponds to the hy-

perball defined in Theorem 3.2. As proved in Theorem 3.3,
the intersections of different Bt and (1

λ1
−θ1)> (θ2 − θ1) = 0

are identical. Therefore, switching the hyperball Bt does not
change the maximum value of |θ> f̂ |.

When Bt with t = 1 +
(

1
λ2
− 1

λ1

)
a>1∥∥∥ 1

λ1
−θ1

∥∥∥
2

is used and

assuming that the minimum is achieved on the intersection
of the hyperball and the hyperplane, the problem specified
in Eq. (19) can be rewritten as:

argr min r> f̂ (41)

s.t. a>r = 0, ‖r‖22 − l
2 ≤ 0, (ĉ + r)> y = 0.

And its Lagrangian can be written as:

L (r, α, β, ρ) = r> f̂ + αa>r +
1

2
β
(
‖r‖22 − l2

)
+ ρ (ĉ + r)> y.

In the preceding equation, c is the center of the hyperfall,
and l is the radius of the hyperfall. They are defined as:

ĉ =
1

2

(
1

λ2
− 1

λ1

)
Pa (1)+θ1, l =

1

2

(
1

λ2
− 1

λ1

)
‖Pa (1)‖ .

The dual function g (α, β, ρ) = minr L (r, α, β, ρ) can be
obtained by setting ∇rL (r, α, β, ρ) = 0, which leads to:

r = − 1

β

(
f̂ + αa + ρy

)
.

Since β 6= 0, ‖r‖2 = l. Therefore, β can be written as:

β =
‖f̂ + αa + ρy‖2

l

Since α 6= 0, a>r = 0. Therefore, α can be written as:

α = −a>
(
f̂ + ρy

)
Plugging the obtained r, α, and β into L (r, α, β, ρ) leads to:

g (ρ) = min
r
L (r, α, β, ρ)

= −l‖f̂ + αa + ρy‖2 + ρĉ>y

= −l‖f̂ − a> f̂a + ρy − a>ya‖2 + ρĉ>y

= −l‖Pa

(
f̂
)

+ ρPa (y) ‖2 + ρĉ>y. (42)

g (ρ) can be maximized by setting ∂g(ρ)
∂ρ

= 0, which leads to:

l
ρPa (y)> Pa (y) + Pa

(
f̂
)>

Pa (y)

‖Pa

(
f̂
)

+ ρPa (y) ‖2
= ĉ>y. (43)

Squaring both sides of the equation and solving the resulting
problem yields a closed-form solution for ρ:

ρ = −
Pa

(
f̂
)>

Pa (y)

Pa (y)> Pa (y)
±
‖PPa(y)

(
Pa

(
f̂
))
‖2

‖PPa(y) (Pa (1)) ‖2
Pa (1)> Pa (y)

Pa (y)> Pa (y)
.

To obtain this equation, the following facts are used:

ĉ>y =
1

2

(
1

λ2
− 1

λ1

)
Pa (y)> Pa (1) ,

l2 =
1

4

(
1

λ2
− 1

λ1

)2

Pa (1)> Pa (1) .

547

Since (ĉ + r)> y = 0,

(
Pa (ĉ) + Pa (r)

)>
Pa (y) = 0. It can

be verified that Pa (r) = − 1
β

(
Pa

(
f̂
)

+ ρPa (y)
)

. There-

fore, β =
Pa(f̂)>Pa(y)+ρPa(y)

>Pa(y)

Pa(ĉ)
>Pa(y)

. To ensure that β is

positive, the following equation holds:

ρ = −
Pa

(
f̂
)>

Pa (y)

Pa (y)> Pa (y)
−
‖PPa(y)

(
Pa

(
f̂
))
‖2

‖PPa(y) (Pa (1)) ‖2
Pa (1)> Pa (y)

Pa (y)> Pa (y)

In this case, β can be written in the form:

β = 2

(
1

λ2
− 1

λ1

)−1 ‖PPa(y)

(
Pa

(
f̂
))
‖2

‖PPa(y) (Pa (1)) ‖2

To compute max
ρ
g (ρ), first, Eq. (43) can be rewritten as:

l‖Pa

(
f̂
)

+ ρPa (y) ‖2 = l2
ρPa (y)> Pa (y) + Pa

(
f̂
)>

Pa (y)

ĉ>y
.

By plugging this equation and ρ into Eq. (42), max
ρ
g (ρ) can

be written in the following form:

1

2

(
1

λ2
− 1

λ1

)(
−
∥∥∥PPa(y)

(
Pa

(
f̂
))∥∥∥

2

∥∥PPa(y) (Pa (1))
∥∥
2

−
P>a

(
f̂
)>

Pa (y)Pa (1)> Pa (y)

Pa (y)> Pa (y)

)
.

Since Pa (1)> Pa (f)−
Pa

(
f̂
)>

Pa (y)Pa (1)> Pa (y)

Pa (y)> Pa (y)

= PPa(y) (Pa (1))> PPa(y)

(
Pa

(
f̂
))

.

max
ρ
g (ρ) can also be written in the form:

1

2

(
1

λ2
− 1

λ1

)(
−
∥∥∥PPa(y)

(
Pa

(
f̂
))∥∥∥

2

∥∥∥PPa(y)

(
Pa (1)

)∥∥∥
2

+PPa(y)

(
Pa (1)

)>
PPa(y)

(
Pa

(
f̂
))
− Pa (1)> Pa (f)

)
.

Theorem 3.9 summarizes the result when β > 0 and α > 0.

Theorem 3.9. When r> f̂ achieves its minimum value at
β > 0 and α > 0, it can be computed as:

min
r

r> f̂ =

1

2

(
1

λ2
− 1

λ1

)(
−
∥∥∥PPa(y)

(
Pa

(
f̂
))∥∥∥

2

∥∥∥PPa(y)

(
Pa (1)

)∥∥∥
2

+PPa(y)

(
Pa (1)

)>
PPa(y)

(
Pa

(
f̂
))
− P>a (1)Pa (f)

)
.

Corollary 3.10. When θ> f̂ achieves its minimum value
at β > 0 and α > 0, it can be computed as:

−minθ>2 f̂ = −min r> f̂ − ĉ> f̂ = (44)

1

2

(
1

λ2
− 1

λ1

)(∥∥∥PPa(y)

(
Pa

(
f̂
))∥∥∥

2

∥∥∥PPa(y)

(
Pa (1)

)∥∥∥
2

− PPa(y)

(
Pa (1)

)>
PPa(y)

(
Pa

(
f̂
)))

− f̂>θ1.

maxθ>2 f̂ can be computed by replacing f̂ with−f̂ in Eq. (44).

In the computation,
∥∥∥PPa(y)

(
Pa (1)

)∥∥∥
2

is shared by all

features and needs to be computed only once. This property
can be used to accelerate computation.

3.3 The Screening Algorithm
Algorithm 1 shows the procedure of screening features for

`1-regularized `2-SVM. Given λ1, λ2, and θ1, the algorithm
returns a list L, which contains the indices of the features
that are potentially active in the optimal solution that corre-
sponds to λ2. The algorithm first weights all features using
Y in Line 3. It then computes max |̂f>θ| for features in
Line 4 and Line 5. If the value is larger than 1, it adds the
index of the feature to L in Line 7. The function neg min(f̂)

computes −minθ>2 f̂ . Since Pu (−v) = −Pu (v), the in-

termediate results computed for neg min(f̂) can be used by

neg min(−f̂) to accelerate its computation.
The algorithm needs to be implemented carefully to en-

sure efficiency. First, each step of the computation needs
to be decomposed to many small substeps, so that the in-
termediate results obtained in the preceding substeps can
be used by the following substeps to accelerate computa-
tion. Second, the substeps need to be organized and ordered
properly so that no redundant computation is performed. It
turns out the procedure listed in Algorithm 1 is surprisingly
fast. First, y>1, f>1, f>y, and f>f are independent of θ1,
λ1, and λ2. Therefore, they can been precomputed before
training, and the cost is O (mn). θ>1 y, θ>1 1, and θ>1 θ1 are
shared by all the features. So they can be computed at the
begining of screening, and the cost is O (n). Given these in-

termediate results, most substeps for computing max |̂f>θ|
can be obtained in O (1). The only expensive substep is to
compute θ>1 f , and its cost is O (mn) for m features. How-
ever, when a solver fits a `1-regularized `2-SVM model, it
might have already computed f̂>θ1 as an intermediate re-
sult for all the features. In this case, f̂>θ1 can be obtained
from the solver for screening features at no cost.

In summary, in the worst case of the proposed procedure,
the total computational cost for screening a data set that
has m features and n samples is O (mn). And if f̂>θ1, f>1,
f>y, and f>f can be obtained from the intermediate results
generated by the `1-regularized `2-SVM solver, the total cost
can decrease to just O (m) .

4. EMPIRICAL STUDY
The proposed screening method was implemented in the

C language and compiled as a library that can be conve-
niently accessed in a high-level programming language, such
as the Python or SASr. This section evaluates its power
for accelerating model selection for `1-regularized `2-SVM.
Experiments are performed on a Windows Server 2008 R2
with two Intel Xeonr L5530 CPUs and 72GB memory.

548

Input: X ∈ IRn×m, y ∈ IRn, λ1, λ2, θ1 ∈ IRn.
Output: L, the retained feature list.

1 L = ∅, i = 1, Y = diag (y);
2 for i ≤ m do

3 f̂ = Yfi;

4 m1=neg_min(f̂), m2=neg_min(−f̂);
5 m = max {m1,m2};
6 if m ≥ 1 then
7 L = L ∪ {i};
8 end
9 i = i+ 1;

10 end
11 return L;

12 Function neg_min(f̂)

13 if
Py(a)>Py(f̂)
‖Py(a)‖‖Py(f̂)‖

= −1 then

14 compute m using Eq. (31);
15 return m;

16 end

17 if Py (a)>
(

Py(b)

‖Py(b)‖
2

− Py(f̂)
‖Py(f̂)‖

2

)
≤ 0 then

18 compute m using Eq. (40);
19 return m;

20 end
21 compute m using Eq. (44);
22 return m;

23 end

Algorithm 1: Screening for `1-regularized `2-SVM.

4.1 Experiment Setup
Five benchmark data sets are used in the experiment. One

is a microarray data set: gli 85. Three are text data sets:
rcv1.binary(rcv1b), real-sim, and news20.binary (news20b).
And one is a educational data mining data set: kdd2010
bridge-to-algebra (kddb). The gli 85 data set is downloaded
from Gene Expression Omnibus,2 and the other four data
sets are downloaded from the LIBSVM data repository.3 Ac-
cording to the feature-to-sample ratio (m/n), the five data
sets fall into three groups: (1) the m � n group, including
the gli 85 and news20b data sets; (2) the m ≈ n group, in-
cluding the rcv1b and kddb data sets; and (3) the m � n
group, including the real-sim data set. Table 1 shows de-
tailed information about the five benchmark data sets.

Table 1: Summary of the benchmark data sets

Data Set sample (n) feature (m) m/n

gli 85 85 22283 262.15

rcv1b 20242 47236 2.33

real-sim 72309 20958 0.29

news20b 19996 1355191 67.77

kddb 19264097 29890095 1.55

2www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4412
3www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

A solver based on the coordinate gradient descent (cgd)
algorithm [13] is implemented in the C language for training
the `1-regularized `2-SVM model. This solver improves the
one that is implemented in the liblinear package [6]. In lib-
linear, the bias term b is also penalized by the `1 regularizer
and is inactive in most cases. In contrast, the improved one
solves the problem specified in Eq. (1) exactly. Therefore,
the bias term is not penalized and is alway active. Since
−f̂>θ1 is the gradient on a coordinate, f̂>θ1 is computed in
the solver as an intermediate result. Therefore, in screening,
f̂>θ1 values can be obtained from the solver at no cost.

For each given benchmark data set, the cgd solver is used
to fit the `1-regularized `2-SVM model along a sequence of 20
λ values:

{
λk = 1

k
λmax − ε, k = 1, . . . , 20, ε = 10−8

}
. When

λ = λmax − ε, only one feature is active. Denote n+ and
n− as the number of positive and negative samples, respec-

tively. And let m =
∑n
i=1

(
yi − n+−n−

n

)
xi. This feature

corresponds to the largest element in m.
For each given benchmark data set, the cgd solver runs

in seven different configurations: (1) In org, the solver runs
without any accelerating technique. (2) In warm, the solver
runs with warm-start. In the kth iteration, the wk−1 ob-
tained in the (k − 1)th iteration is used as the initial wk

for fitting the model. When λk and λk−1 are close, warm-
start can effectively speed up training by reducing the num-
ber of iterations for the solver to converge. (3) In shr, the
solver runs with the shrinking strategy. During each itera-
tion of the cgd solver run, if a feature’s current weight is 0
and its gradient is very small, the feature is set to be inac-
tive [6]. (4) In warm shr, the solver runs with both warm-
start and the shrinking strategy. (5) In scr, the solver runs
with the screening technique. (6) In warm scr, the solver
runs with both warm-start and the screening technique. (7)
In scr shr, the solver runs with both the shrinking strategy
and the screening technique.

Warm-start and screening are designed to speed up model
selection, and shrinking is designed to speed up training.
These techniques can be combined for further performance
improvement. The main purpose of running the `1-regularized
`2-SVM solver with different configurations is not only to
compare different accelerating techniques, but also to pro-
vide a sensitivity study for exploring how these techniques
can be combined to achieve the best performance.

Both screening and shrinking reduce computational cost
by removing inactive features. Their major differences in-
clude the following: (1) Shrinking is performed in each it-
eration of training to reduce the search space of the solver,
whereas screening is performed only once before training.
(2) Shrinking is a heuristic method for removing inactive
features. Sometimes it might also remove active features;
when this happens, recovering the true result leads to ex-
tra cost. In contrast, the proposed screening technique is
safe, because all the removed features are guaranteed to be
inactive the optimal solution. (3) The introduced shrink-
ing technique works only for the cgd solver. In contrast,
the proposed screening technique can be applied with any
`1-regularized `2-SVM solver to speed up model selection.
Therefore, the proposed screening technique is more general.

549

Table 2: Total run time of the `1-regularized `2-SVM
solver when different combinations of accelerating
techniques are used to speed up model selection.

Tech. gli 85 rcv1b real-sim news20b kddb

org 328.7 17.92 20.81 943.67 9209.06

warm 376.6 10.30 13.48 682.08 7752.80

shr 2.78 4.49 7.25 62.44 3374.53

warm shr 3.10 2.31 4.32 32.62 2395.45

scr 0.78 3.35 6.67 25.53 1126.05

warm scr 0.74 1.78 4.30 17.84 831.87

scr shr 1.45 4.00 7.14 48.29 2603.94

4.2 Results
Table 2 and Table 3 show the results of the total run time

and the total number of iterations for the `1-regularized
`2-SVM solver to converge when different combinations of
accelerating techniques are used. The total run time and
total number of iterations are obtained by aggregating the
time and number of iterations used by the `1-regularized
`2-SVM solver when it fits models using different regular-
ization parameters. In terms of total running time, screen-
ing with warm-start (warm scr) provides the best perfor-
mance. Compared to org, for the m� n group, the speed-
up ratio is about 445 for the gli 85 data and 53 for the
news20b data. For the m ≈ n group, the speed-up ratio
is about 10 for the rcv1b data and 11 for the kddb data.
And for the m � n group, the speed-up ratio is about 5
for the real-sim data. The result shows that warm scr is
more effective when the number of features is larger than
the number of samples. A similar trend is observed on scr
and scr shr. In terms of the total iteration number, the best
performance is achieved by warm and warm scr. This sug-
gests that warm-start can effectively speed up convergence
by providing a good start point for optimization. A similar
trend is observed when shr is compared to warm shr.

When org is compared to scr, the result suggests that the
proposed screening technique can significantly improve the
performance of the `1-regularized `2-SVM solver. This justi-
fies that screening can effectively reduce the computational
cost of training by removing most inactive features. When
shr is compared to scr, the result suggests that screening
performs faster. This is because shrinking is a heuristic
method for removing inactive features. Sometimes, it might
remove active features during training. When this happens,
violations can be detected by using the KKT conditions for
the optimal solution. However, recovering the optimal solu-
tion leads to extra cost. This is supported by the observa-
tion that with shr the solver usually takes more iterations to
converge than with org and src. When warm is compared
to scr and shr, the results suggest that removing inactive
features for training is more effective than providing a good
starting point for optimization.

The results presented in Table 2 and Table 3 suggest that
the performance of screening and shrinking can be further
improved by combining them with warm-start. This is be-
cause warm-start can effectively speed up convergence by
providing a good starting point for optimization. However,
combining screening with shrinking does not improve the
performance of screening because that screening has already

Table 3: Total number of iterations for the `1-regula-
rized `2-SVM solver to converge when different com-
binations of accelerating techniques are used.

Tech. gli 85 rcv1b real-sim news20b kddb

org 15535 1062 568 2579 755

warm 14610 615 373 1898 628

shr 16046 1737 815 4995 2008

warm shr 14888 713 431 2157 1046

scr 15376 1059 596 2862 843

warm scr 14599 590 390 1999 569

scr shr 16150 1695 942 4908 1901

removed many inactive features before training is performed.
When shrinking is used in training, its benefit for removing
inactive features becomes insubstantial and is overwhelmed
by the cost of recovering the optimal solution when it acci-
dentally removes active features.

Figure 2 shows detailed information about how differ-
ent combinations of accelerating techniques perform on the
news20b data set when λ decreases from λmax to 1

20
λmax.

The result shows that screening with warm-start is effec-
tive for accelerating and its performance is stable. It also
shows that when λ decreases, the proposed screening tech-
nique can stably select a small set of features for reducing
computational cost. Let k be the number of active fea-
tures. On the news20b data set, when λ decreases from
λmax to 1

20
λmax, the proposed screening technique retains

about k+430 features for training the `1-regularized `2-SVM
model. This number is much smaller than the dimension-
ality of the news20b data set, which is about 1.3 million.
Similar trends are also observed on other data sets and are
not presented in the paper because of the space limit.

Table 4: Comparison of screening to training time

Tech. gli 85 rcv1b real-sim news20b kddb

scr

scr 0.03 0.06 0.04 1.91 41.65

tr 0.75 3.29 6.63 23.63 1084.40

ratio 0.04 0.02 0.01 0.08 0.04

warm scr

scr 0.03 0.07 0.04 1.91 41.71

tr 0.70 1.72 4.26 15.93 790.15

ratio 0.05 0.04 0.01 0.12 0.05

Table 4 compares the time used by screening to the time
used by training. Notice that for training, the solver uses
only the features that are selected by screening. Compared
to training, the time used by screening is marginal.

The results presented in this section indicate that the pro-
posed screening technqiue is effective for removing inactive
features to improve training efficiency. And with warm-start
they form the most powerful combination for accelerating
model selection for the `1-regularized `2-SVM.

550

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19

news20b: Run Time

shr
warm_shr
scr
warm_scr
scr_shr

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19

news20b: Iterations

shr
warm_shr
scr
warm_scr
scr_shr

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20

news20b: Over Hits

number of selected features

over hits

Figure 2: Detailed information about how different combinations of accelerating techniques perform when λ
decreases from λmax to 1

20
λmax. Results are reported for the news20b data set. “Run time” is the time that is

used for training. For scr, warm scr, and scr shr, run time includes screening time. “Iterations” is the number
of iterations for the solver to converge. “Over hits” is the number of inactive features that are not removed
by screening. The results show that the proposed screening technique improves efficiency significantly. And
when λ decreases, the number of leftover inactive features is small and stable.

5. CONCLUSION
Screening is an effective technique for improving model

selection efficiency by eliminating inactive features. This
paper proposes a novel technique to screen features for `1-
regularized `2-SVM. The key contribution of this paper is
the usage of the variational inequality for deriving closed-
form criteria to screen features for the `1-regularized `2-SVM
model in different situations. Empirical study shows that
the proposed technique can greatly improve model selection
efficiency by stably eliminating a large number of inactive.
Our ongoing work will extend the technique to screen fea-
tures for the `1-regularized `1-SVM model.

6. ACKNOWLEDGMENTS
The authors would like to thank Anne Baxter, Russell

Albright, and the anonymous reviewers for their valuable
suggestions to improve this paper.

7. REFERENCES
[1] M. T. abd Li Wang and I. W. Tsang. Learning sparse

svm for feature selection on very high dimensional
datasets. In ICML, 2010.

[2] J. Bi, M. Embrechts, C. M. Breneman, and M. Song.
Dimensionality reduction via sparse support vector
machines. JMLR, 3:1229–1243, 2003.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[4] P. S. Bradley and L. O. Mangasarian. Feature
selection via concave minimization and support vector
machines. In ICML, 1998.

[5] E. Candes and M. Wakin. An introduction to
compressive sampling. IEEE Signal Processing
Magazine, 25:21–30, 2008.

[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. Liblinear: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

[7] L. Ghaoui, V. Viallon, and T. Rabbani. Safe feature
elimination in sparse supervised learning. Pacific
Journal of Optimization, 8:667–698, 2012.

[8] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene
selection for cancer classification using support vector
machines. Machine Learning, 46:389–422, 2002.

[9] J. L. Lions and G. Stampacchia. Variational
inequalities. Communications on Pure and Applied
Mathematics, 20, (3):493–519, 1967.

[10] J. Liu, Z. Zhao, J. Wang, and J. Ye. Safe screening
with variational inequalities and its application to
lasso. In ICML, 2014.

[11] R. Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1996.

[12] R. Tibshirani, J. Bien, J. H. Friedman, T. Hastie,
N. Simon, J. Taylor, and R. J. Tibshirani. Strong rules
for discarding predictors in lasso-type problems.
Journal of the Royal Statistical Society: Series B,
74:245–266, 2012.

[13] P. Tseng and S. Yun. A coordinate gradient descent
method for nonsmooth separable minimization.
Mathematical Programming, 117:387–423, 2009.

[14] J. Wang and et al. Lasso screening rules via dual
polytope projection. In NIPS, 2013.

[15] J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping.
Use of the zero norm with linear models and kernel
methods. JMLR, 3:1439–1461, 2003.

[16] G.-X. Yuan and K.-L. Ma. Scalable training of sparse
linear svms. In ICDM, 2012.

[17] J. X. Zhen, X. Hao, and J. R. Peter. Learning sparse
representations of high dimensional data on large scale
dictionaries. In NIPS, 2011.

[18] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani.
1-norm support vector machines. In NIPS, 2003.

551

