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ABSTRACT

Selecting an informative subset of features has important
applications in many data mining tasks especially for high-
dimensional data. Recently, simultaneous selection of fea-
tures and feature groups (a.k.a bi-level selection) becomes
increasingly popular since it not only reduces the number of
features but also unveils the underlying grouping effect in the
data, which is a valuable functionality in many applications
such as bioinformatics and web data mining. One major
challenge of bi-level selection (or even feature selection only)
is that computing a globally optimal solution requires a pro-
hibitive computational cost. To overcome such a challenge,
current research mainly falls into two categories. The first
one focuses on finding suitable continuous computational
surrogates for the discrete functions and this leads to vari-
ous convex and nonconvex optimization models. Although
efficient, convex models usually deliver sub-optimal perfor-
mance while nonconvex models on the other hand require
significantly more computational effort. Another direction
is to use greedy algorithms to solve the discrete optimiza-
tion directly. However, existing algorithms are proposed to
handle single-level selection only and it remains challenging
to extend these methods to handle bi-level selection. In this
paper, we fulfill this gap by introducing an efficient sparse
group hard thresholding algorithm. Our main contributions
are: (1) we propose a novel bi-level selection model and show
that the key combinatorial problem admits a globally opti-
mal solution using dynamic programming; (2) we provide
an error bound between our solution and the globally opti-
mal under the RIP (Restricted Isometry Property) theoret-
ical framework. Our experiments on synthetic and real data
demonstrate that the proposed algorithm produces encour-
aging performance while keeping comparable computational
efficiency to convex relaxation models.
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1. INTRODUCTION

Feature selection plays a critical role in many data mining
applications that handle high-dimensional data and has been
one of the most active research topics in machine learning.
Over the past decades, with the development of compressive
sensing techniques [24, 9, 11], joint modeling of prediction
and feature selection gains its popularity and draws exten-
sive studies [34, 19, 1, 33, 31, 30]. In the meantime, it is
also believed that when the data possesses certain grouping
structures, selecting feature groups together with individual
features can be beneficial [32, 26, 7, 17, 28]. In the litera-
ture, simultaneous selection of features and feature groups
is also referred to as bi-level selection [17, 29] and we will
use these two terms interchangeably throughout the paper.

Formally, we consider the following linear model in this
paper: the observations y can be generated via y = A% +
€, where each row of A € R"*? contains a sample and €
represents the noise. & € R? is the parameter in this linear
regression setting. In addition, the elements of & are divided
into |G| mutually exclusive feature groups with G; denoting
the indices that belong to the ith group. The target is to find
an accurate estimator « for & based on our observations of
A and y. In the meantime, we expect the solution to yield
sparsity in both feature level and group level, i.e., only a
small number of features and feature groups are selected and
thus a large potion of the elements/groups of & admits the
value of zero. Mathematically, we formulate our problem in
Eq. (1) below, where we attempt to find the best solution (in
the sense of least squares) among all candidates containing
no more than s; nonzero values and taking up to at most s2
feature groups:

minimize %HA:B — |3
p
subject to ZI(|J:J| #0) <s1 ()
j=1

|G|

S~ Iz, [l #0) < 52
j=1



Unfortunately, computing an optimal solution of the above
problem requires enumerating all elements in the feasible set
and thus incurs a prohibitive cost. A natural and popular
approach is to replace the discrete constraints in Eq. (1)
by their continuous computational surrogates. Sparse group
lasso [14] applies the classical ¢1-relaxation on both feature-
level and group-level and the resulting convex optimization
problem can be efficiently solved. To enhance the quality of
approximation, nonconvex relaxations using DC program-
ming [28] and nonconvex penalties such as group MCP [7]
and group bridge [16] are introduced, with extra computa-
tion effort. The connections between various convex and
nonconvex bi-level learning models are investigated in the
literature [29]. On the other hand, instead of finding suit-
able continuous surrogates, computing a local solution of the
discrete optimization problem directly also receives plenty of
attention. The iterative hard thresholding (IHT) [5, 6], or-
thogonal matching pursuit [25] and group orthogonal match-
ing pursuit [20] all fall into this category. Although the opti-
mization is by nature nonconvex, the efficiency of these algo-
rithms is usually comparable (if not better) to that of convex
relaxation models. However, to the best of our knowledge,
these algorithms are proposed for feature selection only or
group selection only. Whether they can be extended to han-
dle bi-level selection properly and efficiently has not been
much explored.

In this paper, we fulfill such a gap by introducing a hard
thresholding model that is capable of bi-level selection. Our
main contributions are: (1) we propose a novel bi-level se-
lection model and show that the key combinatorial problem
admits a globally optimal solution using dynamic program-
ming; (2) we provide an error bound between our solution
and the globally optimal under the RIP (Restricted Isometry
Property) theoretical framework [9, 8]. We have evaluated
the proposed algorithm on synthetic and real data. Results
show that the proposed algorithm demonstrates encourag-
ing performance while keeping comparable computational
efficiency as convex relaxation models.

The remaining of the paper is organized as follows: We
present our algorithm for Problem (1) and discuss different
variants in Section 2. In Section 3, we investigate a key sub-
problem in our method and propose a dynamic programming
algorithm that finds an optimal solution. The convergence
property of the overall optimization framework is discussed
in Section 4 and we present extensive empirical evaluation
in Section 5. Section 6 concludes the paper and lists our
plan of future work. For notations, we mainly follow the
symbols introduced in Eq. (1), i.e., A stands for the design
(sample) matrix, y is the response, ¢, represents the re-
gression model restricted on the ith group and f denotes the
objective function.

2. OPTIMIZATION ALGORITHMS

Motivated by the iterative hard thresholding algorithm for
Lo-regularized problems [6] and the recent advances on non-
convex iterative shrinkage algorithm [15], we adopt the Iter-
ative Shrinkage and Thresholding Algorithm (ISTA) frame-
work and propose the following algorithm for solving Prob-
lem (1):

In the proposed algorithm above, f denotes the objec-
tive function and the “SGHT” in Algorithm 1 stands for the
following Sparse Group Hard Thresholding (SGHT)
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Algorithm 1 ISTA with Sparse Group Hard Thresholding
Input: A, y, s1, s2, n>1
Output: solution « to Problem (1)
1: Initialize 2°.
2: for m<«+1,2,--- do
Initialize L
repeat
™ + SGHT(z™ ' — LV f(z™ "))
L <+ nL
until line search criterion is satisfied
if the objective stops decreasing then
return =
10:  end if
11: end for

problem with v as the input:

oL 1 2
minimize ||z — v||3
@ 2
P
subject to ZI(|1']| #0) <s1
j=1 (2)
|G|
S Iz, Il #0) < s2.
j=1

Like most ISTA-based optimization algorithms, it is of
critical importance that we can compute the projection step
accurately and efficiently. In our case, the key part is exactly
the SGHT problem. Although there are well established re-
sults on hard thresholding algorithms for ¢y-regularization,
adding one more constraint on group cardinality greatly
complicates the problem and requires deeper analysis. We
will present detailed discussion on how to compute an opti-
mal solution to this problem efficiently in the next section.
Before that, we first introduce several possible variants of
the proposed method. Notice that the target of Algorithm 1
is a nonconvex optimization problem. Different strategies
for initialization and step-size may not only provide different
convergence behavior, but also lead to a completely different
solution. We consider three aspects in this paper: step-size
initialization, line search criterion and acceleration option.

2.1 Step-size Initialization

To provide an initial value of the step-size (Line 6. in
Algorithm 1), we consider two strategies: a constant value
and the Barzilai-Borwein (BB) method [2]. The BB method
essentially finds the best multiple of identity matrix to ap-
proximate the Hessian matrix such that the least squares
error of the secant equation is minimized, i.e., L* is initial-
ized to

of = argmin a(z" — 2*7") = (Vf(«") - V(=" )|

_ (Ag)"(Aw)
IR

with a safeguard bound, where Ag = Vf(z*) — Vf(z*1)
and Az = ¥ — "7, In this paper, we set L¥ = max(1, a®).

2.2 Line Search Criterion

We consider two line search termination criteria in this
paper, which we name as Lipschiz criterion and sufficient
decrease criterion. Specifically the Lipschiz criterion finds



the smallest L that the following inequality is satisfied:
L

F@®) < fEETH)H(VFEET), 2" =2 )+ 3

E_k—1)2
[[2" =™ f2.

3)
On the other hand, the sufficient decrease criterion aims
to find the smallest L such that:

(4)

Inequality (3) is the standard way for ¢;-regularized opti-
mization [3] and is applied extensively in structured sparse
learning [19]. Inequality (4) and its variants are favored by
most of the recent investigations on nonconvex regularized
problems [4, 27, 15].

Fa*) < fa )y = Bk ok,

2.3 Acceleration Option

The ISTA framework has been shown to possess a conver-
gence rate of O(1/k) for a class of £;-regularized/constrained

optimization problems and can be further improved to O(1/k?)

via adding a carefully designed search point [21, 3]. How-
ever, whether the same strategy still works or makes the
optimization diverge in the regime of nonconvex optimiza-
tion remains unknown. In this paper we consider both of
them and retain the notation of FISTA [3] to denote the
ISTA with the acceleration trick. See Algorithm 2 for more
detail about our FISTA.

Algorithm 2 FISTA with Sparse Group Hard Thresholding
Input: A, y, s1, 82, n>1

Output: solution x to Problem (1)

1: Initialize 2%, 2%, a1« 0, a® « 1

2: for m+«+1,2,--- do

3 B et

4 w4 g (™ — 2™

5:  Initialize L

6: repeat

7 x™ « SGHT(u™ — £V f(u™))

8: L+ nL

9:  until line search criterion is satisfied
10:  if the objective stops decreasing then
11: return z™

12: end if

13: end for

Table 1: Specific settings for each variant consid-
ered in the paper. The last two columns denote the
Lipschiz and sufficient decrease line search criterion

respectively.
VarianTs FISTA ISTA BB Const Lips DEc
ISTA v v v
ISTA-L v v v
FISTA v v v
FISTA-C v v v

Table 1 summaries different variants we consider in this
paper. All these variants will be examined in our experi-
ments. We conclude this section by presenting several addi-
tional features of the proposed algorithm.

Remark 1. One significant advantage of adhering to the
discrete model is that incorporating prior knowledge about
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the grouping structure is quite straight-forward. Remember
that the two parameters in our model are just the upper-
bound of features and feature groups respectively. In ad-
dition, model selection procedures such as cross-validation
can be greatly facilitated since we only need to consider
integer values, which are often quite small in real-world ap-
plications. On the contrary, the regularizers in most of the
existing works are real-valued and may not provide much
insights for parameter-tuning.

Remark 2. Although we consider our bi-level learning
model in a linear regression setting, the technique can be
readily extended to more general problems by choosing ap-
propriate loss functions. Particularly, in order to extend our
model to classification tasks, the widely-used logistic loss
function can be applied instead of the least squares function
in Eq. (1) and the proposed Algorithm 1 can be applied by
changing the procedure that computes the gradient. In gen-
eral, the proposed model can be extended to any convex loss
functions with a simple gradient computation.

3. OPTIMAL SOLUTION OF SGHT

In this section, we show how to solve the SGHT problem
in Eq. (2) efficiently using dynamic programming. Before
presenting our algorithm, we first explore some key proper-
ties of Problem (2). As highlighted previously, the major
challenge comes from the two coupled constraints. There-
fore, we first consider the special case where only one of the
two constraints is present. Some straight-forward analysis
leads to the following results:

LEMMA 1. If only the cardinality constraint is present,
the optimal solution of Problem (2) can be obtained by set-
ting the p — s1 smallest (in absolute value) elements of v to
zero. Similarly for group cardinality constraint, it suffices to
find the |G| — s2 smallest groups (in €2-norm) and set them
to zero.

Based on Lemma 1, it is also easy to verify that for any
optimal solution * of Problem (2), each element z] is ei-
ther equal to v; or zero, where the subscript ¢ denotes the
ith element of the vector. Therefore we have the following
proposition providing an equivalent but discrete characteri-
zation of the original SGHT problem:

PROPOSITION 1. Finding the optimal solution of problem (2)

is equivalent to the following Sparse Group Subset Selec-
tion (SGSS) problem:

Given a set S on which a nonnegative value function f is
defined. C = {C1,C2,---,C|g|} is a collection of disjoint
subsets of S such that S = U'Zi'l C;. Find a subset 8" C S
with the maximum value such that the cardinality of S is
no more than s1 and S’ has nonempty intersections with at
most sy elements from C. The value of a subset is defined
as the summation of all the values of its elements.

We claim that the SGHT has an optimal solution if and
only if we can find an optimal solution for the SGSS problem.
We provide a one-way reduction (the “if” part) here. The
other way is almost identical. The original SGHT problem
can be reduced to SGSS by simply setting S = {1,2,--- ,p}
with the value function defined as f(i) = v? forall 1 < i < p
and C; = G; for all 1 < i < |G|. Suppose S’ is the optimal
solution of SGSS. Then the optimal solution of SGHT can



be readily obtained via:

* Vs
T =
0

In the sequel, we will focus on the SGSS problem and pro-
vide an efficient algorithm to compute its globally optimal
solution. The term cardinality and group cardinality are
used to characterize the size of S’ and the number of ele-
ments from C with which S’ has a nonempty intersection,
respectively.

Let T'(4, j, k) denote the maximum value we can obtain by
choosing a subset S’, whose cardinality is no more than k
and group cardinality is at most j. In addition, S’ is only
allowed to have nonempty intersection with Cy,Cs,--- | C;.
Therefore T is in essence a three-dimensional table of size
(IG]|+1) % (s2+1) x (s1+1) (the table is zero-indexed). It is
easy to verify that, if we are able to compute all the values
in table T" correctly, the maximum value one can get in the
SGSS problem is given by T'(|G|, s2, s1).

Next we propose a dynamic programming algorithm to
compute the table 7. The motivation behind our method is
the existence of optimal substructure and overlapping sub-
problems [18], two major ingredients for an efficient dynamic
programming algorithm. More specifically, when we try to
compute T'(4, j, k), the optimal solution must fall into one of
the two situations: whether the C; is selected or not. If not,
we can simply conclude that T'(i,5,k) = T(: — 1,5,k). On
the other hand, if C; is selected, we need to determine how
many elements from C; are included in the optimal solution.
Suppose the optimal solution takes ¢ elements from C;, then
we must have T'(i,5,k) = T(i — 1,5 — 1,k — t) + CH(i,t),
where C'H (,t) denotes the maximum value one can get from
choosing t elements out of C;. The optimal ¢t can be com-
puted via enumeration. To sum up, the computation of
T(i,7,k) can be written in the following recursive form:

ifies
otherwise.

()

TG —1,j,k
T(3,7,k) —max{ ( )

max
1<t<min(k,|G;|)

It is clear from above that T'(4, j, k) can be computed using
only the values in the table T with smaller indices. Therefore
we can compute each element of the table T in increasing or-
der for each index; see Figure 1 for more detail. In addition,
to further reduce the complexity, function CH(i,t) can be
precomputed before the dynamic programming process. We
present the detailed description of the proposed method in
Algorithm 3. From table T', we are able to calculate the min-
imum objective value of the SGHT problem, which is exactly
(|13 = T(|G|, 52, s1)). In order to calculate the optimal
solution «*, all we need to know is the indices of selected
elements in S and the optimal solution can be constructed
through Eq. (5). We compute such information by adding
one table P (stands for path) in the proposed algorithm.
Specifically, P(i,7,k) = 0 means the C; is not selected in
the computation of T'(z, j, k). Otherwise we set

P(i,j,k) = arg TG—1,j—1,k—t)+CH(i,t),

max
1<t<min(k,|G;|)
which is just the number of selected features in the ¢th group
(C5) in the optimal solution. To recover the indices of all
the selected elements, we will start from P (|G, s2, s1) with
a backtracking procedure and record the number of selected

T(i—1,j—1,k—t)+CH(i,t).

535

elements in each group. Algorithm 4 provides a formal de-
scription of this process. It accepts the table P as input and
returns the cnt table which contains the number of selected
elements in each group. Finally computing the optimal x*
only amounts to keeping the top selected elements for each
group and setting the remains to zero.

Le[0,l61]

k€ [0,5,]
J€0,5,]

T(i,j,k) e

Figure 1: Illustration of the order of computation
for each element in 7. While computing 7'(, j, k), we
only need values in those red squares, which are lo-
cated in the previous rectangle (in terms of i-axis)
and of equal or smaller coordinates on axes j and k.
Therefore the computation can be naturally carried
out in three nested loops, one for each axis respec-
tively.

We analyze the time complexity of our proposed algorithm
as follows. Notice that the time needed to precompute the
table CH is give by:

6]
O(Z |Gillog(|G:])) = O(plogp),

the dynamic programming part for computing both 7" and
P takes

|G| led]
O s21|Gil) = O(s152 Y |Gil) = O(psis2),
i=1 i=1

and the backtracking needs clearly O(|G|) operations. There-
fore the overall time complexity is

O(p(s1s2 +logp) + |G|) = O(s1s2p + plogp).

When the number of features and feature groups selected is
small, the SGHT problem can be solved efficiently.

4. CONVERGENCE ANALYSIS

In this section, knowing that the key SGHT sub-problem
can be efficiently computed, we assess the quality of the so-
lution produced by the overall optimization procedure (Al-
gorithm 1). Specifically, since the constraints of Eq. (1) are
nonconvex and only a local minimum can be found through
our proposed method, we are interested in studying how
close (in terms of Euclidean distance) the obtained solution
to the optimal solution of the optimization problem (1). Al-
though we are not aware of the optimal solution, the bound



Algorithm 3 Dynamic programming algorithm for SGSS

Input: S, C =
Output: 7, P

1:. T« 0,CH<+0,P+0

2: for i =1 to |G| do

3:  sort C; in decreasing order of magnitude
4: fort=1to |G;| do
5 CH(i,t) + CH(i,t — 1) + Ci(t)
6: end for
7
8

G
1.':‘1 Ci, 81, S2

: end for
: for i =1 to |G| do
9: for j=1to sz do

10: for k=1 to s; do

11: T(,j, k)« T(—1,5,k)
12: for t =1 to G; do

13: w«T(—1,7—1,k—t)+ CH(i,t)
14: if w> T(i,4,k) then
15: T(,5,k)=w

16: P(i,j,k) =t

17: end if

18: end for

19: end for

20: end for

21: end for

Algorithm 4 Linear backtracking algorithm for finding the
number of selected elements in each group

Input: P, si1, s2

Output: cnt

1: ] < S2, k S1

2: for i = |G| downto 1 do

3. cent(i) « P(i, 5, k)
4:  if ent(i) > 0 then
5: j+—3—1

6: k < k — cnt(3)
7:  end if

8: end for

between our solution and the optimal one can be analyzed
under the theoretical framework of restricted isometry prop-
erty (RIP) [9]. A matrix A € R"*? is said to satisfy the RIP
property with constant ¢, if the following property holds for
any s-sparse vector x, i.e., ||z|lo < s:

(1= 6)llll? < [[A[|3 < (1+6.)]f3.

The RIP constant essentially assesses the extent to which
the given matrix resembles an orthogonal matrix and theo-
retical analyses often require certain upperbound on the RIP
constant. It is easy to see that s is non-decreasing w.r.t s
and a smaller value of d5 indicates more rigid conditions we
require from A. In order to apply the RIP based analysis
for our method, a group-RIP constant is introduced to in-
corporate the group structure. Matrix A has a group-RIP
constant 09 if for any vector @ that spans no more than g
groups, i.e., Eﬁ‘l I(|lzc,l2 # 0) < g, the following relation
are satisfied:

(1= 6%)llell3 < [lA]3 < (1+67)f3.

Our next result provides an error bound between an op-
timal solution of Problem (1) and the solution produced by
our proposed Algorithm 1 with L fixed to 1.
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THEOREM 1. Letx™ be a globally optimal solution of Prob-
lem (1) and x* be the solution we obtain after the kth iter-
ation in Algorithm 1 with L = 1. If ¢1 < %, the following
result holds:

* » 2¢/1+ ¢
2" — 2"l < (2c1)" 2" — &"[l2 + S

:
< e,

where €* = y—Ax*, ¢1 = min{dss,, 0°°2}, c2 = min{das,, 6%°2}.

In addition, if co < i, it is also true that:

2v/1 + co

l&* = 2"l < (4e)*lla” @l + H

ez

Theorem 1 clearly shows that the parameter estimation
error of the proposed algorithm decreases linearly (with co-
efficient of 2¢1 or 4cp) till a fixed error term is met. In
addition, such an error term is proportional to the predic-
tion error of the optimal solution of Problem (1). The proof
of Theorem 1 mainly utilizes the technique in [12] and the
details are left in the Appendix. We provide an illustra-
tive example of the convergence procedure in Figure 2: if
the assumptions on the (group) RIP constant hold, the se-
quence generated by running our algorithm is guaranteed to
converge into a region centered at &* with radius at most
clle”||l2, where ¢ is a constant. As we can observe from Fig-
ure 2 and Theorem 1, the difference between the unknown
globally optimal solution of Problem (1) and ours is upper-
bounded by a multiple of the underlying error term ||e*||2.
In addition, such a difference cannot be canceled unless we
have e* = 0, in which case Theorem 1 essentially states that
our method admits a linear convergence rate [22].

Figure 2: Illustration of the convergence behavior
of the proposed algorithm. The parameter estima-
tion error decreases linearly before entering into a
region centered at * with radius proportional to the
prediction error of x*.

S. EXPERIMENTS

5.1 Evaluation of SGHT

Recall that solving SGHT (Problem (2)) accurately and
efficiently is the key to our optimization procedure (Algo-
rithm 1). We have theoretically analyzed the correctness and
time complexity of our method in Section 3. In this part, we
present empirical studies on the efficiency of our proposed
Algorithm 3. As we have analyzed previously, three factors
including the number of candidate features, the number of



selected groups and the number of selected features deter-
mine the time complexity. We conduct the evaluation in four
different scenarios, each of which demonstrates the relation-
ship between the running time and some particular factors
while keeping other factors unchanged. Specific settings are
listed in Table 2.

Table 2: Experiment setup for evaluation of SGHT

FIXED VARIABLE # GROUP # FEATURE s1 S2
SCENARIO 1 v
SCENARIO 2 v
SCENARIO 3 v v v
SCENARIO 4 v v

Scenario 1. Varying number of features p with
incremental candidate set. We vary the number of
features p from 1,000 to 5,000,000. The number of
groups is fixed to 100 in this case, i.e., |G| = 100. s2 is
set to 20%, 40% and 60% of the total number of groups
respectively and the value of s; is set to 5sg, i.e., we
want to approximately select 5 features per group.

Scenario 2. Varying number of groups |G| with
incremental candidate set. p is fixed to 1,000,000
and G is chosen from the set of {10, 50, 100, 150, 200}.
The value of s1 and s2 is set according to the same
strategy in Scenario 1.

Scenario 3. Varying number of groups |G| with
fixed candidate set. We conduct this evaluation in
order to verify our theoretical result that the number
of groups |G| is not a dominating factor of time com-
plexity. Specifically we fix the value of p to 1,000,000
and choose |G| from {50,100, 500, 1000, 5000, 10000}.
s1 and s2 are fixed as 50 and 5 respectively.

Scenario 4. Incremental candidate set with fixed
number of groups and features. In this case,
1,000, 000 variables are partitioned into 100 groups of
equal size. We attempt to select 10% ~ 60% of all the
groups and approximately 20 features per group.

Figure 3 demonstrates the running time (in seconds) of
our SGHT algorithm of all four scenarios. Specifically, the
nearly flat curve in our third experiment corroborates with
the theoretical result that the number of groups is not a
major factor of the time complexity. In other cases, our al-
gorithm exhibits its capability of handling large-scale appli-
cations. Particularly, when only a small number of features
and feature groups are wanted, as is the common situation
in high-dimensional variable selection, our algorithm is ca-
pable of computing a globally optimial solution for SGHT
with a performance competitive to its convex computational
surrogate such as the soft-thresholding [10].

5.2 Evaluation of Convergence

We study the convergence behavior of different implemen-
tations of our discrete optimization approach proposed in
Section 1. The evaluation is carried out on a collection of
randomly generated data sets (A, y). Specifically, we gen-
erate A € R™"*? y € R", where the values of n and p are
chosen from the following set:

{(100, 2000), (100, 5000), (1000, 20000), (1000, 50000)}.
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All of the p features are partitioned into groups of size 100.
The value of s; is selected from {0.1/G|,0.2|G|}, i.e., we
select 10% and 20% groups. s1 is set to 5s2, which leads to
the effect of within-group sparsity.

For all of the variants, we terminate the programs when
either the relative change of objective value in two consec-
utive iterations or the gradient of the objective is less than
a given threshold. The objective values of up to the first
100 iterations as well as the running time for each variant
are reported in Figure 4. The results demonstrate the effect
of BB to initialize the step-size. Both ISTA with lipschiz
line search criterion (blue in Figure 4) and FISTA (black in
Figure 4) deliver superior performance, particularly for large
data sets and large number of selected groups/features.

5.3 Simulation Results

We examine the proposed bi-level method on synthetic
data which consist of both group selection and bi-level vari-
able selection. The data generation follows the procedures
recommended in the literature [32, 29]: the data set is gen-
erated via the linear model y = AZ + €, where both of the
design matrix A € R'%9%2%0 454 the noise term e follow a
normal distribution. The ground truth & is partitioned into
20 groups of equal size. In addition, two kinds of grouping
structure are considered in this experiment; see Figure 5 for
more detail. The goal is to obtain an accurate (in terms of
least squares) estimator of & that also preserves the grouping
structure, given only A and y.

Case 1 . e ‘ ‘ ‘ [ |
Case 2 “::::: |-+ | ‘

Group 1 2 3 4 5 6 7 20

Figure 5: Illustraion of the grouping effect in the
ground truth model . Both cases include redun-
dant groups (group 7 to group 20). In addition,
the first case contains a bi-level sparsity. The val-
ues within each group are identical, as shown in the
color map.

State-of-the-art bi-level feature learning algorithms, in-
cluding the convex sparse group lasso, two fractional mod-
els [29] (frac(1, 2) for bi-level variable selection and frac(2, 1)
for group selection) and DC approximation approach [28],
are included for comparison. It is worth mentioning that
the DC approach deals with exactly the same formulation
as ours but resort to using continuous computational surro-
gate. In addition, we also include orthogonal matching pur-
suit (OMP) and group orthogonal matching pursuit (gOMP)
in the experiments as they provide baseline results for dis-
crete optimization approach. For both fractional models, we
choose 5 regularizers from the interval [107%,102]. For DC
approach and our method, s is selected from {2,4,6,8,10}
and s1 is chosen from the set of {2s2,4s2,6s2,8s2,10s2}.
Since the parameters of OMP and gOMP are just the num-
ber of selected features and feature groups respectively, we
set {6,12,18,--- ,60} as the candidate parameter set for

orNAO®K

OMP and similarly {2,4,6,--- ,10} for gOMP. Five-fold cross-

validation is carried out to choose the best parameter for
each method. The tuned models are then tested on an i.i.d
testing set. Following the setups in previous work [7, 28], the
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Figure 3: Running time (in seconds) of Algorithm 3 in different scenarios.

number of selected groups/features, the number of false pos-
itive selections and false negative selections and the running
time (in seconds) are reported in Table 3. We can observe
that the approaches with discrete parameters (OMP, gOMP,
DC approach and our method) deliver more accurate esti-
mation on the number of groups and features, compared to
regularization-based approaches. Particularly, our method
demonstrates the best performance in the bi-level selection
tasks and is second only to gOMP in the scenario of group
selection. The low false positive rate means that redundant
groups are effectively screened. However, this could lead
to a relatively high but still reasonable false negative rate.
Such a phenomenon is also observed in existing work [7]. As
of efficiency, it is expected that OMP and gOMP are the
most efficient methods due to their cheap and small num-
ber of iterations. Among others, our method requires the
least amount of running-time. In addition, the DC approach,
which needs to refine the continous surrogate within each it-
eration, requires the most computational effort (nearly twice
of the time of our method).

5.4 Real-world Applications

We conclude the experiment section with a study on the
Boston Housing data set [13]. The original data set is used
as a regression task which contains 506 samples with 13 fea-
tures. Furthermore, to take into account the non-linear rela-
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tionship between variables and response, up to third-degree
polynomial expansion is applied on each feature, as sug-
gested in previous works [23]. Specifically, for each variable
x, we record z, 2 and x> in the transformed data and gather
them into one group. We randomly take 50% of the data
as the training set and leave the rest for testing. The pa-
rameter settings for each method follow the same spirit in
our last experiment and are properly scaled to fit this data
set. We fit a linear regression model on the training data
and report the number of selected features, feature groups as
well as the mean squared error (MSE) on the testing set in
Table 4. Five-fold cross validation is adopted for parameter
tuning and all the results are averaged over 10 replications.
We can observe from the table that our method shows the
best prediction results with the least amount of features and
feature groups.

6. CONCLUSIONS

In this paper, we study the problem of simultaneous fea-
ture and feature group selection. Unlike existing meth-
ods which are based on continuous computational surrogate
for the discrete selection problem, we focus on the discrete
model directly. Systematic investigations are carried out
on optimization algorithms, convergence property as well as
empirical evaluations. The proposed model delivers supe-
rior performance in both group selection and bi-level vari-
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Table 4: Comparison of performance on the Boston
Housing data set. All the results are averaged over
10 replications.

METHODS | # GROUP # FEATURE MSE
sGcLAsso 7.10 20.30 2603.50
FRAC(1,2) 9.30 16.10 8485.12
FRAC(2,1) 9.60 28.80 8530.00
OMP 4.30 6.00 8089.91
cOMP 4.20 12.00 8924.55
DC 2.70 5.20 8322.14
SGHT 2.10 3.00 545.27

able selection settings and possesses significant advantage
on efficiency, particularly when only a small number of fea-
tures and feature groups are demanded. In addition, due
to the discrete parameters, model selection procedures such
as parameter tuning can be greatly facilitated. We plan to
extend our method to more challenging biomedical applica-
tions, particularly those with block-wise missing data.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. Let w” denote x* —

Vf(x*). Tt is clear that
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— @[3+ llz” — w3 + 2
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=||x -zt x" —wk>

where the last inequality comes from the optimality of &**!.

After eliminating ||2* —w"||3 from both sides we can obtain:
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where the set U is the union of support of «*, * and ***

and the last inequality is from the fact that the spectral
norm of I — AL Ay is upperbounded by dju) [6]. The first
conclusion then follows from expanding the last term and
compute the power series.

To prove the second result, a finer treatment of the set U
above is needed. Specifically, we consider the following four
sets:

I, =supp(z”), I =supp(z")
Is = supp(z”) — supp(z")
Iy = supp(@”) — supp(z“""),
and it is easy to veryfy that:
supp(z® — x*) C I3
supp(z* ™ — ") C I»

[Iij| = |[LiU L] < 251, V(i,5) € {1,2,3,4}.
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Therefore we can conclude that:
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where the first inequality is from our proof of the first result
and we apply the Cauchy inequality to obtain the last in-
equality. The proof is completed by expanding the last term
and computing the resulting power series. []





