
Active Collaborative Permutation Learning

Jialei Wang
Dept. of Computer Science

University of Chicago
jialei@uchicago.edu

Nathan Srebro
Toyota Technological Institute

at Chicago
nati@ttic.edu

James A. Evans
Dept. of Sociology

University of Chicago
jevans@uchicago.edu

ABSTRACT
We consider the problem of Collaborative Permutation Recovery,
i.e. recovering multiple permutations over objects (e.g. preference
rankings over different options) from limited pairwise comparison-
s. We tackle both the problem of how to recover multiple relat-
ed permutations from limited observations, and the active learning
problem of which pairwise comparison queries to ask so as to al-
low better recovery. There has been much work on recovering s-
ingle permutations from pairwise comparisons, but we show that
considering several related permutations jointly we can leverage
their relatedness so as to reduce the number of comparisons needed
compared to reconstructing each permutation separately. To do so,
we take a collaborative filtering / matrix completion approach and
use a trace-norm or max-norm regularized matrix learning model.
Our approach can also be seen as a collaborative learning version
of Jamieson and Nowak’s recent work on constrained permutation
recovery, where instead of basing the recovery on known features,
we learn the best features de novo.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Filter-
ing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Theory, Algorithms, and Experimentation

Keywords
Collaborative Ranking; Active Learning; Matrix Factorization

1. INTRODUCTION
Recovering permutations or rankings from pairwise comparisons

is an extensively studied problem with wide applications in infor-
mation retrieval, knowledge discovery and machine learning. The
standard setup is that of recovering a single permutation π over m
objects based on information of the sort “A appears before B in
the permutation”. It is well known that if comparisons are indeed
consistent with some underlying permutation (i.e. there are no dis-
crepancies or errors) then Θ(m2) random queries or Θ(m logm)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD ’14, August 24-27, 2014, New York City, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623730.

adaptively chosen queries are sufficient for recovering the permuta-
tion (this is essentially a sorting problem). Also when dealing with
noisy comparisons, or when the comparisons are not transitive and
consistent with some underlying permutation, methods are avail-
able for reconstructing the best consensus permutation from both
random and adaptively chosen queries [2, 21].

But in many scenarios, we would like to recover multiple relat-
ed permutations. Consider for example many people, each with
their own tastes or preferences. We could try to recover a single
permutation that best tries to explain the consensus among the peo-
ple, treating comparisons made by different people as not-entirely-
consistent noisy comparisons. This approach, seems absurd in the
context of survey research, because it would fail to capture individ-
ual preferences and miss out entirely on the diversity of preferences
in the population.

Alternatively, we could independently learn a separate permuta-
tion for each person. While this corresponds to the most common
approach to imputing missing survey data, it breaks down in the
context of sparse or much missing data. If we can only obtain a
limited number of comparisons from each user, perhaps even less
than the number of items m, this might not be enough to recov-
er the permutations when each users’ ranking is considered sep-
arately. By contrast, in this paper, we investigate the problem of
collaborative permutation learning. That is, of jointly recovering
multiple related, but not identical, permutations based on pairwise
comparisons from different permutations. We will show through
theoretical and empirical demonstrations that the solution of these
problems could widen the application of learning with permuta-
tions to the design of novel, intelligent surveys that only require
respondents to rank a few items in order to approximately recover
their entire preference ranking. This would allow social and in-
formation science researchers to rapidly identify individually pre-
ferred products, services, opinions, policies and solutions, without
wasting questions on answers that are likely predictable.

This type of collaborative ranking survey has become common
for organizations that seek to identify preferred solutions to prob-
lems. Consider the survey platform “All our ideas” 1 in which indi-
viduals and organizations can field surveys or “idea marketplaces”
of precisely the type we describe here. Individual respondents are
posed with a question and an associated pair of possible responses.
Respondents can either add a new response, or compare the pre-
sented pair. For example, in 2011, New York City Mayor Michael
Bloomberg’s office fielded such a survey that posed the question
“Which do you think is better for creating a greener, greater New
York City?” with possible responses including “open schoolyard-
s across the city as public playgrounds”, “increase targeted tree
plantings in neighborhoods with high asthma rates”, and “keep

1http://allourideas.org

502

http://allourideas.org

NYC’s drinking water clean by banning fracking in NYC’s water-
shed” [25]. Collaborative ranking has been used in other academ-
ic projects to “crowdsource” common knowledge and impressions
about the world. Consider the 2013 article, “the Collaborative Im-
age of the City”[24], which employed a collaborative ranking sur-
vey through which thousands of respondents ranked pairs of urban
street images from the United States and Europe to determine ur-
ban areas of more and less perceived safety and prosperity. In all of
this research, however, comparison pairs are chosen randomly and
are densely annotated by many respondents. Our research could
dramatically improve the efficiency of these efforts.

More formally, we consider the following setup: we have n peo-
ple and would like to learn for each person i a permutation πi over
m items. The information we obtain is through pairwise compar-
isons of the form “user i prefers item a over item b”, i.e. that a
appears before b in πi (πi(a) > πi(b)). However, these pairwise
comparisons might be noisy, or only partially consistent with some
underlying permutation. Furthermore, we assume the permutations
πi are all related in some way, and modeling this relationship is
part of our contribution here. In any case, based on such, possibly
noisy and non-transitive, pairwise comparisons, our goal is to re-
cover π1, . . . , πn. We also consider the “active” or “adaptive” set-
up where we can actively choose which queries to make, i.e. at each
step we can choose a person i and a pair of items (a, b), and query
user i as to whether the person prefers a over b (i.e. ask whether
πi(a) < πi(b) or πi(b) < πi(a)). The two questions we thus ask,
and suggests answers for, are: (1) how can we recover the permu-
tations for every person based on these pairwise preferences, and,
(2) how should we adaptively choose queries so as to make our
predictions more accurate and reduce the overall number of queries
required.

In order to tackle the problem of collaborative permutation learn-
ing, we formulate the problem as a matrix completion problem with
pairwise constraints, and use standard matrix-factorization regu-
larizers, such as the trace-norm or max-norm, to reconstruct the
matrix based on limited pairwise constraints. In Section 4 we dis-
cuss this matrix factorization approach, its underlying assumption
about the relatedness of the permutation, and its relationship to the
constrained single-permutation learning approach of [12]. We then
leverage the existing understanding of methodology on matrix fac-
torization regularizers to suggest efficient optimization methods for
fitting our suggested models (Section 5) and to analyze the number
of queries required for recovery—in Section 7 we show that under
our model, O(n+m) random queries are sufficient for approximate
recovery, significantly less than the O(nm) required for approxi-
mate recovery if learning each permutation independently. In order
to further reduce this query complexity we turn to active learning
and suggest an adaptive query heuristic based on biasing the queries
towards more ambiguous pairs (Section 6).

Notation Let [n] = {1, 2, ..., n}. For a matrix X ∈ Rn×m, let
Xi,j be the (i, j)-th element; Xi,· be the i-th row of X, ‖X‖F =√∑

i∈[n]

∑
j∈[m] X

2
i,j be the Frobenius norm, A ◦B = tr(ATB)

be the matrix inner product of A and B, and denote A � 0 to mean
A is positive-semi-definite.

2. RELATED WORK

Rank aggregation from pairwise comparisons.
There has been much work on constructing a permutation based

on pairwise comparisons. If the comparisons are transitive, that is
consistent with some global permutation, then outputting this glob-
al permutation given enough pairwise comparisons is easy. Once
the comparisons are noisy, or are not fully consistent, the task be-

comes trickier and one must both decide on a criteria for measur-
ing the quality of a permutation (i.e. its degree of agreement with
the comparisons) and devise an algorithm for finding the optimal
permutation under this criteria. Some criteria and algorithms sug-
gested for the problem include Borda Count [7], Rank Centrality
[17], HodgeRank [13], Balanced Rank Estimation [31], and others.
There are, however, two major differences between rank aggrega-
tion and the problem we pose here. For rank aggregation, it is typ-
ically assumed that: 1) there is only one globally optimal ranking,
while here we assume each user holds a personal ranking; and 2)
there are dense observations, i.e., with all, or at least many, pairwise
comparisons being observed, while in our setting the observation-
s are usually sparse, with only a very small fraction of pairwise
preferences revealed. In particular, there is no hope of obtaining a
meaningful global permutations with less than m−1 comparisons,
as even for perfectly consistent data, this does not enable linking re-
lationships among all m items (more typically, in rank aggregation
one has O(m2) comparisons).

Active learning for ranking.
Beyond the problem of rank aggregation given dense static data,

there has also been interest in adaptive query strategies for learn-
ing the optimal distribution. Again, if all comparisons are guaran-
teed to be transitive and so consistent with some permutation, the
problem is easy and boils down to sorting by comparisons, and can
the permutation can be recovered using O(m logm) comparisons,
e.g. using merge-sort. When the comparisons are not necessarily
consistent, one might wish to obtain the most agreeing (optimal)
permutation for all

(
m
2

)
possible comparisons, but without actually

making all these comparisons. I.e. the assumption is a user holds
a system of pairwise preferences that is not necessarily consistent
with a permutation, and we would like to uncover the most consis-
tent permutation by making the least amount of pairwise queries.
Recently, [1] showed that this problem too can be solved using only
O(mpoly logm) adaptively chosen queries. Furthermore, if we are
willing to tolerate discrepancies in ε fraction of comparisons, rel-
ative to the optimal permutation, we need only O(mpoly log 1/ε)
queries. This is in contrast to the O(m/ε2) random queries re-
quired for solving the same task. This demonstrates the power of
active learning in ranking, but is still limited to learning a single
independent permutation.

(Active) Collaborative filtering.
The problem of collaborative ranking, as we consider it here, is

related to widely studied problem of collaborative filtering as for-
malized through matrix completion, where we observe some rat-
ings of items by users and would like to use these to predict the
ratings of users on items they have not yet rated. Matrix factoriza-
tion approaches have long been used collaborative filtering prob-
lems [11, 23], including using the trace-norm and max-norm [27]
as well as other related matrix factorization regularizers. Active
queries have also been investigated in this context, with heuristics
suggested based on the expected value of information(EVIQ) [5] or
the prediction margin [22], as well as using a Bayesian approach
[14].

The main difference between standard collaborative filtering and
the problem studied here, is that in the standard setting single-item
ratings are observed, providing absolute information about a sin-
gle entry in the unknown matrix. In contrast, we consider learning
from pairwise comparisons, where we can only obtain relative in-
formation comparing two items. Our goal is also different, in that
instead of seeking accuracy of specific ratings, we seek to capture
a permutation for each user. Recent research [3, 32, 30] has also

503

studied the problem of ranking in a collaborative filtering setup,
but the objective of this work has been to optimize global ranking
measures, such as NDCG or MAP. Moreover, their inputs are still
rating scores, rather than pairwise information.

3. BACKGROUND: CONSTRAINED PERMU-
TATION LEARNING

In order to reduce the query complexity of ranking from pair-
wise comparisons, and allow learning permutations with less than
m comparisons, we must use some external information and make
assumptions on the permutation to be learned. [12] suggest asso-
ciating with each item a a feature vector va ∈ Rd which encodes
our prior information about a. Thinking of the feature vectors va

as points in Rd, a permutation is then specified as a direction in
Rd, where the rank order of items is given by their order when pro-
jected to this direction. Representing the direction in space as a
vector u ∈ Rd, the permutation πu associated with u is defined
by πu(a) < πu(b) iff 〈u, va〉 < 〈u, vb〉 (we assume that u is in
general position relative to the vectors v, i.e. that for no two items
a, b, 〈u, va〉 = 〈u, vb〉). Alternatively, one can think of u as spec-
ifying a point in Rd and order items according to their distances
from u: πu(a) < πu(b) iff ‖u − va‖ < ‖u − vb‖. Ordering by
the norm or by the projection are equivalent if u and all vectors v
are normalized (i.e. on the unit sphere), and otherwise the differ-
ence between them amounts to adding one additional dimension.
Although [12] focused mostly on ordering by distance, here it will
be more convenient for us to order by projection.

In either case, for a given feature map, only a subset of permuta-
tions can be represented this way, allowing a significant reduction
in the query complexity if we focus only on such permutations—
[12] showed how O(d logm) adaptive queries are enough for learn-
ing the optimal permutation (among permutations of this form).

One can think of the feature map as specifying an embedding of
items into a possible “preference space”, with different axes speci-
fying different attributes one might prefer or not prefer, and a direc-
tion u in this space specifying the preferences over these attributes,
which in turn defines the preferences over items. The query com-
plexity is then proportional to the dimensionality, or number of “at-
tributes”, d, instead of to the number of items m.

But the approach of [12] is still limited to a learning a single
permutation at a time. Furthermore, the reduced query complexity
relies on external information in the form of the feature embedding
va. [12] did consider scenarios with individualized permutations,
where each of many users has a different permutation over items
(e.g. beer preferences in their application). But their proposed ap-
proach was to first obtain good features for each item using some
external information source (in their case, the text of product re-
views and descriptions) and then learn the permutation πi for each
user i separately, using only pairwise comparisons by this user i,
based on the fixed feature maps. Here, we would like to avoid us-
ing a pre-determined feature map based on external information,
and instead learn this map de novo by considering all users jointly,
and leveraging information gleaned from one user’s comparisons
to improve the ranking of other users.

4. MATRIX COMPLETION BASED CPL
As in the model discussed above, we associate with each item

a a vector va ∈ Rd and with each user a vector ui ∈ Rd, such
that the permutation for user i is specified by πi(a) < πi(b) iff
〈ui, va〉 < 〈ui, vb〉. However, instead of basing the model on pre-
specified feature vectors va, we do not assume any prior knowledge
on the items. Rather, following a collaborative approach, we joint-
ly learn both the user vectors ui and and item vectors va. Since

the item vectors va are learned, the permutation for any single user
is not constrained, unlike [12]. However, having observations on
multiple users constrains the possible setting of the item vectors va

and thus constraints the relationship between the multiple permu-
tations. In other words, based on the observed comparisons from
multiple users, we are learning the population space of possible per-
mutations, which in turn allows us to learn individual permutations
with significantly fewer observations.

πi(a) < πi(b) iff Xi,a < Xi,b. Requiring that X decompos-
es as X = UV T of the appropriate dimensions is equivalent to
requiring that it has rank at most d. We can thus consider perform-
ing collaborative permutation learning as searching for a low-rank
matrix X such that sgn(Xi,a < Xi,b) matches our observed pair-
wise comparisons, or at least matches as many as possible to our
observed pairwise comparisons.

However, as was suggested by [9, 27], we instead consider an
infinite-dimensional model, where the dimensionality d is unbound-
ed (one can think ofUa,· and Vb,· as vectors in an infinite-dimensional
Hilbert space, or simply allow them to be vectors in an arbitrari-
ly high dimensional space), where we instead constrain the norms
‖Ua,·‖2 , ‖Vb,·‖2. Constraining the average squared-norm of these
vectors corresponds to constraining the trace-norm (aka nuclear
norm) of X, which is defined as2:

‖X‖Σ = min
X=UV T

1

2

(
n∑

a=1

‖Ua,·‖2
2 +

m∑
b=1

‖Vb,·‖2
2

)
. (1)

Similarly, constraining the norm of all vectors (i.e. constraining the
maximal norm) corresponds to constraining the max-norm of X,
defined as:

‖X‖max = min
X=UV T

max
(
max

a
‖Ua,·‖2

2 ,max
b

‖Vb,·‖2
2

)
. (2)

Both the max-norm and the trace-norm can be thought of either
as convex relaxations to the rank [10], or as more refined models,
allowing an infinite-dimensional embedding, regularized through
norm-regularization rather than a parametric constraint as in, e.g.,
Support Vector Machines [27]. Either way, in order for the norm-
regularization to be meaningful, we must require not only thatXi,a >
Xi,b whenever we observe πi(a) > πi(b), but that the inequality
holds with a margin. And in order to allow for noisy or inconsistent
observations, instead imposing a hard margin constraint, we seek to
minimize an empirical hinge loss, defined below, which penalizes
the extent of margin violations.

Let S : (i1, a1, b1), (i2, a2, b2), ..., (i|S|, a|S|, b|S|) be the set of
observed pairwise preferences, where (i, a, b) represents the com-
parison of user i prefers item a over b. |S| is the total set of ob-
served pairwise comparisons. The empirical hinge loss of X is
then defined as:

L̂hinge(X) =

∑
(i,a,b)∈S max(1 − (Xi,a − Xi,b), 0)

|S|
And our training objectives, with the trace-norm and max-norm
respectively are:

min
X

‖X‖Σ + λL̂hinge(X) and min
X

‖X‖max + λL̂hinge(X) (3)

where λ is a regularization tradeoff parameter.
Both the trace-norm and max-norm are semi-definite-representable

[9, 27] and thus both problems above can be rewritten and solved as
semi-definite programs (SDP). This allows us to use standard SDP

2The trace-norm of X is also equal to the sum of the singular values
of X, but we prefer thinking in terms of the matrix-factorization
characterization of the trace-norm

504

solvers. However, in order to handle large-scale problem, special-
purpose first-order optimization methods are required. Fortunately,
in the past few years, there has been much progress in developing
such methods for both trace-norm and max-norm regularized prob-
lems, and in the next Section we describe the methods we use here.

5. LARGE SCALE OPTIMIZATION
In this Section, we describe the accelerated first order methods

we use to solve the optimization problems (3) and fit our model-
s. For both the trace-norm and the max-norm we adapt recently
proposed accelerated proximal methods.

5.1 Accelerated proximal gradient methods for
trace-norm regularized CPL

For trace-norm regularized collaborative permutation learning,
we use an accelerated version of Singular Value Thresholding (SVT):
SVT optimization [6] consists of iterative updates corresponding to
the optimization of a partial linearization of the objective function,
where loss is linearized but the regularizer is not:

Xk = argmin
X

L̂hinge(Xk−1) + (X−Xk−1) ◦ ∇L̂hinge(Xk−1)

+
1

2ηk
‖X−Xk−1‖2F +

1

λ
‖X‖Σ

Such an update can be performed by soft-thresholding the singular-
values of Xk−1−ηk∇L̂hinge(Xk−1), requiring a singular value de-
composition at each iteration [6]. For a smooth loss function, such
updates can be accelerated by combining two sequences of iterates
Xk and Zk , as in [18, 20]. Although our objective function is not s-
mooth, empirically we found that accelerated gradient methods can
usually obtain better convergence than simple gradient descent for
our problem. In particular, each iteration consists of the following
updates:

Xk = SVT 1
2λ

(Zk − ηk∇L̂hinge(Zk))

Zk+1 = Xk + (
αk − 1

αk+1
)(Xk − Xk−1)

where the SVT operator is defined as: SVTλ(X) = UΣλV
T ,

where X = UΣV T is the singular value decomposition of X, and
(Σλ)i,i = max{0,Σi,i − λ}, and αk is the parameter recursively

defined as αk+1 =
1+

√
1+4α2

k
2

with α1 = 1.

5.2 Proximal iterative smoothing algorithm for
max-norm regularized CPL

For the max-norm, we cannot take this approach, because the
minimum of a quadratic function plus a max-norm regularizer is not
given analytically in terms of the SVD. Instead, we take the prox-
imal iterative smoothing (PRISMA) technique proposed by [19],
where the goal is to solve a convex optimization which decompos-
es into three parts: a smooth part, a simple Lipschitz part, and a
non-Lipschitz part. Although the pairwise hinge loss functions in
max-norm regularized CPL problems are not smooth, we can also
apply PRISMA to our problem because our objective function is

min
X

‖X‖max + λL̂hinge(X)

. This problem can be rewritten as:

min
X,A,B

1

λ
max diag

[
A X
XT B

]
+ L̂hinge(X) + δ

S
m+n
+

[
A X
XT B

]

where δ
S
m+n
+

is the indicator function of set of (m+ n) × (m +

n) positive semi-definite matrices (zeros inside Sm+n
+ and infinite

outside).

To apply PRISMA for this problem, we learn A,B,X simulta-
neously as a (m + n) × (m + n) matrix (we denote it as Z): at
each step, we first perform a gradient descent step on the function
L̂hinge(X), then add the proximal operator solution of the function
1
λ
max diag(Z), and then perform a proximal operator of the func-

tion δ
S
m+n
+

Z. Note that the proximal operator of max diag(Z) is

equivalent to the proximal operator of the ‖ · ‖∞ on the diagonal
vector of the matrix Z, which has closed-form solution [8], and the
proximal operator of δ

S
m+n
+

Z can be solved by setting all negative

eigenvalues of Z to zero. Thus the core updating steps are:

Yk = EVT((1 − 1

λβk
)Zk − ηk∇L̂hinge(Zk) +

1

λβk
DVTβk

(Zk))

Zk+1 = Yk + (
αk − 1

αk+1
)(Yk −Yk−1)

where DVT is the diagonal value thresholding operator: DVTβk
(X)i,i =

sgn(Xi,i)min(Xi,i, βk) and DVTβk
(X)i,j = Xi,j for all i
= j;

and EVT is the Eigenvalue thresholding operator obtained by set-
ting all negative eigenvalues to zero.

6. ACTIVE LEARNING STRATEGIES
In this section we discuss some active learning strategies for col-

laborative permutation learning. Although our goal is to create a
system that actively makes queries to all possible pairs, for presen-
tation clarity we consider the setting of pool-based batch mode ac-
tive learning [26]. Suppose at learning stage t, we already have our
learned model Xt, as well as a candidate pool Pt = {(i, a, b)}. We
then need to ask users to reveal their comparison labels for a small
batch of instances Qt+1 ⊆ Pt, and add these new training data to
our current training set St. Then we re-train the model using the
combined training set St+1 = St ∪ Qt+1 to obtain improvement.

The baseline solution is uniform sampling where we randomly
sample instances in Pt uniformly. We can also adopt some active
ranking methods for single permutation learning in our setting: as
inspired by [12], which actively query only the “ambiguous” pairs
for labeling. “Ambiguous” is defined as the pair that can not be im-
puted from known pairwise comparisons based on the consistency
assumption. (Suppose we know “a” is preferred to “b”, “b” is pre-
ferred to “c”; pair “a” and “c” is not an “ambiguous” pair because
we can transitively impute that “a” is preferred than “c”). We can
use this approach in our setting: we uniformly sample “ambiguous”
pairs for all users independently.

For our proposed approaches, the margin provides important in-
formation about the uncertainty of our learned model on the data.
[29] proposed to actively query the instances with smallest mar-
gin for Support Vector Machines (SVMs), and [22] adopted this
strategy and showed it’s effectiveness for maximum-margin ma-
trix factorization [27]. Likewise, we can use similar ideas to s-
elect pairs with the smallest difference in their estimated scores:
ft(i, a, b) = |Xt

i,a − Xt
i,b|.

Since our goal is to interactively estimate the model from data,
when the model is inaccurate, the margin information could be mis-
leading. As a result, we propose a stochastic sampling alternative.
Given a temperature parameter Tt, we randomly sample query in-

stances with probability proportional to p(i,a,b) = e
−

|Xt
i,a−Xt

i,b|
Tt .

Thus we favor instances with smaller margin. At the beginning, we
set the temperature high, which means we select instances tending
to uniform randomness, and then we decrease the temperature dur-
ing the learning process. In this way, we are more confident about
our model and bias toward more of the instances with small mar-
gin. 1 described the detailed process of our proposed “CPL-Margin
Sampling” algorithm.

505

Algorithm 1 CPL-Margin Sampling — Algorithm of active col-
laborative permutation learning from pairwise comparisons

Input: P0 ∈ N|P|×3: the set of candidate pairwise preferences.
Initialization: The initialized model X0 at time 0.
for t = 1, 2, . . . do

Computing the margin score achieved by current model.
Sampling k triplets from Pt−1 with probability proportional

to e
−

|Xt−1
i,a

−X
t−1
i,b

|
Tt−1 to form the query set Qt, update the train-

ing set St = St−1 ∪ Qt.
Learn the new Xt by solving the problem (3).

end for

7. THEORETICAL ANALYSIS
In this section we provide some theoretical analysis of the pro-

posed algorithms. Suppose the true permutations are generated by
the underlying matrix X∗, we can define the expected loss for any
matrix X:

L(X) =
2
∑n

i=1

∑m
a=1

∑b∈[m]
b�=a Isgn(X∗

i,a−X∗
i,b

) �=sgn(Xi,a−Xi,b)

nm(m − 1)

and the empirical loss for matrix X:

L̂(X) =
1

|S|
∑

(i,a,b)∈S
IXi,a<Xi,b

and the expected hinge loss for matrix X:

Lhinge(X) =
2
∑n

i=1

∑m
a=1

∑b∈[m]
b�=j lhinge(i, a, b)

nm(m − 1)

where lhinge(i, a, b)max(1 − (Xi,a − Xi,b), 0) and the empirical
hinge loss for matrix X:

L̂hinge(X) =
1

|S|
∑

(i,a,b)∈S
max(1 − (Xi,a − Xi,b), 0)

7.1 Generalization bounds of CPL
The following theorems give generalization guarantees for the

proposed collaborative permutation learning models.

THEOREM 1. Let Xmax[A] be the set of matrices that with bound-
ed max-norm A. Then for any δ > 0, with probability at least 1−δ
over the choice of a sample S , for every X ∈ X max[A], the follow-
ing holds:

L(X) ≤ L̂hinge(X) + 48

√
A2(n+m)

|S| + 3

√
ln 2

δ

2|S|

Proof Sketch. We treat the matrix X as a function [n] × [m] → R,
and use existing bounds on the Rademacher complexity [4] of ma-
trices with bounded trace-norm or max-norm [28, 10]. The main
difference here is that the instances, and hence the loss, depend on
two, rather than only one evaluation of X. Nevertheless, this only
results in an increase by a factor of two in the Rademacher com-
plexity of the loss class, and we can use standard arguments for
obtaining uniform concentration and generalization guarantees as a
function of the Rademacher complexity.

And we get the following generalization bound for trace-norm
based methods:

THEOREM 2. Let XΣ[A] be the set of matrices with bounded
trace-norm A. Then there exists a constant K, for any δ > 0, with
probability at least 1 − δ over the choice of a sample S , for every
X ∈ XΣ[A], the following holds:

L(X) ≤ L̂hinge(X) + 4K

√
A2

nm
(n+m) lnn

|S| +

√
ln 1

δ

2|S|

7.2 Sample complexity for approximate recov-
ery

COROLLARY 3. Suppose X∗ is rank-r with bounded entries,
let Xmax(S) be the max-norm regularized empirical loss minimiz-
er: Xmax(S) = argminX∈Xmax[

√
r] L̂hinge(X), with the sample

size

|S| ≥ 4608r(n+m)+18 ln 2
δ

ε2
, with probability at least 1 − δ, we have

L(Xmax(S)) ≤ L̂hinge(X
∗) + ε

Proof Sketch. By error decomposition L(Xmax(S)) = L(Xmax(S))−
L̂hinge(Xmax(S))+(L̂hinge(Xmax(S))−L̂hinge(X

∗))+L̂hinge(X
∗),

combining the fact of empirical loss minimizer, as well as basic
mean inequalities.

Remark. If we further assume that the true scoring matrix suffer-
s 0 hinge loss, i.e., that the following realizable condition holds:
L̂hinge(X

∗) = 0, we get L(Xmax(S)) ≤ ε, which means we obtain
approximate recovery of all the permutations with ε-error.

Similarly, for the trace-norm regularized solution, we obtain the
following result:

COROLLARY 4. Suppose X∗ is rank-r with bounded entries,
let XΣ(S) be the trace-norm regularized empirical loss minimiz-
er: XΣ(S) = argmin‖X‖Σ≤√

rnm L̂hinge(X). Then there exists

a constant K, with the sample size |S| ≥ 32K2r(n+m) ln n+ln 1
δ

ε2
,

with probability at least 1 − δ, we have

L(XΣ(S)) ≤ L̂hinge(X
∗) + ε

Remark. By comparing the sample complexity of regularized CPL
with trace-norm versus max-norm, we can see that max-norm is
slightly superior by avoiding a log n factor, which is consistent with
the analysis of classical collaborative filtering problems [28].

8. EMPIRICAL STUDIES
In this section, we conduct a set of experiments to demonstrate

the effectiveness of our proposed approaches.

8.1 Experimental setting

Table 1: Statistics of data sets used in our experiments
Data #Users #Items Size Sparsity
Sushi 5,000 10 225,000 1
Vote200 16 67 6,459 0.182
Vote-wbc 339 369 10,658 0.0004
ML100K-500 500 500 1,659,704 0.027
ML100K-50 50 50 1,185 0.019
HetRec-600 600 600 1,042,049 0.010
HetRec-70 70 70 1,234 0.007

We test the performance of various algorithms for the CPL task
on both real-world and synthetic data sets including actual pairwise
comparison surveys, including the following:

506

• Sushi [15]: which is a data set contains 5,000 users’ order
lists over 10 kinds of sushi 3.

• Vote-200: a pairwise comparison survey associated with Wash-
ington Post’s idea marketplace [25] implemented through the
online platform 4. In this survey, people were asked to pro-
pose who had the worst year in Washington in 2010, and then
vote their comparisons between various people, agencies, or-
ganizations or classes according to the following form: “En-
tity A had a worse year than Entity B”. Entities included
“Representative Charlie Rangel”, “The American Homeown-
er”, “Senator Blanche Lincoln”, “D.C. schoolchildren”, and
“The Political Center”. Because the voting was anonymous,
we have information on voting sessions, but not individual
users. While it is very unlikely that multiple users compared
items within a single “session,” it is possible that the same
person came back to the site and voted in multiple session-
s, although we expect this behavior, if it occurred, was rare.
As such, we treat each session as a singer user following the
traditional collaborative filtering approach. There are 67 en-
tities (items) in total, and voting results are very sparse. Thus
we select a subset that each session contains at least 200 pref-
erences.

• Vote-wbc: a pairwise comparison survey regarding the rel-
ative appeal of different Wikipedia advertisement banners
5 using the same platform as in the Vote-200 data. Here
Wikipedia users propose and then compare pairs of possi-
ble banners for Wikipedia fundraising. Banner possibilities
include “Knowledge is power. Keep the access to it free”;
“A small donation for a world of information”; “A penny a
thought? How many times has Wikipedia helped you?”; and
“Open. Honest. Free.”

• Movielens data 6: a widely used collaborative filtering data
set. We choose two subsets of ’Movielens 100K’: ’ML100K-
50’ is a subset that contains 50 users on 50 items; ’ML100K-
ML500’ is a subset that contains 500 users on 500 movies.
We generated all pairwise preferences in the subsets accord-
ing to user ratings.

• HetRec 2011 Movie data 7: another popular movie rating
data set. We choose two subsets: ’HetRec-600’ is the subset
that contains 600 users on 600 movies, ’HetRec-70’ is the
subset that contains 70 users on 70 movies. We generated all
pairwise preferences in the subsets according to user ratings.

Table 1 summarizes the statistics associated with these data set-
s, and shows that our data contains pairwise comparisons ranging
up to several million. We measure the performance of algorithm-
s using mean Kendell-Tau distance (MKTD), a generalization of
Kendell-Tau distance to our multiple permutations setting. Kendll-
Tau distance is widely used in single permutation learning evalua-
tion [12] as it measure the fraction of pairwise preferences from
the true permutation π recovered by the learned permutation π̂:

d(π, π̂) =
∑

(a,b):π(a)<π(b) I{π̂(a)>π̂(b)}
(m2)

. Suppose our model learn-

s n ranking lists: π1, ...πn, given a ground truth set of test pairwise
preferences S , the MKTD is defined as:

MKTD =
1

|S|
∑

(i,a,b)∈S
I(πi(b)−πi(a))>0.

3http://www.kamishima.net/sushi/
4http://allourideas.org
5http://blog.allourideas.org/post/16175975017/
6http://movielens.umn.edu
7http://grouplens.org/datasets/hetrec-2011/

We test the performance of our model on the entire data set, and

http://www.kamishima.net/sushi/
http://allourideas.org
http://blog.allourideas.org/post/16175975017/
http://movielens.umn.edu
http://grouplens.org/datasets/hetrec-2011/

%0.5 %1 %1.5 %2 %2.5 %3 %3.5 %4 %4.5 %5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fraction of Pairwise Comparisons Discovered

M
KT

D

Various approaches for collaborative permutation learning

CPL
Borda Count
Borda Count−Single
Balanced Rank Estimation
Balanced Rank Estimation−Single

%1 %3 %5 %7 %9 %11 %13 %15 %17 %19 %21 %23 %25 %27 %29
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fraction of Pairwise Comparisons Discovered

M
KT

D

Various approaches for collaborative permutation learning

CPL
Borda Count
Borda Count−Single
Balanced Rank Estimation
Balanced Rank Estimation−Single

(a) ML100K-500 (b) Vote200

%1 %3 %5 %7 %9 %11%13%15%17%19%21%23%25%27%29
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fraction of Pairwise Comparisons Discovered

M
KT

D

Various approaches for collaborative permutation learning

CPL
Borda Count
Borda Count−Single
Balanced Rank Estimation
Balanced Rank Estimation−Single

%1 %3 %5 %7 %9 %11 %13 %15 %17 %19 %21 %23 %25 %27 %29
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

%0.5 %1 %1.5 %2 %2.5 %3 %3.5 %4 %4.5 %5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of Pairwise Comparisons Discovered

M
KT

D

Various active learning strategies + various approaches for CPL

CPL−Uniform
Borda Count−Uniform
Borda Count−SRRA
Balanced Rank Estimation−Uniform
Balanced Rank Estimation−SRRA
CPL−Margin Sampling

%1 %3 %5 %7 %9 %11%13%15%17%19%21%23%25%27%29

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of Pairwise Comparisons Discovered

M
KT

D

100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Users/Iterms

N
um

be
r o

f P
ai

rw
is

e
C

om
pa

ris
on

s
N

ee
d

Simulation of sample complexity for approximate recovery

Borda Count−Uni−97%
BRE−Uni−97%
CPL−Uni−97%
CPL−MS−97%

2^{−2} 2^{−3} 2^{−4} 2^{−5} 2^{−6} 2^{−7} 2^{−8} 2^{−9}
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

epsilon−Approximate Recovery

N
um

be
r o

f P
ai

rw
is

e
C

om
pa

ris
on

s
R

eq
ui

re
d

Simulation of sample complexity for approximate recovery

CPL−Uniform
CPL−Margin Sampling

Figure 4: Simulation of Sample Complexity for Approximate Recovery, left: comparison of sample complexity as number of user-
s/items increase; right: comparison of sample complexity for various ε-approximate recovery.

%0.5 %1 %1.5 %2 %2.5 %3 %3.5 %4 %4.5 %5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Collaborative Permutation Learning: Trace Norm vs Max Norm

CPL−Trace Norm
CPL−Max Norm

%1 %3 %5 %7 %9 %11 %13 %15 %17 %19 %21 %23 %25 %27 %29
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Collaborative Permutation Learning: Trace Norm vs Max Norm

CPL−Trace Norm
CPL−Max Norm

%1 %3 %5 %7 %9 %11 %13 %15 %17 %19 %21 %23 %25 %27 %29
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Collaborative Permutation Learning: Trace Norm vs Max Norm

CPL−Trace Norm
CPL−Max Norm

Figure 5: Evaluation on Trace Norm vs Max Norm for CPL: data sets from left to right: ML100K-500, Vote200, Hetrec 70.

%1 %3 %5 %7 %9 %11%13%15%17%19%21%23%25%27%29
0

0.1

0.2

0.3

0.4

0.5

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Various Tempreture strategies for Margin Sampling

Linear
Quadratic
Sublinear
Auto

%0.5 %1 %1.5 %2 %2.5 %3 %3.5 %4 %4.5 %5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Various Tempreture strategies for Margin Sampling

Linear
Quadratic
Sublinear
Auto

%0.5 %1 %1.5 %2 %2.5 %3 %3.5 %4 %4.5 %5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Various Tempreture strategies for Margin Sampling

Linear
Quadratic
Sublinear
Auto

%1 %3 %5 %7 %9 %11%13%15%17%19%21%23%25%27%29
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fraction of Pairwise Comparisons Discovered

M
K

T
D

Various Tempreture strategies for Margin Sampling

Constant 1
Constant 0.0001
Constant 0.001
Constant 10

Constant 10

FraAuto10

8.7 Temperature Decreasing Scheme
This experiment aims to study various temperature decreasing

schemes for margin sampling. We consider the following gener-
al temperature model: Tt = 1

c·tp , compared to the strategy we
used in previous experiments where c = 1, p = 1, here we al-
so test several schemes by varying c and p: first we fix c = 1,
and vary p = 0.5, 1, 2, which represents sub-linear, linear, and
quadratic temperature decreasing schemes, respectively. Moreover,
we also adopt a “performance-driven” strategy by setting the tem-
perature according to the MKTD we achieve: Tt = MKTDt(We
denote this method “auto” in the figures). Figure 6 summarizes
the results. We can see that our margin sampling strategy is ro-
bust: it performs similar and quite well with different decreasing
rates, when comparing different constant temperatures, we found
that very low temperature tends to behave like simple margin(bad at
the beginning), very high temperature tends to behave like unifor-
m(bad at the end), adequate constant can performs reasonably well,
although not so good as decreasing scheme. In addition, the pro-
posed “performance-driven” temperature scheme appears promis-
ing. Thus, our margin sampling algorithms could be easily used in
practical applications.

9. CONCLUSION
This paper studies the problem of collaborative permutation learn-

ing from pairwise comparisons, both passively and actively. We
demonstrated that collaborative information is important, and pro-
pose to utilize collaborative information by matrix completion based
algorithms. We then analyzed the generalization ability and sam-
ple complexity needed for approximate recovery of our proposed
algorithms, and empirically demonstrated that our methods perfor-
m much better than traditional approaches. To reduce the number
of comparisons required from users, we proposed various active
learning strategies, and showed that active querying is very useful
in reducing label costs. These approaches provide immediate appli-
cation to a range of information retrieval and survey tasks. In par-
ticular, we highlight their power for creating efficient, just-in-time
comparison surveys that can predict user preferences from small
samples of comparisons.

We also identify several promising directions for further research,
including: i) More scalable algorithms: we aim to apply our pro-
posed methods on very large scale problems, where even the SVD
is computationally prohibitive. Some existing large-scale trace-
norm (and max-norm) optimization methods might be able to be
adopted, e.g. [16]; ii) More theoretical analysis: currently we on-
ly explore generalization ability and approximate recovery analy-
sis, but interesting theoretical questions remain, including: 1) the
sample complexity required for exact recovery of the permutations
(which might require additional assumptions); 2) the gap between
active learning label complexity and uniform sample complexity.

References
[1] N. Ailon. An active learning algorithm for ranking from

pairwise preferences with an almost optimal query
complexity. Journal of Machine Learning Research,
13:137–164, 2012.

[2] N. Ailon, R. Begleiter, and E. Ezra. Active learning using
smooth relative regret approximations with applications.
COLT, 23:19.1–19.20, 2012.

[3] S. Balakrishnan and S. Chopra. Collaborative ranking. In
WSDM, pages 143–152, 2012.

[4] P. L. Bartlett and S. Mendelson. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal of
Machine Learning Research, 3:463–482, 2002.

[5] C. Boutilier, R. S. Zemel, and B. M. Marlin. Active
collaborative filtering. In UAI, pages 98–106, 2003.

[6] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM Journal
on Optimization, 20(4):1956–1982, 2010.

[7] J. C. de Borda. Mémoire sur les élections au scrutin. Histoire
de l’Académie Royale des Sciences, 1784.

[8] J. C. Duchi and Y. Singer. Efficient online and batch learning
using forward backward splitting. Journal of Machine
Learning Research, 10:2899–2934, 2009.

[9] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization
heuristic with application to minimum order system
approximation. In In Proceedings of the 2001 American
Control Conference, pages 4734–4739, 2001.

[10] R. Foygel and N. Srebro. Concentration-based guarantees for
low-rank matrix reconstruction. In COLT, pages 315–340,
2011.

[11] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems (TOIS),
22(1):89–115, 2004.

[12] K. G. Jamieson and R. D. Nowak. Active ranking using
pairwise comparisons. In NIPS, pages 2240–2248, 2011.

[13] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical ranking
and combinatorial hodge theory. Math. Program.,
127(1):203–244, 2011.

[14] R. Jin and L. Si. A bayesian approach toward active learning
for collaborative filtering. In UAI, pages 278–285, 2004.

[15] T. Kamishima. Nantonac collaborative filtering:
recommendation based on order responses. In KDD, pages
583–588, 2003.

[16] J. D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and J. A.
Tropp. Practical large-scale optimization for max-norm
regularization. In NIPS, pages 1297–1305, 2010.

[17] S. Negahban, S. Oh, and D. Shah. Iterative ranking from
pair-wise comparisons. In NIPS, pages 2483–2491, 2012.

[18] Y. Nesterov. A method for solving a convex programming
problem with convergence rate o(1

k2). 1983.
[19] F. Orabona, A. Argyriou, and N. Srebro. Prisma: Proximal

iterative smoothing algorithm. CoRR, abs/1206.2372, 2012.
[20] T. K. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm

regularization: Reformulations, algorithms, and multi-task
learning. SIAM Journal on Optimization, 20(6):3465–3489,
2010.

[21] A. Rajkumar and S. Agarwal. A statistical convergence
perspective of algorithms for rank aggregation from pairwise
data. In ICML, 2014.

[22] I. Rish and G. Tesauro. Active collaborative prediction with
maximum margin matrix factorization. In ISAIM, 2008.

[23] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In NIPS, 2007.

[24] P. Salesses, K. Schechtner, and C. A. Hidalgo. The
collaborative image of the city: Mapping the inequality of
urban perception. 8(7):e68400, 2013.

[25] M. J. Salganik and K. E. C. Levy. Wiki surveys: Open and
quantifiable social data collection. arXiv:1202.0500, 2012.

[26] B. Settles. Active Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2012.

[27] N. Srebro, J. D. M. Rennie, and T. Jaakkola.
Maximum-margin matrix factorization. In NIPS, 2004.

[28] N. Srebro and A. Shraibman. Rank, trace-norm and
max-norm. In COLT, pages 545–560, 2005.

[29] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. Journal of
Machine Learning Research, 2:45–66, 2001.

[30] M. Volkovs and R. S. Zemel. Collaborative ranking with 17
parameters. In NIPS, pages 2303–2311, 2012.

[31] F. L. Wauthier, M. I. Jordan, and N. Jojic. Efficient ranking
from pairwise comparisons. In ICML (3), pages 109–117,
2013.

[32] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola. Cofi
rank - maximum margin matrix factorization for
collaborative ranking. In NIPS, 2007.

511

	Introduction
	Related Work
	Background: Constrained Permutation Learning
	Matrix completion based CPL
	Large Scale Optimization
	Accelerated proximal gradient methods for trace-norm regularized CPL
	Proximal iterative smoothing algorithm for max-norm regularized CPL

	Active learning strategies
	Theoretical analysis
	Generalization bounds of CPL
	Sample complexity for approximate recovery

	Empirical studies
	Experimental setting
	Compare CPL with rank aggregation
	Comparison of active learning strategies
	Comparison of the whole system
	Simulations of sample complexity
	CPL with Trace Norm vs Max Norm
	Temperature Decreasing Scheme

	Conclusion

