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ABSTRACT
The frequency and intensity of natural disasters has significantly
increased over the past decades and this trend is predicted to con-
tinue. Facing these possible and unexpected disasters, accurately
predicting human emergency behavior and their mobility will be-
come the critical issue for planning effective humanitarian relief,
disaster management, and long-term societal reconstruction. In this
paper, we build up a large human mobility database (GPS records
of 1.6 million users over one year) and several different datasets
to capture and analyze human emergency behavior and their mo-
bility following the Great East Japan Earthquake and Fukushima
nuclear accident. Based on our empirical analysis through these
data, we find that human behavior and their mobility following
large-scale disaster sometimes correlate with their mobility patterns
during normal times, and are also highly impacted by their social
relationship, intensity of disaster, damage level, government ap-
pointed shelters, news reporting, large population flow and etc. On
the basis of these findings, we develop a model of human behavior
that takes into account these factors for accurately predicting hu-
man emergency behavior and their mobility following large-scale
disaster. The experimental results and validations demonstrate the
efficiency of our behavior model, and suggest that human behavior
and their movements during disasters may be significantly more
predictable than previously thought.

Categories and Subject Descriptors
H.2 [Database Management]: Spatial databases and GIS; H.2
[Database Management]: Data mining; H.4 [Information Sys-
tems Applications]: Decision support (e.g., MIS)

Keywords
human mobility, disaster informatics, spatio-temporal data mining

1. INTRODUCTION
Most severe disasters cause large population movements and evac-

uations. Predicting these movements are critical for planning effec-
tive humanitarian relief, disaster management, and long-term soci-
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Figure 1: Prediction of human emergency behavior and their
mobility following large-scale disaster. Can we predict human
emergency behavior and its movements by modeling its past
movements during disaster? If some future disaster occur,
given person’s current observed movements, which place will
it go next time period? How about its traveling routes?

etal reconstruction. Even though human movement and behavior
patterns have a high degree of freedom and variation, they also ex-
hibit structural patterns due to geographic and social constraints
[1]. In particular, after large-scale disasters, population mobility
pattern seem to be highly influenced by several disaster states and
various factors, such as intensity of disaster, damage level, govern-
ment declarations, news reports and etc [2]. Lu et al. [3] found
that population mobility patterns following the 2010 Haitian earth-
quake disaster were highly correlated with their daily movements
prior to the event, and concluded that population movements af-
ter large-scale disasters may be significantly more predictable than
previously thought. Song et al. [2] found that: after the Great
East Japan Earthquake and Fukushima nuclear accident, in regions
that were instantaneously impacted by the earthquake and tsunami,
large numbers of people sought immediate refuge in nearby cities
or government shelters. However, in regions more impacted by the
release of nuclear materials, evacuation patterns were highly influ-
enced by government declarations and news reports.
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Figure 2: Overview of the approach. Our approach decomposes the predicting problem into two sub-problems: (1) Firstly, we use
people’s past movements during disasters, and its important places to train a HMM-based human behavior model. Then, given
person’s current observed movements and disaster states, our model predicts its possible behavior at next time period. (2) Secondly,
we use the whole collected population movements of a specific urban areas to train the urban mobility model. Then, our model
predicts person’s possible movements given its predicted behavior at next time period.

Even though the above are some of the fundamental questions
and hypotheses about human behavior and mobility after large-
scale disasters, answers to them remain largely unknown mostly
due to the lack of supported data or a powerful human behavior
model that is able to fully depict how these factors will influence
population mobility patterns. Therefore, in this paper, we built up
a large population mobility database that stored and managed daily
GPS records from approximately 1.6 million individuals through-
out Japan over one year (from 1 August 2010 to 31 July 2011), and
several different dataset to capture and analyze population behavior
and their mobility following the Great East Japan Earthquake and
Fukushima nuclear accident. On the basis of empirical analysis
of population mobility patterns through these databases, we found
that population behavior and their mobility after this unprecedented
composite disaster sometimes correlated with their mobility pat-
terns during normal times, and were also highly impacted by their
social relationship, intensity of disaster, damage level, government
appointed shelters, government declarations, movements of large
population flow and etc (as shown in Figure 1). Based on these
findings, we tried to model the relationship between human emer-
gency behavior and these influenced factors, and developed amodel
of human behavior for predicting population movements follow-
ing large-scale disaster. In our work, we decomposed the predict-
ing problem into two sub-problems (as illustrated in Figure 2): (1)
given the current state of disasters or other influenced factors, and
observed human movements, predicting its possible behavior at
next step; and then (2) predicting its possible movements given the
estimated behavior distribution. To the best of our knowledge, this
work is the first to model human emergency behavior under var-
ious disaster states, and is able to accurately predict population
movements following large-scale disasters.
The remainder of this paper is structured as follows: Section 2

introduces the databases and the empirical analysis of population
mobility patterns following the Great East Japan Earthquake and
Fukushima nuclear accident. Section 3 describes the human be-
havior model based on our empirical analysis, and the prediction
of human behavior after disasters. Section 4 provides the details
about urban mobility model learning, and the prediction of human
movements. Experimental results are presented in Section 5. Re-
lated work is briefly reviewed in Section 6, and the paper is finally
summarized in Section 7.

2. DATABASEANDEMPIRICALANALYSIS

2.1 Database
In this study, we built up a large human mobility database and

several different dataset to capture and analyze population emer-
gency behavior and their mobility following large-scale disaster,
and they were able to be summarized as follows:
Human mobility database: This mobility database stored and

managed GPS records of approximately 1.6 million anonymized
users throughout Japan from 1 August 2010 to 31 July 2011, which
contained approximately 9.2 billion GPS records, more than 600GB
csv files. We utilized five computer (Xeon 2.6GHz CPU, 8GB
memory, and 2x2TB disk.) to build up a Hadoop cluster, which
contained 32 cores, 32GB memory, 16TB storages, and was able
to run 28 tasks at the same time. Furthermore, we utilized Hive on
top of Hadoop to make the whole system support SQL-like spatial
query. The visualization of human mobility in the Greater Tokyo
Area during the earthquake is shown in Figure 3. From this figure,
we can clearly see that the transportation of Tokyo before the earth-
quake was very busy (Fig.3-A,B). In contrast, after the earthquake,
the transportation network of whole Greater Tokyo Area was al-
most stalled (Fig.3-C,D).
Disaster intensity data: We collected various kinds of disaster

information about the Great East Japan Earthquake and Fukushima
nuclear accident from Japan Government statistical reports, and
built up a disaster intensity dataset. This dataset contained seismic
scale of the earthquake and damage level (1-4) of this composite
disaster (e.g. destroyed buildings by the earthquake and tsunami)
in the whole East Japan.
Disaster reporting data: Serious radioactive releases (e.g. Fuku

shima Daiichi nuclear accident) were quite different from the tra-
ditional natural diaster, because its real affection was still uncertain
to human society, and will last for a very long time [2]. Facing
such kind of unfamiliar disaster, people did not have direct feeling
of its destructiveness, and their mobility were usually influenced
and caused by government declarations or various kinds of news
reporting [2]. To capture this influence, we collected government
declarations [4] as well as news reports from mainstream medias
in Japan and all over the world [5] from 11th March, 15:00 to 31
March, 24:00, and built up a disaster reporting dataset. Based on
these information, we empirically divided these reporting and dec-

6



Figure 3: Visualization of human mobility during the earthquake. This figure shows population mobility of the Greater Tokyo Area
during the earthquake. The color denotes the directions of population mobility. Figure A and B show population mobility before the
earthquake, and Figure C and D show the ones after the earthquake. We can clearly see that the whole transportation of the Greater
Tokyo Area was stopped suddenly during the earthquake (Fig.C,D). For more details, please see our supplementary video.
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Figure 4: Distribution of geographic location for individual
people. This figure shows the distribution of geographic lo-
cation for specific person (one of the authors) during normal
times. The color denotes the probability of staying location of
an individual person at a specific time period; warmer ones in-
dicate higher probability. Figure (a) shows this distribution on
working days, and Figure (b) shows the cases on some impor-
tant holidays (e.g. national holiday, New Year Festival, Christ-
mas day).

larations into four levels to measure this event (e.g. one level means
not serious from the reporting, and four level means extremely se-
rious), and performed the time series analysis.

2.2 Empirical Analysis of HumanDisaster
Behavior

Important places discovery: While people travel further and
faster than ever before, it is still the case that they spend much of
their time at a few important places. To perform the analysis of
population emergency behavior, we need to discover and recognize
important places in people’s lives, e.g. home, working places, and
places of important social relationships (e.g. hometown, parents,
relatives and good friends). In this study, we utilized GPS data in
several months before the earthquake (1st, August 2010 to 11st,
March 2011) to compute distribution of geographic location [2, 6]
for individual people (as shown in Figure 4). Based on the analysis
of this distribution with time, it is easy for us to find and recog-
nize some important places of individual people. For example, the
highest frequency staying place by daylight on working day is usu-
ally people’s working place, and the one in night is usually people’s
home (as shown in Figure 4-a). Meanwhile, some high frequency
visited places on the weekend and some important holiday (e.g. na-
tional holiday, New Year Festival, Christmas day) are recognized as
the people’s important social relationships (as shown in Figure 4-
b). Furthermore, we also computed people’s geographic location
distribution after the Great East Japan Earthquake and Fukushima
nuclear accident in a specific time period, and discover some high

frequency staying places to analyze human disaster behavior. The
example is shown in Figure 5.
Empirical Analysis: On the basis of seismic scale of the earth-

quake and damage level of this composite disaster, we focused on
analyzing population behaviors in Fukushima, Miyagi, Iwate pre-
fectures and the Greater Tokyo Area (the largest metropolitan area
in the world with more than 1/3 GDP of Japan). In most areas
of Fukushima, Miyagi, Iwate prefectures, the damage level were
the highest ones, and seismic scale of the earthquake were above
five. In contrast, the damage level and seismic scale of the Greater
Tokyo Area were relatively low, most of which were with one dam-
age level, three to four seismic scale. Although the Greater Tokyo
Area were not highly destroyed by this composite disaster, its pub-
lic transportation systems were completely disrupted (almost the
whole metro or railway services). On the other hand, we found
that: on the first 24 hours after the earthquake, population behav-
iors or evacuations were mainly responded to the huge earthquake
and tsunami themselves. In contrast, on the next several days, Japan
people understood the seriousness of the Fukushima nuclear acci-
dent, and large number of evacuations or long distance movements
were discovered. Hence, we performed the empirical analysis of
population behavior in the two separated time periods.
Figure 6 shows the statistics of various kinds of human behav-

iors after the disasters in Fukushima, Miyagi, Iwate prefectures and
the Greater Tokyo Area, as well as some important news reporting
related to this event. During the first 24 hours after this disaster,
most behaviors of people in the Greater Tokyo Area (Fig.6-a) were
similar to the normal times, but at the night (8 to 16 hours after
the earthquake), many people had to stay at unknown places (e.g.
metro station, hotel, restaurant and etc.) or stayed with their so-
cial relationship (e.g. friends and colleagues) due to the disruption
of the public transportation systems. In contrast, at most areas of
Fukushima, Miyagi, Iwate prefectures, people chose to stop their
work while the earthquake occurred, and seek refuge at once to
some safe and unknown places (Fig.6-b) due to the huge earthquake
and tsunami.
On the other hand, during the 19 days after the earthquake, the

majority of people in Fukushima, Miyagi, Iwate prefectures (Fig.6-
d) chose to leave their home and stop working due to the high dam-
age level of this disaster as well as extensive release of radioactiv-
ity, they usually went to stay with their social relationship or stayed
at some unknown places (e.g. government appointed shelters, ho-
tels of large neighboring cities and etc.). In contrast, the situation
of the Greater Tokyo Area was a bit different (Fig.6-c). Although
most areas in the Greater Tokyo Area were not severely damaged,
when people began to more fully understand the seriousness of the
Fukushima nuclear accident from the mainstream worldwide me-
dia, they stopped working and chose to leave far away from the
East Japan (from 3/15 to 3/27).
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Figure 5: Discovery of people’s important places before and after the earthquake. The first two figures show people’s geographic
location distribution before and after the earthquake. The size of the circles indicates the probability of staying location of an
individual person at a specific time; larger circles indicate higher probability that persons stay or live there. Blue and orange circles
indicate this distribution before and after the earthquake respectively. Based on the analysis of this distribution with time, we
discover the important places of this person (as shown in the third figure).

3. PREDICTIONOFHUMANDISASTER
BEHAVIOR

Based on our empirical analysis of human behavior above, we
concluded that human emergency behavior and mobility following
the Great East Japan Earthquake and Fukushima nuclear accident
sometimes correlated with their mobility patterns during normal
times, and were also highly impacted by their social relationship,
intensity of disaster, damage level, government appointed shelters,
government declarations, news reporting and etc. Hence, in this
section, we study how to model human disaster behavior by consid-
ering these influenced factors, and predict their possible behavior
at next time period.

3.1 Preliminaries
Consider a set of individual people’s GPS trajectories Tra =

{tra1, tra2, ..., tran} after the disasters, and each trajectories trai =
r1r2...rm consists of a series ofm GPS records and disaster infor-
mation. Each record r is a tuple in the form of r =< uid, time, lati
tude, longtitude, distance, intensity, damage, reporting, beha

vior >, where uid is the id of people, time is the time of record,
latitude and longtitude specify the geographic position of the
record. distance is the distance from the event (e.g. Fukushima
Daiichi nuclear power plant), intensity is the seismic scale of the
earthquake at this position, damage is the damage level of this po-
sition, and reporting is the government declarations and news re-
porting level. Here, behavior specify the people’s behavior related
to the discovered important places before and after the earthquake
(as shown in Figure 5), e.g., stay at home, work in office, go to im-
portant social relationships, evacuate to nearby cities, evacuate to
government appointed shelters, etc., and it is a label of discovered
important places as described in the last section.
Therefore, our goal is to learn a prediction model from Tra.

Given a individual people’s GPS trajectory traob = r1r2...rt from
time 1 to time t, we want to predict its behavior next specific time
period p at time t+ p.

3.2 Disaster Behavior Model
HMM based Behavior Model: In this study, we use hidden

Markov model (HMM) [7, 8] to model dependency between disas-
ter behaviors. In our problem, we define a set of hidden states S =
{s1, s2, ..., sM} which correspond to the human behavior states,
and a set of observations Z = {z1, z2, ...zN} which correspond to
the people’s GPS records and its related disaster states. The overall
behavior model with its graphical representation is shown in Figure
7. In our study, the following three key parameter components of

HMM model need to be learned: (1) initial state probability φsi

for each hidden states si ∈ S; (2) state transition probability ψsi,sj

from the hidden states si to sj ; and (3) state-dependent output prob-
ability P (zj |si), which determines the probability of the people’s
mobility zj ∈ Z given the hidden behavior state si ∈ S.
We abstract people’s mobility within a specific time period as

a sequence of length T , i.e., tra = Z1Z2...ZT (abbreviated as
tra = Z1:T ), and use these observed sequences to train the HMM.
Here, Zt ∈ Z represents the observed people’s mobility at time t,
1 ≤ t ≤ T . Each Zt is associated with a random variable St ∈ S,
representing the unknown behavior state at time t. In the following,
we will present details on HMM model learning.
Model Learning: To learn the overall behavior model, we need

to estimate the key parameters of HMM as the discussion above,
and a suitable solution is to use EM approach which aims at max-
imizing the likelihood of the observation sequences. In our study,
the overall likelihood should be summed over all possible routes
through the underlying hidden states, and is able to be computed
by:

P (Z1:T ) =

SM∑

S1=s1

...

SM∑

ST =s1

φS1

T∏

t=2

ψst−1,st

T∏

t=1

P (Zt|St). (1)

Here, we assume the HMM is time-homogeneous, and state tran-
sition probabilities and state-dependent output probabilities do not
change with time t.
According to [8], we reformulate Equation (1) as:

P (Z1:T ) = ΦPZ1ΨPZ2 ...ΨPZT
1
�
, (2)

which is expressed by matrix multiplications to reduce the compu-
tational cost. Here, Φ is a 1×M initial state distribution vector, Ψ
is aM×M hidden state transition matrix whereΨij = ψsi,sj , and
PZT

is aM ×M diagonal matrix with P (Zt|si) on the diagonal
and other entries as 0. Then we can use Baum-Welch algorithm [9]
to estimate the hidden state transition probabilities and the state-
dependent output probabilities.
To decide the right number of hidden states M in learning the

HMM, we use Bayesian Information Criterion (BIC) [10] to evalu-
ate the HMMwith different state numbers, and a smaller BIC value
always leads to better model fitness.

3.3 Prediction of Disaster Behavior
When given a length-t observed GPS records and its related dis-

aster states Z1:t, we can predict people’s behavior St+1 at time
t + 1 with the learnt HMM. This prediction is able to be achieved
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Figure 6: Empirical analysis of human behaviors after the Great East Japan Earthquake and Fukushima nuclear accident. This
figure shows percentage of different human behaviors after this disaster with some important news reporting. Figure (a) and (b)
show analysis of human behaviors at first 24 hours after this disaster in the Greater Tokyo Area and Fukushima, Miyagi, Iwate
prefectures. Figure (c) and (d) show the cases during 19 days after this disaster.

by maximizing the probability as:

St+1 = argmax
si∈S

P (St+1|Z1:t), (3)

where P (St+1|Z1:t) is able to be computed from learnt ψst,st+1

and P (St|Z1:t) according to the law of total probability as:

P (St+1|Z1:t) =
∑

ψst,st+1P (St|Z1:t), (4)

where P (St|Z1:t) is able to be computed by a Bayesian recursion:

P (St|Z1:t) = γP (Z1:t|St)
∑

ψst,st−1P (St−1|Z1:t−1), (5)

where γ is the normalization constant, P (Z1:t|St) is the learnt ob-
servation model of HMM, which corresponds to the observed hu-
man mobility and disaster states.
To perform the efficient behavior prediction, we utilize particle

filter [11] approach to compute Equation (3)-(5). The basic idea
behind a particle filter is very simple. Starting with a weighted set
of samples {w(k)

t , s
(k)
t }Kk=1 approximately distributed according to

p(st−1|zt−1), new samples are generated from a suitably designed
proposal distribution q(st|st−1, zt). To maintain a consistent sam-
ple, the new importance weights are set to

w
(k)
t ∝ w

(k)
t−1

p(zt|s
(k)
t )ψ

s
(k)
t ,s

(k)
t−1

q(s
(k)
t |s

(k)
t−1, zt)

,

K∑

k=1

w
(k)
t = 1. (6)

More details on the particle filter technique can be found in [11].
In our study, the overall filtering process is present as follows:

1. Initialization:
GenerateK weighted set of samples {w(k)

t , s
(k)
t }Kk=1 from the learnt

initial state probability φsi
of HMM.

2. Resampling:
Resample K particles from the particle set St using weights of re-
spective particles.
3. Prediction:
Predict the next state of the particle set St with the learnt transition
probability ψsi,sj of HMM.
4. Weighting:
Recalculate the weight of St by using Equation (6). Here, we uti-
lize the learnt observation model P (Z1:t|St) of HMM as the pro-
posal distribution in Equation (6).
5. States Estimation:
Estimate people’s behavior states by calculating the expectation of
the particle set St.
6. Iteration:
Iterate Steps 2, 3, 4, and 5 until convergence.
During the particle filtering process, we can easily obtain peo-

ple’s current behavior state St in stage 5, and predict people’s be-
havior St+1 at next time period in stage 3.

4. PREDICTIONOFHUMANMOBILITY
AFTER DISASTER

Given the predicted behavior of individual person after the dis-
asters, we also need to predict its possible mobility or evacuation
routes, which will play a vital role on effective humanitarian relief
and disaster management. In our study, people’s predicted behavior
is usually corresponding to an important places, e.g., home, work-
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Figure 7: HMM-based human behavior model. Given person’s important places, we use its past movements under various kinds of
diaster states to train a HMM-based human behavior model.

ing places, parents or relatives’ home, government appointed shel-
ters and etc., given a predicted place and its current location, it is
not difficult to find a possible route for a specific person. However,
human’s mobility following large-scale disaster is usually different
from the ones under normal circumstances. During the disaster,
human’s mobility usually will be impacted by other people, and
they usually tend to find a much safer routes for evacuations [2].
Furthermore, in most cases, the common transportation network
is usually unavailable following large-scale disasters (as shown in
Figure 3). Hence, in this section, we will present details on how to
predict human mobility or their evacuation routes after disasters.

4.1 Mobility Graph Construction
Given the predicted places where individual person will go and

its current location after the disasters, it is easy to think of using
transportation networks to plan and predict its possible movements.
However, most public transportation systems are usually not avail-
able after the earthquake occurred. Furthermore, based on our pre-
vious research, we found that population mobility after large-scale
disaster would highly impacted by other people, and sometimes be-
came a large population flow [2, 12, 13, 15]. Therefore, modeling
large population movements after the disasters will play a vital role
on prediction of individual person’s mobility. In this study, we uti-
lize a large number of population trajectories following the Great
East Japan Earthquake and Fukushima nuclear accident to con-
struct population mobility graph to model their mobility through
collaborative learning [14]. The creation of this type of model is
possible because social interactions and political responses in some
urban areas are typically stable through time, and large population
movements (which are often influenced by these conditions) are
likely to remain the same following different emergency situations
(e.g. the public transportation systems are unavailable again).
Region Construction: To construct the population mobility graph,

we firstly need to discover connected urban areas after earthquake
with the population movements. We divide the geographical range
into disjoint cells by a given cell length l. Thus, the specific posi-
tion of the persons is able to be mapped into a cell, and overall pop-
ulation trajectories are transformed into a sequence of cells. Then,
we computed connection support of these cells, and explored the
connected geographical regions. After cell merging process, we
can build up the region of the population mobility graph. For more
technical detail about it, please refer [14, 15].

Edge Inference: Once the regions in the population mobility
graph are generated, we then need to infer edges and derive some
edge information, such as travel frequency, travel time and etc. In
this study, the mobility graph is a directed graph G = (V,E),
where V is a set of vertices and E is a set of edges. Each vertex v
represents a geographical area, and the directed edge e indicates a
transition relationship, including travel frequency and travel time.
Given the constructed regions R, and the population trajectories,

we utilize these population movements traversing the regions to
derive edge connections and information within regions. For each
trajectory traversing the region, we infer the shortest path between
any two consecutive points of the trajectory by virtual bidirected
edges in the region, and the travel time of each edge is estimated
by the median of all the travel times of the edge. In addition, the
travel frequency of each edge is able to be estimated by recording
the number of traversing trajectories. Similarly, we can also gener-
ate edges between regions: if some trajectories traversers from one
region to another region, the edges is constructed between the two
regions, and its edge information is estimated by the same methods
as previous discussions.

4.2 Urban Mobility Model Learning
Based on the constructed urban mobility graph, the prediction

model is able to be developed by using the Markov Decision Pro-
cess (MDPs) [16]. MDPs provide a natural framework for repre-
senting sequential decision making, such as movements through
various of urban areas. In MDP theory, the agent takes as sequence
of actions (a ∈ A), which transition between states (s ∈ S) and
incur and action-based cost (c(a) ∈ �). The agent is trying to
minimize the sum of costs while reaching some destination, and
the sequence of action is called a path ζ. For MDPs, a set of fea-
tures (fa ∈ �) characterize each action, and the cost of the action
is a linear function of these features parameterized by a cost weight
vector (φ ∈ �). Path feature, fζ are the sum of the features of
actions in the path:

∑
a∈ζ fa. Thus, the cost weight applied to the

path features is:

cost(ζ|φ) =
∑

a∈ζ

φ
�
fa = φ

�
fζ (7)

In our problem, the population mobility graph provide us a deter-
ministic MDP, the urban region (nodes) is able to be seem as state,
the edge is the action, and the path is the people’s movements after
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the earthquake. These movements are parameterized by their path
feature fζ . For instance, a person’s movements can be described by:
travel through region A (dens = 0.37, type = residential) to re-
gion B (dens = 0.58, type = commercial), and finally stayed
in region C (dens = 0.75, type = administrative) with route 1
(frq = 0.37, time = 0.58) (A → B) and route 2 (frq = 0.29,
time = 0.62)(B → C), where dens is the region population den-
sity, type the region types (e.g. residential, commercial and etc.),
frq the travel frequency of the route, time is the travel time of
the route, and etc. Hence, we need to utilize all the population
trajectories to train a MDPs model that is able to optimally demon-
strate these people’s behavior after the earthquake. Obviously, this
is an Inverse Reinforcement Learning problem. In this study, we
utilize the Maximum Entropy Inverse Reinforcement Learning al-
gorithm [17, 18] to train the overall predictive model. With this
training model, the people’s movement or behaviors during some
future emergency situations is able to be easily simulated or pre-
dicted [2, 15].

4.3 Prediction of Human Mobility
Given the predicted places where individual person will go, its

current location after the disasters and the learnt urban mobility
models, we can easily predict human movements by performing
the Markov model route planning. In our study, we assume that
people usually will find a safe and fast route (e.g. high frequency
visited route and low travel time) for evacuation after the disas-
ters. Hence, we employ the route planning using the destination-
conditioned Markov Model [19]. This model recommends the most
probable route satisfying origin and destination constraints. Lastly,
we can obtain predicted route for a specific person (as shown in
Figure 8-c,f).

5. EXPERIMENTAL RESULTS
In this section, we present extensive experimental results and

evaluation of our approach for prediction of human behavior and
their mobility.

5.1 Data Pre-processing and Experimental Setup
In our experiments, we focused on predicting population be-

haviors and their movements in Fukushima, Miyagi, Iwate pre-
fectures and the Greater Tokyo Area. The three prefectures are
the major disaster areas of the Great East Japan Earthquake and
Fukushima nuclear accident, and the Greater Tokyo Area is the
largest metropolitan area in the world which is as well highly im-
pacted by this event. We selected the person who had more than
3,000 GPS records during 20 days after the earthquake for eval-
uation, and the total number of analyzed persons was more than
130,000. We utilized the GPS records of these persons in several
months before the earthquake (1st, August 2010 to 11st, March
2011) and 20 days data after the earthquake to compute distribution
of geographic location for individual people, and discovered their
important places. Meanwhile, we randomly selected 80% of their
GPS trajectories after the earthquake to train the behavior model
for individual people, and the urban mobility graph as well as MDP
model for the whole urban areas. We used the remaining 20% data
for testing and evaluation.

5.2 Visualization of Results
Figure 8 shows the visualization of our prediction results. Given

the persons’ current observed movements (blue lines), and its im-
portant places, our approach predicted its possible destination as
the red circle (Fig.8-a,d). Meanwhile, given the learnt urban mobil-
ity graph (Fig.8-b,e), persons’ possible movements were predicted

as the bold and colorful lines (Fig.8-c,f), and its actual movements
were shown in the white lines. The first row shows the example re-
sults of a person in the Greater Tokyo Area, our approach predicted
its possible movements at next four hours. The second row shows
the person’s case in Fukushima prefecture, and our model predicted
its possible movements at next one day.

5.3 Evaluation of Behavior Prediction
Evaluation metrics: To evaluate the performance of different

predictive model, we followed the work [1], and used the following
evaluation metrics. (1) Predictive accuracy: This metric measures
the overall accuracy of different predictive models, i.e., given the
time of day of GPS trajectories in the test set, how accurately can
each model predict the exact place where the people will go. For
instance, accuracy of 0.7 means that 70% of the time the model
correctly predicts the exactly places where people will go. (2) Log-
likelihood: This metric measures the average log-likelihood of the
GPS trajectories in the test set, which is able to measure how well
the test set fits the model. (3) Expected distance error: This met-
ric can be considered a soft version of predictive accuracy in that
it does not insist on predicting the exact places, and it takes into
account the spatial proximity of predictions to actual destination.
For more details and definition on this metric, please refer [1].
Baseline models: We considered three non-trivial baseline mod-

els for comparison. (1)Most Frequented Location Model (MF): For
every hour of the day, this model predicts the most likely (most fre-
quent visited) place of a particular people. Despite its simplicity,
this model is very strong baseline. Lu et al. [3] also used this model
to predict population mobility after the 2010 Haitian earthquake.
(2) Gaussian Model (GM): This model has been proposed by Gon-
zales et al. [20], and it models human movements as a stochastic
process centered around a single point. This model is static in time
and captures the scale of a person’s movements more than any-
thing else. (3) Periodic Mobility Model (PMM): This model is built
on the intuition that the majority of human movement is based on
periodic movement between a small set of locations. As the state-
of-the-art methods, it has been proposed by Cho et al. [1], which is
able to predict the locations and dynamics of future human move-
ments.
Performance evaluation: We compared the performance of our

model with the performance of the baselines, and Figure 9 shows
their performance. From this figure, we can see that our approach
obtained a much better performance than the other competing meth-
ods on our dataset. In addition, we can see that: on the first 3
days after the earthquake, the performance of PMM for people in
the Greater Tokyo Area is approximate to ours (Fig.9-a), but our
method outperforms PMMmuch at other time. A possible explana-
tion is that: on the first 3 days after the earthquake, many people’s
mobility in the Greater Tokyo Area was same to their mobility dur-
ing normal times (e.g. working at daytime and go home at night).
But at the following days, people began to more fully understand
the seriousness of the Fukushima nuclear accident, and many of
them chose to evacuate to other places. Obviously, our approach is
powerful for predicting human disaster behaviors and emergency
mobility than these competing methods that are used for predicting
human mobility during normal times.

5.4 Evaluation of Mobility Prediction
To evaluate the accuracy of the predictive paths of people, we

used three different metrics discussed in [18]. The first compares
the model’s most likely path estimate with the actual demonstrated
path and evaluates the amount of route distance shared. The sec-
ond shows what percentage of the testing paths match at least 90%
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Figure 8: Visualization of the results. This figure shows our prediction results of human behaviors and their possible movements.
Given the persons’ current observed movements (blue lines in Fig.a,d), and its important places (blue and orange circles), the possible
destinations are predicted as the red circle (Fig.a,d). Meanwhile, given the learnt urban mobility graph (Fig.b,e), persons’ possible
movements are predicted as the bold and colorful lines (Fig.c,f), and its actual movements are shown in the white lines (Fig.c,f). The
first row shows the example results of a person in the Greater Tokyo Area, and our approach predicted its possible movements at
next four hours. The second row shows the person’s case in Fukushima prefecture, and our model predicted its possible movements
at next one day. Note that the edge color in (Fig.b,e) indicates the edge parameters of urban human mobility graph. Here, it shows
the travel frequency after the earthquake, the warmer one means the higher travel frequency; and this value is normalized from 0 to
1. In addition, the color of predicted trajectories (c,f) shows the probability which is normalized from 0 to 1. The warmer one means
the higher probability.

(distance) with the model’s predicted path. The final metric mea-
sures the average log probability of paths in the training set under
the given model. Meanwhile, we chose the approach developed by
Song et al. [15] as the baseline model. This approach also uses
the population mobility graph to predict possible population move-
ments after large-scale disaster, but it does not take into account the
important places of people and some important disaster states.
Table 1 shows the performance of our method and method of

Song et al. [15]. From this table, we can see that our method
outperforms method of Song et al. [15] by 7.46% to 11.08%.

6. RELATED WORK
Recently, a number of studies on human mobility patterns during

disasters have been proposed [21, 22], mainly focusing on small-
scale and short-term emergencies (e.g. crowd panics and fires).
However, research on the dynamics of population movements on a
national scale during large-scale disasters (e.g. earthquakes, tsunamis,
and hurricanes) is very limited [3], likely the result of difficulties
in collecting representative longitudinal data in places where in-
frastructure and social order have collapsed [23, 24] and where
study populations are moving across vast geographical areas [3].
In contrast, auto-mobile sensor data offer a new way to circum-
vent methodological problems of earlier research because they of-
fer high temporal and spatial resolution are instantaneously avail-
able, have no interview bias, and provide longitudinal data for very

large populations [25, 20, 3, 23, 26, 27]. Meanwhile, human mo-
bility or trajectory data mining [28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42] have become a very hot topic in various
research fields. Zheng et al. [38] aim to mine interesting loca-
tions and travel sequences from GPS trajectories. Cho et al. [1]
propose a periodic mobility model (PMM) for predicting dynamics
of future human movements by using check-in data. Ye et al. [7]
propose a HMM-based human behavior model to predict human
activity from check-in data. Yuan et al. [42] propose a graph-based
model for population mobility summarization.
More Recently, Lu et al. [3] collected data from 1.9 million

mobile users in Haiti to analyze population displacement after the
2010 Haitian earthquake, and concluded that population movements
during disasters may be significantly more predictable than previ-
ously thought. Song et al. [2] collected data from 1.6 million GPS
users in Japan to mine and modeling population evacuations dur-
ing the 2011 Great East Japan Earthquake and Fukushima nuclear
accident, and demonstrated that the prediction of large population
movements after large-scale disaster was very possible. However,
due to the lack of a powerful human behavior model that is able to
fully depict how different disaster factors will influence population
mobility patterns, they are difficult to accurately predict behavior or
mobility of individual person. Thus, in this study, we firstly try to
develop a concise human behavior model for accurately predicting
human mobility after large-scale disaster.
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Figure 9: Evaluation of behavior prediction. This figure shows the performance evaluation of four methods with three different
evaluation metrics. The first row shows the evaluation of people in the Greater Tokyo Area, and the second row shows the case of
people in Fukushima, Miyagi, Iwate prefectures.

Table 1: Evaluation of Mobility Prediction
Algorithm Matching 90% Matching Log-Prob

Our Method (the Greater Tokyo Area) 80.68% 58.73% -6.53
Method [15] (the Greater Tokyo Area) 72.76% 51.27% -7.15
Our Method (Other three prefectures) 83.39% 63.36% -5.97
Method [15] (Other three prefectures) 73.28% 52.28% -7.33

7. CONCLUSION
In this paper, we build up a large human mobility database and

several different datasets to capture and analyze human behavior
and their mobility after the Great East Japan Earthquake and Fukushima
nuclear accident. In addition, we develop a model of human behav-
ior that takes into account different disaster factors for accurately
predicting their behavior and mobility. The experimental results
and validations demonstrate the efficiency of our behavior model,
and it obtains a much better performance than previous approaches.
We note several limitations within our study. The population

mobility database used is constructed frommobile devices and does
not incorporate data from some representative portions of the popu-
lation (i.e. people who do not own mobile devices or do not register
for GPS service can not be incorporated into this study). Addition-
ally, data are slightly biased towards younger age groups who are
more likely to own GPS-based equipment than older age groups.
However, we are confident that the data, which offers movement
behaviors for the approximately 1.6 million people included in the
database, are reflective of general movement patterns in the country
following the composite disaster. A second limitation of our study
is related to the difficulty in extrapolating movement patterns pre-
dicted by our predictive model for use in places outside of Japan or
non-affected places by this disaster.
For future work, this research can be extended and improved in

the followings: at present, the learnt behavior model is only able
to applied to a specific person (learnt with its movements after dis-
aster). In the future, we try to extend our behavior model into a
general one by using transfer learning technology.
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