
Active Semi-Supervised Learning Using Sampling Theory
for Graph Signals

Akshay Gadde, Aamir Anis and Antonio Ortega
Department of Electrical Engineering

University of Southern California, Los Angeles
agadde@usc.edu, aanis@usc.edu, ortega@sipi.usc.edu

ABSTRACT
We consider the problem of offline, pool-based active semi-
supervised learning on graphs. This problem is important
when the labeled data is scarce and expensive whereas un-
labeled data is easily available. The data points are repre-
sented by the vertices of an undirected graph with the sim-
ilarity between them captured by the edge weights. Given
a target number of nodes to label, the goal is to choose
those nodes that are most informative and then predict the
unknown labels. We propose a novel framework for this
problem based on our recent results on sampling theory for
graph signals. A graph signal is a real-valued function de-
fined on each node of the graph. A notion of frequency for
such signals can be defined using the spectrum of the graph
Laplacian matrix. The sampling theory for graph signals
aims to extend the traditional Nyquist-Shannon sampling
theory by allowing us to identify the class of graph signals
that can be reconstructed from their values on a subset of
vertices. This approach allows us to define a criterion for ac-
tive learning based on sampling set selection which aims at
maximizing the frequency of the signals that can be recon-
structed from their samples on the set. Experiments show
the effectiveness of our method.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.5.3 [Pattern Recognition]:
Clustering—Algorithms

Keywords
Active semi-supervised learning; Graph signal processing;
Sampling theory; Graph signal filtering
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1. INTRODUCTION
In many real-life machine learning tasks, labeled data is

scarce whereas unlabeled data is easily available. Active
semi-supervised learning is an effective approach for such
scenarios. A semi-supervised learning technique must not
only learn from the labeled data but also from the inherent
clustering present in the unlabeled data [29]. Further, when
the labeling is expensive, it is better to let the learner choose
the data points to be labeled so that it can pick the most
informative and representative labels. Thus, in an active
learning scenario, the goal is to achieve the maximum gain
in terms of learning ability for a given, and small, number
of label queries. In this paper, we propose a novel approach
to active semi-supervised learning based on recent advances
in sampling theory for graph signals.

Active learning has been studied in different problem sce-
narios such as online stream-based sampling, adaptive sam-
pling etc. (see [23] for a review). We focus on the problem
of pool-based batch-mode active semi-supervised learning,
where there is a large static collection of unlabeled data from
which a very small percentage of data points have to be se-
lected in order to be labeled. Batch operation (i.e., selecting
a set of data points to be labeled) is more realistic in scenar-
ios such as crowdsourcing where it would not be practical
to submit for labeling one data point at a time. Further, in
this paper we focus on the problem of optimizing batches of
any size without using any label information, which would
be the case when selecting the first batch of data points to
be labeled. We leave for future work the problem of incor-
porating labeled data, which would allow labels obtained for
the first batch to be used to optimize data point selection
for the second batch, and so on.

Applying a graph perspective to semi-supervised learning
is not new. In a graph-based formulation, the data points
are represented by nodes of a graph and the edges capture
the similarity between the nodes they connect. For example,
the weight on an edge might be a function of the distance
between the two points in the feature space chosen for the
classification task. The membership function of a given class
can be thought of as a “graph signal”, which has a scalar
value at each of the nodes (e.g., 1 or 0 depending on whether
or not the data point belongs to the class). Since features
have been chosen to be meaningful for the classification task,
it is reasonable to expect that nodes that are close together
in the feature space will be likely to have the same label.
Conversely, nodes that are far away in the feature space
are less likely to have the same label. Thus, we expect the
membership function to be smooth on the graph, i.e., moving
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from a node to its neighbors in the graph is unlikely to lead
to changes in the membership. Thus, the semi-supervised
learning problem can be viewed as a problem of interpolating
a smooth graph signal. This view has led to many effective
techniques such as MinCut [4], Gaussian random fields and
harmonic functions [30], local and global consistency [28],
manifold regularization [3] and spectral graph kernels [25].

Active learning has also benefited from this graph based-
view. Many active learning approaches use the graph to
quantify the quality of sampling sets [7, 9, 10]. One method-
ology is to try and pick a subset of nodes which captures
the underlying low-dimensional manifold represented by the
graph. Another is to pick the nodes to be labeled in such a
way that unlabeled nodes are strongly connected to them.
Some methods pick those samples which lead to minimiza-
tion of generalization error bound. We discuss some of these
methods in Section 4.

Many of the semi-supervised methods mentioned above
are global, in the sense that they require inversion or eigen-
decomposition of large matrices associated with the underly-
ing graph. This poses a problem in scalable and distributed
implementation of these algorithms. Most graph-based ac-
tive learning methods suffer from the same problem. An-
other issue with these methods is that they do not give con-
ditions under which the graph signal can be uniquely and
perfectly interpolated from its samples on the chosen subset.

In recent years, there has been a significant amount of
work devoted to the study of graph signal processing. The
focus of this work has been to extend to the context of graph
signals, theoretical results and tools that are well established
in the context of conventional signal processing [24]. In par-
ticular, there have been contributions to the design of graph
wavelets [11], graph filterbanks [17], etc. A key challenge in
graph signal processing is to design localized algorithms that
scale well with graph sizes, i.e., the output at each vertex
should only depend on its local neighborhood.

In this paper we leverage our recent work on graph signal
sampling and interpolation [18, 1]. We show that the newly
developed theoretical results provide a rigorous and unified
framework to select points to be labeled and subsequently
perform semi-supervised learning. Our framework provides
conditions under which a graph signal can be uniquely re-
covered from its values on a subset of vertices. These con-
ditions lead to a powerful greedy algorithm for choosing the
best nodes for labeling. The proposed algorithm is well mo-
tivated through a compelling graph theoretic interpretation.
We give a numerically efficient way to implement the pro-
posed algorithm which makes it scalable. We also give an
effective and efficient semi-supervised learning method that
is closely tied to the label selection algorithm and is theo-
retically well-justified. Both our algorithms are well-suited
for a large-scale distributed implementation. We show that
our method outperforms several state of the art methods by
testing on multiple real datasets.

The rest of the paper is organized as follows. Section 2
reviews our recent work on sampling theory for graph sig-
nals. In Section 3 we apply the framework of sampling the-
ory to derive the proposed active semi-supervised learning
approach. Section 4 summarizes the related prior work. Ex-
periments are presented in Section 5. Finally, we provide
some concluding remarks in Section 6.

2. SAMPLING THEORY FOR
GRAPH SIGNALS

We begin by briefly describing the theory of sampling for
graph signals formulated in our previous work [18, 1].

2.1 Notation
Throughout this paper, we consider simple, connected,

undirected, and weighted graphs G = (V, E) with nodes
numbered from the set V = {1, 2, . . . , N}, and edges E =
{(i, j, wij)}, i, j ∈ V, where (i, j, wij) denotes an edge of
weight wij between nodes i and j, with wii = 0. In the
present context, the weights denote similarity between the
respective nodes. The degree di of a node i is defined as the
sum of the weights of edges connected to node i, and the
degree matrix of the graph is a diagonal matrix defined as
D = diag{d1, d2, . . . , dN}. The adjacency matrix W of the
graph is an N × N matrix with Wij = wij and the com-
binatorial Laplacian matrix is defined as L = D −W. We
shall use the symmetric normalized form of the adjacency
and the Laplacian matrices defined as W = D−1/2WD−1/2

and L = D−1/2LD−1/2 respectively. L is a symmetric pos-
itive semi-definite matrix and has a set of real eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2 and a corresponding orthog-
onal set of eigenvectors denoted as U = {u1,u2, . . . ,uN}.
A subset of nodes of the graph is denoted as a collection of
indices S ⊂ V, with Sc = V \S denoting its complement set.
A restriction of a matrix A to rows in set S1 and columns in
set S2 is denoted by the submatrix AS1,S2 and for the sake
of brevity AS,S = AS . Also, 0 and 1 denote all-zeroes and
all-ones vectors of appropriate sizes.

A graph signal is defined as a scalar-valued discrete map-
ping f : V → R, such that f(i) is the value of the signal on
node i. For ease of notation, it can also be represented as a
vector f ∈ RN with indices corresponding to the node indices
in the graph. In this paper, the signals of interest will be
the membership functions associated with the various labels
of interest in the classification problem. Sampling a graph
signal f onto a subset of nodes S, known as the sampling set,
is realized by retaining the signal’s values on the nodes in S.
The sampled signal is denoted by f(S), which is a vector of
reduced length |S|. In our context, a sampled graph signal
will include the membership information for the data points
that have been labeled.

2.2 Preliminaries
The classical Nyquist-Shannon sampling theorem estab-

lishes an upper limit on the bandwidth of signals that can
be uniquely reconstructed when sampled at a given sam-
pling rate. To have an analogous result in the realm of
graphs, one needs a notion of frequency for graph signals.
Such a spectral interpretation is provided by the eigenval-
ues and eigenvectors of the Laplacian matrix L, similar to
the Fourier transform in traditional signal processing. The
eigenvalues can be thought of as frequencies and indicate
the variation in the eigenvectors: a high eigenvalue implies
higher variation in the corresponding eigenvector [24]. Since
the eigenvectors are orthogonal, they form a basis in RN .
Thus, the Graph Fourier Transform (GFT) of a signal f is
defined as its projection onto the eigenvectors of the graph
Laplacian, i.e. f̃(λi) = 〈f ,ui〉, or more compactly, f̃ = UT f .

In this context, a smooth or low-pass graph signal can
be obtained by forcing high frequency GFT coefficients to
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vanish. More formally, an ω-bandlimited signal on a graph is
defined to have zero GFT coefficients for frequencies above
its bandwidth ω, i.e. its spectral support is restricted to
the set of frequencies [0, ω]. The space of all ω-bandlimited
signals is known as the Paley-Wiener space and is denoted
by PWω(G) [20]. Note that PWω(G) is a subspace of RN .

With the notion of frequency introduced via the GFT,
one can frame an adequate sampling theory for graph signals
using the following ingredients:

P1: Cutoff frequency - For a given subset of nodes S, find
the cut-off frequency ω, such that any f ∈ PWω(G)
can be exactly recovered from its samples f(S).

P2: Optimal sampling set - For a given cut-off frequency
ω, find the the smallest subset of nodes Sopt (i.e. with
minimum |Sopt|) such that all signals f ∈ PWω(G)
can be uniquely recovered from their samples f(Sopt)
on Sopt.

P3: Reconstruction algorithm - Given samples f(S) of a
graph signal f on a subset of nodes S, find the re-
constructed signal values f(Sc) on the complementary
subset Sc.

Note that for regular sampling in the traditional signal pro-
cessing, problems P1 and P2 are reciprocal, i.e., knowing
one automatically leads to the solution of the other. How-
ever, this does not hold for irregular sampling, as in the
case of graph signals. Next, we briefly describe the solution
to each of the problems above, and refer to [18, 1] for the
details.

2.3 P1: Cut-off frequency
Let L2(Sc) denote the space of all graph signals that are

zero everywhere except possibly on the nodes in Sc, i.e.,
∀φ ∈ L2(Sc), φ(S) = 0. Also, let ω(φ) denote the bandwidth
of a graph signal φ, i.e., the value of the maximum non-zero
frequency of that signal. Then the following theorem can be
proved [1]:

Theorem 1 (Sampling Theorem). For a graph G, with
normalized Laplacian L, any signal f ∈ PWω(G) can be per-
fectly recovered from its values on a subset of nodes S ⊂ V
if and only if

ω < ωc(S)
4
= inf
φ∈L2(Sc)

ω(φ) (1)

where ωc(S) is the cut-off frequency.

The theorem leads to a cut-off frequency that is lower than
the minimum bandwidth of any signal in L2(Sc). Intuitively,
a signal φ ∈ L2(Sc) can be added to any input signal f
without affecting its sampled version (since φ is identically
zero for all vertices that are sampled, i.e., those in S). Thus,
if there existed a φ ∈ L2(Sc) such that φ ∈ PWω(G) we
would have that both f and φ + f belong to PWω(G) and
lead to the same set of samples on S. So clearly it would not
be possible to recover them both, and thus sampling of such
signals in PWω(G) would not be possible. The condition in
Theorem 1 ensures that PWω(G) ∩ L2(Sc) = {0} and thus
no such φ exists.

From Theorem 1, finding the maximum cut-off frequency
for a set S requires finding the bandwidth ω(φ∗) of the
smoothest possible signal φ∗ ∈ L2(Sc). A brute-force ap-
proach to this would entail computing the GFT of all sig-
nals in L2(S) and exhaustively searching for φ∗. We instead

devise a computationally efficient way to approximate the
bandwidth of any signal φ for a given integer parameter
k > 0 as follows:

ωk(φ) =

(
φtLkφ

φtφ

)1/k

(2)

We then replace ω(φ) in Theorem 1 by ωk(φ) in the objective
function to obtain our estimated bandwidth:

Ωk(S) = inf
φ∈L2(Sc)

ωk(φ) = inf
φ∈L2(Sc)

(
φtLkφ

φtφ

)1/k

. (3)

Then, the smoothest possible signal φ∗ in L2(Sc) can be
approximated by the minimizer φ∗k in (3). Numerically,
Ωk(S) and φ∗k can be determined from the smallest eigen-
pair (σ1,k, ψ1,k) of the reduced matrix (Lk)Sc :

Ωk(S) = σ1,k, (4)

φ∗k(Sc) = ψ1,k, φ
∗
k(S) = 0. (5)

This approach does not require complete eigen-decomposition
of L and is computationally tractable. One can show that
k controls the accuracy of the cut-off estimate (refer to [1]
for details). As we increase the value of k, Ωk(S) tends to
give a better estimate of the cut-off frequency. Thus, there
is a trade-off between accuracy of the estimate on the one
hand, and complexity and numerical stability on the other
that arise due to the power k in Lk. Moreover, Ωk(S) can
be proven to be always less than the actual cut-off ωc(S),
i.e. the Sampling Theorem still holds for the subset S ex-
cept that the class of recoverable signals is determined to be
narrower as a penalty for the cut-off approximation.

2.4 P2: Sampling set
We now describe the framework for the converse ques-

tion: given a cut-off frequency ωc for PWω(G), what is the
smallest sampling set Sopt so that a signal f ∈ PWω(G) is
uniquely represented by f(Sopt). If Kc represents the num-
ber of eigenvalues of L below ωc, then by dimensionality
considerations |Sopt| ≥ Kc. Also, note that Sopt may not
be unique. Formally, one can use Theorem 1 and relax the
true cut-off ωc(S) by Ωk(S), then Sopt can be found from
the following optimization problem:

Minimize
S

|S| subject to Ωk(S) ≥ ωc (6)

This is a combinatorial problem because we need to compute
Ωk(S) for every possible subset S.

However, this problem can be solved using a greedy heuris-
tic to get an estimate Sest of the optimal sampling set.
Starting with an empty sampling set S (with corresponding
Ωk(S) = 0) we keep adding nodes to S (from Sc) one-by-one
while trying to ensure maximum increase in Ωk(S) at each
step. The hope is that Ωk(S) reaches the target cut-off ωc
with minimum number of node additions to S. To under-
stand which nodes should be included in S, we introduce a
binary relaxation of our cut-off formulation by defining the
following matrix

Mα
k (t)

4
= Lk + α D(t), k ∈ Z+, α > 0, t ∈ RN (7)

where D(t) is a diagonal matrix with t on its diagonal.
Let (λαk (t),xαk (t)) denote the smallest eigen-pair of Mα

k (t).
Then, if 1S : V → {0, 1} denotes the indicator function for
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the subset S (i.e. 1(S) = 1 and 1(Sc) = 0), one has

λαk (1S) = inf
x

(
xtLkx

xtx
+ α

x(S)tx(S)

xtx

)
(8)

Note that the right hand side of the equation above is simply
an unconstrained regularization of the constrained optimiza-
tion problem in (3). When α� 1, the components x(S) are
highly penalized during minimization. Thus, if xαk (1S) is
the minimizer in (8), then [xkα(1S)](S) → 0, i.e. the values
on nodes S tend to be very small. Therefore, for α� 1, we
have

φ∗k ≈ xαk (1S), (Ωk(S))k ≈ λαk (1S) (9)

From the above equation, we observe that the problem of
greedily maximizing Ωk(S) is equivalent to maximizing λαk (1S),
and thus, we simply need to study the variation of λαk (t)
with t, a real-valued vector in RN , at t = 1S . This relax-
ation circumvents the combinatorial nature of our problem
and has been used earlier to study graph partitioning based
on Dirichlet eigenvalues [19]. The gradient of λαk (t) with
respect to t(i) is given by

dλkα(t)

dt(i)

∣∣∣∣
t=1S

= α
(

[xkα(1S)](i)
)2
≈ α(φ∗k(i))2. (10)

This equation forms the basis of our greedy heuristic: start-
ing with an empty S (i.e., 1S = 0), if at each step, we include
the node on which the smoothest signal φ∗k ∈ L2(Sc) has
maximum energy (i.e., 1S(i)← 1, i = arg maxj

[
(φ∗k(j))2

]
),

then the cut-off estimate Ωk(S) tends to increase maximally.
While the algorithm in [1] has a goal of finding an S

of smallest possible size that satisfies a target cut-off fre-
quency, we can easily adapt it for our cut-off frequency
maximization-based active learning algorithm. This will be
discussed in detail in Section 3.1.

2.5 P3: Reconstruction
A graph signal f ∈ PWω(G) can be written as a linear

combination eigenvectors of L with eigenvalues less than ω,
i.e., f = UV,Kα where K is the index set of those eigenvec-
tors and α is a vector containing the corresponding GFT
coefficients. When the unique recovery conditions of The-
orem 1 are satisfied, α and the signal f , can be recovered
from its subsampled version f(S) by solving the following
least squares problem:

f(S) = US,Kα (11)

⇒ α = U+
S,Kf(S). (12)

Note that if the original signal f is not bandlimited, i.e.,
f /∈ PWω(G), then the least squares solution corresponds to
an approximation of f in PWω(G) (in l2 sense).

The least squares solution requires eigen-decomposition
of L which is computationally expensive and may not be
practical for large graphs. We now describe the iterative,
distributed algorithm developed in [18] based on projection
onto convex sets (POCS). The proposed method is similar
to the Papoulis-Gerchberg algorithm [22] in classical signal
processing which is used to reconstruct a bandlimited signal
from irregular samples. The convex sets of interest in this
case are

C1 = {x : DSx = DSf} (13)

C2 = PWω(G), (14)

C1
fdu

C2

f1

C1 ∩ C2f0 f2

f3

Figure 1: Iterative reconstruction using POCS

where DS is the downsampling operator such that DSf =
f(S). The unique solution f to the least squares problem
satisfies the following two constraints: (1) the signal equals
the known values on the sampling set (i.e., f ∈ C1), (2) the
signal is ω-bandlimited, where ω is computed using (4) (i.e.,
f ∈ C2). The projector for C2 is Pω : RN → PWω(G) which
is a low-pass graph filter such that

Pωx ∈ PWω(G) ∀ x ∈ RN (15)

Pω can be written in graph spectral domain as Pω = H(L) =∑N
i=1 h(λi)uiu

t
i where

h(λ) =

{
1, if λ < ω
0, if λ ≥ ω (16)

We define the projection operator for C1 as PS : RN → C1

which replaces the samples on S by the known values.

PSx = x + Dt
S(f(S)−DSx). (17)

With this notation the proposed iterative algorithm can be
written as:

f0 = Pω(Dt
Sf(S))

fi+1 = PωPSfi (18)

At each iteration the algorithm resets the signal samples on
S to the actual given samples and then projects the signal
onto the low-pass space PWω(G). Figure 1 depicts this pro-
cedure graphically. It can be shown that T = PωPS is a
non-expansive and asymptotically regular operator. Hence,
the iterations in (18) converge to the unique point f ∈
C1 ∩ C2 which is the desired solution.

The low pass filter Pω above is a spectral graph filter
with an ideal brick-wall type spectral response. Thus, the
exact computation of Pω would require knowledge of the
GFT, which we would like to avoid due to high computa-
tional complexity for large graphs. However, it is possible to
approximate the ideal filtering operation as a matrix polyno-
mial in terms of L, that can be implemented efficiently using
only matrix vector products. Thus we replace Pω in (18)
with an approximate low pass filter Ppoly

ω given by:

Ppoly
ω =

N∑
i=1

(
p∑
j=0

ajλ
j
i

)
uiu

t
i =

p∑
j=0

ajLj (19)

We specifically use the truncated Chebychev polynomial ex-
pansion of any spectral kernel h(λ), as proposed in [11], in
our experiments. It is easy to show that an operator which
is a p-degree polynomial in L is p-hop localized on the graph
and can be implemented in a distributed fashion. In order
to ensure that the Chebyshev polynomial approximation is
good, we first approximate the ideal spectral kernel by a
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Figure 2: Spectral response of an approximate polynomial
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smooth, continuous sigmoid-like function (see Figure 2)

h′(λ) =
1

(1 + exp(α(λ− ω)))
(20)

Due to these approximations in the filter, the reconstructed
signal obtained via POCS is different from the true band-
limited signal. However, in semi-supervised learning appli-
cations we do not expect the signals (i.e., class membership
functions) to be exactly bandlimited anyway. So using a
filter with slowly decaying spectral response ends up im-
proving the classification accuracy slightly.

3. GRAPH SAMPLING BASED ACTIVE
SEMI-SUPERVISED LEARNING

We now relate the sampling theory developed for graph
signals to active semi-supervised learning and propose our
solution to the problem. As noted earlier, if the edges of
the graph represent similarity between the nodes, then a
graph signal defined using the membership functions of a
particular class tends to be smooth. This is illustrated ex-
perimentally in Figure 3. In Section 2.3 we showed how to
estimate the sampling cut-off frequency for a set of vertices.
In practice, class membership signals are not strictly ban-
dlimited (see Figure 3). Thus we will be approximating a
non-bandlimited signal with one that is bandlimited to the
cut-off frequency of the chosen vertex set. The key observa-
tion in our work is that, even though we cannot recover the
“true” membership signal exactly from its samples, an active
learning approach should aim at selecting the sampling set
with maximum cut-off frequency. This is obviously true since
PWω(G) ⊂ PWω′(G) if ω ≤ ω′ and thus, for any signal, its
best approximation with a signal from PWω′(G) can be no
worse (in terms of l2 error) than its best approximation with
a signal from PWω(G).

In this setting, predicting the labels of the unknown data-
points using the labeled data amounts to reconstructing a
bandlimited graph signal from its values on the sampling
set. Thus, based on the above reasoning the active learning
strategy, given a target number of datapoints to be labeled,
should be to find a set S, with that size, so that the cut-off
frequency of S is maximized.

3.1 Proposed method
Now, we present the details of our method. We target

a multi-class active semi-supervised learning problem with
C classes. The true membership function for class j is de-
noted as fj : V 7→ {0, 1}, where fj(i) = 1 indicates that
node i belongs to class j. These membership functions are
taken to be the graph signals for our setting. The predicted
membership functions for each class take real values and are

Algorithm 1 Greedy heuristic for finding S∗L
Input: G = {V, E}, L, target size m, parameter k ∈ Z+.
Initialize: S = {∅}.
1: while |S| ≤ m do
2: For S, compute the smoothest signal φ∗k ∈ L2(Sc)

using (4) and (5).
3: v ← arg maxi

[
(φ∗k(i))2

]
.

4: S ← S ∪ v.
5: end while
6: S∗L ← S.

denoted as f̂j : V 7→ R. The predicted label of node i is

given by arg maxj f̂j(i). We denote the labeled set as SL
and the unlabeled set as SU = V \ SL. Then, our solution
to the active semi-supervised learning task can be formally
summarized as follows:

1. Given a size m and parameter k, we first find the opti-
mal labeled set S∗L and corresponding cut-off frequency
Ωk(S∗L) as follows:

S∗L = arg max
S:|S|=m

Ωk(S) (21)

We solve this problem in a greedy fashion by adding
nodes to S that maximize the increase in Ωk(S) at each
step (cf. Section 2.4). This procedure is summarized
with Algorithm 1

2. Next, we query the labels of nodes in S∗L.

3. Finally, we determine the predicted membership func-
tions f̂j for each class from fj(S∗L), j = 1, . . . , C using
the POCS iterative method described in Section 2.5,
where S = S∗L and ω = Ωk(S∗L) are used in (13) and
(14) to construct the convex sets.

3.2 Graph Theoretic Interpretation
In this section, we will provide an intuitive interpretation

for our node selection algorithm in terms of connected-ness
among the nodes. To simplify the exposition, we consider
the maximization problem (21) for k = 1:

Ω1(S) = inf
x(S)=0
||x||=1

xtLx (22)

This expression appears more commonly as part of discrete
Dirichlet eigenvalue problems on graphs. Specifically, it is
equal to the Dirichlet energy of the subset Sc [6, 19]. The
sampling set selection problem seeks to identify the subset S
that maximizes this objective function. To give an intuitive
interpretation of our goal, we expand the objective function
for any x with constraint x(S) = 0 as follows:

xtLx =
∑
i∼j

wij

(
xi√
di
− xj√

dj

)2

=
∑
i∼j

i∈S,j∈Sc

wij

(
x2j
dj

)
+
∑
i∼j

i,j∈Sc

wij

(
xi√
di
− xj√

dj

)2

.

(23)

The minimizer in the equation above is the first Dirichlet
eigenvector which is guaranteed to have strictly positive val-
ues on Sc [19]. Therefore, the contribution of the second
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Figure 3: Cumulative distribution of energy in the GFT coefficients of one of the class membership functions pertaining to
the three real-world dataset experiments considered in Section 5. Note that most of the energy is concentrated in the low-pass
region.

term is expected to be negligible as compared to the first
one due to differencing, and we get

xtLx ≈
∑
j∈Sc

(
pj
dj

)
x2j , (24)

where, pj =
∑
i∈S wij is defined as the “partial out-degree”

of node j ∈ Sc, i.e., it is the sum of weights of edges crossing
over to the set S. Therefore, given a current selected S, the
greedy algorithm selects the next node, to be added to S,
that maximizes the increase in

Ω1(S) ≈ inf
||x||=1

∑
j∈Sc

(
pj
dj

)
x2j . (25)

Due to the constraint ||x|| = 1, the expression being mini-
mized is essentially an infimum over a convex combination
of the fractional out-degrees and its value is largely deter-
mined by nodes j ∈ Sc for which pj/dj is small. In other
words, we must worry about those nodes that have a low
ratio of partial degree to the actual degree. Thus, in the
simplest case, our selection algorithm tries to remove those
nodes from the unlabeled set that are weakly connected to
nodes in the labeled set. This makes intuitive sense as, in
the end, most prediction algorithms involve propagation of
labels from the labeled to the unlabeled nodes. If an unla-
beled node is strongly connected to various numerous points,
its label can be assigned with greater confidence.

Note that using a higher power k in the cost function,
i.e., finding Ωk(S) for k > 1 involves xLkx which, loosely
speaking, takes into account higher order interactions be-
tween the nodes while choosing the nodes to label. In a
sense, we expect it to capture the connectivities in a more
global sense, beyond local interactions, taking into account
the underlying manifold structure of the data.

3.3 Complexity
We now comment on the time and space complexity of

our algorithm. The most complex step in the greedy proce-
dure for maximizing Ωk(S) is computing the smallest eigen-
pair of (Lk)Sc . This can be accomplished using an iterative
Rayleigh-quotient minimization based algorithm. Specifi-
cally, the locally-optimal pre-conditioned conjugate gradi-
ent (LOPCG) method [14] is suitable for this approach.
Note that (Lk)Sc can be written as ISc,V .L.L . . .L.IV,Sc ,
hence the eigenvalue computation can be broken into atomic

matrix-vector products: L.x. Typically, the graphs encoun-
tered in learning applications are sparse, leading to efficient
implementations of L.x. If |L| denotes the number of non-
zero elements in L, then the complexity of the matrix-vector
product is O(|L|). The complexity of each eigen-pair com-
putation for (Lk)Sc is then O(k|L|r), where r is a constant
equal to the average number of iterations required for the
LOPCG algorithm (r depends on the spectral properties of
L and is independent of its size |V|). The complexity of the
label selection algorithm then becomes O(k|L|mr), where
m is the number of labels requested.

In the iterative reconstruction algorithm, since we use
polynomial graph filters (Section 2.5), once again the atomic
step is the matrix-vector product L.x. The complexity of
this algorithm can be given as O(|L|pq), where p is the order
of the polynomial used to design the filter and q is the av-
erage number of iterations required for convergence. Again,
both these parameters are independent of |V|. Thus, the
overall complexity of our algorithm is O(|L|(kmr+ pq)). In
addition, our algorithm has major advantages in terms of
space complexity: Since, the atomic operation at each step
is the matrix-vector product L.x, we only need to store L
and a constant number of vectors. Moreover, the structure
of the Laplacian matrix allows one to perform the afore-
mentioned operations in a distributed fashion. This makes
it well-suited for large-scale implementations using software
packages such as GraphLab [16].

3.4 Prediction Error and Number of Labels
As discussed in Section 2.5, given the samples fS of the

true graph signal on a subset of nodes S ⊂ V, its estimate
on Sc is obtained by solving the following problem:

f̂(Sc) = USc,Kα
∗ where, α∗ = arg min

α
‖US,Kα− f(S)‖

(26)
Here, K is the index set of eigenvectors with eigenvalues less
than the cut-off ωc(S). If the true signal f ∈ PWωc(S)(G),
then the prediction is perfect. However, this is not the case
in most problems. The prediction error ‖f − f̂‖ roughly
equals the portion of energy of the true signal in [ωc(S), λN ]
frequency band. By choosing the sampling set S that max-
imizes ωc(S), we try to capture most of the signal energy
and thus, reduce the prediction error.

An important question in the context of active learning is
determining the minimum number of labels required so that

497



the prediction error ‖f − f̂‖ is less that some given tolerance
δ. To find this we first characterize the smoothness γ(f) of
a signal f as

γ(f) = min θ s.t. ‖f −Pθf‖ ≤ δ

The following theorem gives a lower bound on the minimum
of number of labels required in terms of γ(f).

Theorem 2. If f̂ is obtained by solving (26), then the

minimum number of labels l required to satisfy ‖f − f̂‖ ≤ δ
is greater than p, where p is the number of eigenvalues of L
less than γ(f).

Proof. In order for (26) to have a unique solution, US,K
needs to have full column rank, which implies that l = |S| ≥
|K|. Now, for ‖f − f̂‖ ≤ δ to hold the bandwidth of f̂ has to
be at least γ(f), or in other words, |K| ≥ p. This gives us
the desired result as l ≥ |K| ≥ p.

4. RELATED WORK
Different frameworks have been proposed for pool-based

batch-mode active semi-supervised learning including opti-
mal experiment design [27, 26], generalization error bound
minimization [7, 8] and submodular optimization [9, 10, 12].
We now point out connections between some of the graph
based approaches in the above categories and our graph sig-
nal sampling theory based framework.

The notion of frequency given by GFT is closely related
to Laplacian eigenmaps which is a well known dimensional-
ity reduction technique [2]. GFT can be viewed as a way
of measuring the signal variation on the manifold repre-
sented by Laplacian eigenmaps. By selecting nodes that
maximize the bandwidth of the space of recoverable sig-
nals, we are trying to capture as many dimensions of the
manifold structure of the data with as few samples as pos-
sible. A related active learning method proposed by Zhang
et al. [27] uses optimal experiment design while consider-
ing local structure of the data in a way which is similar to
local linear embedding (LLE) for approximating the under-
lying low-dimensional manifold [21]. This approach tries to
choose the most representative data points from which one
can recover the whole data set by local linear reconstruction.
It is interesting to note that under certain conditions LLE
and Laplacian eigenmaps are equivalent [15].

Gu and Han [7] propose a method based on minimizing the
generalization error bound for learning with local and global
consistency (LLGC) [28]. Their formulation boils down to
choosing subset S that minimizes Tr

(
(µLS + I)−2

)
. To re-

late this formulation to our proposed method, note that

Tr
(
(µLS + I)−2) =

∑
i

1

(ζi + 1)2
≤ |S|

(ζ1 + 1)2

where, ζ1 ≤ . . . ≤ ζ|S| denote the eigenvalues of LS . Loosely
speaking, minimizing the above objective function is equiv-
alent to maximizing the smallest eigenvalue ζ1 of LS . So,
this method essentially tries to ensure that the labeled set is
well-connected to the unlabeled set whereas our method en-
sures that the unlabeled set is well-connected to the labeled
set (cf. Section 3.2).

Submodular functions have been used for active semi-
supervised learning on graphs by Guillory and Bilmes [10,
9]. In this work, the subset of nodes S ⊂ V is chosen to

maximize

Ψ(S) = min
T⊆V\S:T 6=∅

Γ(T )

|T | , (27)

where Γ(T ) denotes the cut function
∑
i∈T,j /∈T wij . Intu-

itively, maximizing Ψ(S) ensures that no subset of unla-
beled nodes is weakly connected to the labeled set S. This
agrees with the graph theoretic interpretation of our method
given in Section 3.2. They also provide a bound on the
prediction error in terms Ψ(S) and a smoothness function
Φ(f) =

∑
i,j wij |fi − fj |. This bound gives a theoretical

justification for semi-supervised learning using min-cuts [4].
It also motivates a graph partitioning-based active learning
heuristic [9] which says that to select l nodes to label, the
graph should be partitioned into l clusters and one node
should be picked at random from each cluster.

5. EXPERIMENTS
We compare our method against three active semi-supervised

learning approaches mentioned in the previous section, namely,
LLR [27], LLGC error bound minimization [7], METIS graph
partitioning based heuristic [9] and Ψ-max [10]. The details
of implementation of each method are as follows:

1. The LLR approach [27] allows any prediction method
once the samples to be queried are chosen. We use
the Laplacian regularized least squares (LapRLS) [3]
method for prediction (used in [27]).

2. In our implementation of the LLGC bound method [7],
we fix the parameter µ to 0.01. Since this approach is
based on minimizing the generalization error bound for
LLGC, we use the same method for prediction with the
queried samples. 1

3. The normalized cut based active learning heuristic of
Guillory and Bilmes [9] is implemented using the METIS
graph partitioning package [13]. This algorithm chooses
a random node to label from each partition, so we av-
erage the error rates over a 100 trials.

In the implementation of our proposed method, we use ap-
proximate polynomial filters of degree 10 with α = 8. The
parameter k in our method is fixed as 8 for these exper-
iments. Its effect on classification accuracy is studied in
Section 5.4. In addition to the above methods, we also com-
pare with the random sampling strategy. We use LapRLS
to predict the unknown labels from the randomly queried
samples and report the average error rates over 30 trials.

To intuitively demonstrate the effectiveness of our method,
we first test it on a two circles toy data as shown in Fig-
ure 4. The data is comprised of 200 nodes from which
we would like to select 8 nodes to query. We construct a
weighted sparse graph by connecting each node to its 10
nearest neighbors while ensuring that the connections are
symmetric. The edge weights are computed with the Gaus-

sian kernel exp
(
− ||xi−xj ||2

2σ2

)
(except in the case of Ψ-max

where the graph is unweighted). It can be seen from Figure 4
that all the methods choose 4 points from each of the two
circles. Additionally, the proposed approach selects evenly

1In our experiments, we observed that the greedy algorithm
given in [7] did not converge to a good solution. So we use
Monte-Carlo simulations to minimize the objective function.
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(a) Ψ-max (b) LLR (c) LLGC Bound (d) Proposed

Figure 4: Toy example comparing the nodes selected using different active learning methods

spaced data points within one circle, while at the same time
maximizing the spacing between the selected data points in
different circles. This is in accordance with the requirement
of choosing points which are most representative of the data.

We tested our method in three application scenarios: Hand-
written digit recognition, text classification and spoken let-
ters recognition. In these experiments, we do not compare
with Ψ-max since the method has computational complex-
ity of O(N6) and, to the best of our knowledge, is not scal-
able. Next, we provide the details of each experiment. Both
the datasets and the graph construction procedures used are
typical of what has been used in the literature.

5.1 Handwritten digits classification
In this experiment, we used our proposed active semi-

supervised learning algorithm to perform a classification task
on the USPS handwritten digits dataset2. This dataset con-
sists of 1100 16 × 16 pixel images for each of the digits 0
to 9. We used 100 randomly selected samples for each digit
class to create one instance of our dataset. Thus each in-
stance consists of 1000 feature vectors (100 samples/class ×
10 digit classes) of dimension 256.

The graph is constructed using Gaussian kernel weights

wij = exp
(
− ||xi−xj ||2

2σ2

)
, where xi is the 256-dimensional

feature vector composed of pixel intensity values for each
image. The parameter σ is chosen to be 1/3-rd of the aver-
age distance to the K-th nearest neighbor for all datapoints.
This heuristic has been suggested in [5]. We fix K = 10.
Additionally, the graph is sparsified approximately by re-
stricting the connectivity of each datapoint to its K nearest
neighbors, i.e., an edge between nodes i and j is removed
unless node i is among the K-nearest neighbors of node j
or vice-versa. This results in a symmetric adjacency ma-
trix for the graph. Using the graph constructed, we select
the points to label and report prediction error after recon-
struction using our semi-supervised learning algorithm. We
repeat the classification over 10 such instances of the dataset
and report the average classification error. The results are
illustrated in Figure (5a). We observe that our proposed
method outperforms the others. A notable feature of our
method is that we show very good classification results even
for very few labeled samples. This is due to our inherent
criterion for active learning that tries to select those points
that maximize the recoverable dimensions of the underlying
data manifold.

2http://www.cs.nyu.edu/~roweis/data.html

5.2 Text classification
For our text classification example, we use the 20 news-

groups dataset3. It contains around 20,000 documents, par-
titioned in 20 different newsgroups. For our experiment, we
consider 10 groups of documents, namely, {comp.graphics,
comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.
sys.mac.hardware, rec.autos, rec.motorcycles, sci.crypt, sci.
electronics, sci.med, sci.space}, and randomly choose 100
datapoints from each group. We generate 10 such instances
of 1000 data points each and report the average errors. We
clean the dataset by removing the words that appear in fewer
than 20 documents and then select only the 3000 most fre-
quent ones from the remaining words. To form the feature
vectors representing the documents, we use the tf-idf statis-
tic of these words. The tf-idf statistic captures the relative
importance of a word in a document in a corpus:

tf-idf = (1 + log(tf))× log

(
N

idf

)
(28)

where, tf is the frequency of a word in a document, idf is the
number of documents in which the word appears and N is
the total number of documents. Thus, we get 1000 feature
vectors in 3000 dimensional space. To form the graph of doc-
uments, we compute the pairwise cosine similarity between
their feature vectors. Each node is connected to the 10 nodes
that are most similar to it and the resultant graph is then
symmetrized. The classification results in Figure (5b) show
that our method performs very well compared to others.
However, the absolute error rates are not very good. This
is due to the high similarity between different newsgroups
which makes the problem inherently difficult.

5.3 Spoken letters classification
For the spoken letters classification example, we consid-

ered the Isolet dataset4. It consists of letters of the English
alphabet spoken in isolation twice by 150 different subjects.
The speakers are grouped into 5 sets of 30 speakers each,
with the groups referred to as isolet1 through isolet5. Each
alphabet utterance has been pre-processed beforehand to
create a 617-dimensional feature vector.

For this experiment, we considered the task of active semi-
supervised classification of utterances into the 26 alphabet
categories. To form an instance of the dataset, 60 utter-
ances are randomly selected out of 300 for each alphabet.
Thus, each instance consists of 60 × 26 = 1560 datapoints

3http://qwone.com/~jason/20Newsgroups/
4http://archive.ics.uci.edu/ml/datasets/ISOLET
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Figure 5: Comparison of active semi-supervised learning methods on real datasets. Plots show the average classification
accuracies for different percentages of labeled data.

of dimension 617. As in the hand-written digits classifica-
tion problem, the graph is constructed using Gaussian ker-
nel weights between nodes, with σ taken as 1/3-rd of the
average distance to the K-th nearest neighbor for each dat-
apoint. We select K = 10 for our experiment. Sparsification
of the graph is carried out approximately using K-nearest
neighbor criterion. With the constructed graph, we perform
active semi-supervised learning using all the methods. The
experiment is repeated over 10 instances of the dataset and
average prediction error is reported in Figure (5c). Note that
we start with 2% labeled points to ensure that each method
gets a fair chance of selecting at least one point to label
from each of the 26 classes. We observe that our method
outperforms the others.

5.4 Effect of parameter k
To study the effect of parameter k in the proposed method

on classification accuracy we repeat the above experiments
for different values of k. Figure 6 shows the results. For
the USPS and Isolet datasets, the classification accuracies
remain largely unchanged for different values of k. For the
20 Newsgroups dataset, a slight improvement in classifica-
tion accuracies is observed for higher values of k. This result
agrees with the distribution of GFT coefficients of the class
membership functions in each dataset shown in Figure 3. In
USPS and Isolet datasets, most of the energy of the graph
signal (i.e., the class membership functions) is contained in
the first few frequencies. Thus, increasing the value of k,
so that a better estimate of cut-off frequency is maximized
during the choice of sampling set, is not necessary. In other
words, maximizing a loose estimate of the cut-off frequency
is sufficient. However, the membership functions in the 20
Newsgroups dataset have a significant fraction of their en-
ergy spread over high frequencies as shown in Figure 3. Due
to this, maximizing a tighter estimate of the the cut-off al-
lows the sampling set selection algorithm to pick nodes that
capture more signal energy, resulting in higher accuracies.

6. CONCLUSION
In this paper, we introduce a novel framework for batch

mode active semi-supervised learning based on sampling the-
ory for graph signals. The proposed active learning frame-
work aims to select the subset nodes which maximizes the di-
mension of the space of uniquely recoverable signals. In the
context of sampling theory, this translates to selecting the

subset with the maximum cut-off frequency. This interpreta-
tion leads to a very efficient greedy algorithm. We provide
intuition about how the method tries to choose the nodes
which are most representative of the data. We also present
an efficient semi-supervised learning method based on ban-
dlimited interpolation. We show, through experiments on
real data, that our two algorithms, in conjunction, perform
very well compared to state of the art methods.

In the future, we would like to provide bounds on the pre-
diction error of the proposed method (when the true signal is
not exactly bandlimited) in terms of signal smoothness and
the cut-off frequency. We also hope to have tighter bounds
on the number of labels required for desired prediction ac-
curacy. It would be useful to consider an extension of the
proposed framework to a partially batch setting so that we
can incorporate the label information from previous batches
to improve the choice of sampling sets.
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