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ABSTRACT
Most semi-supervised learning models propagate the labels over
the Laplacian graph, where the graph should be built beforehand.
However, the computational cost of constructing the Laplacian graph
matrix is very high. On the other hand, when we do classification,
data points lying around the decision boundary (boundary points)
are noisy for learning the correct classifier and deteriorate the clas-
sification performance. To address these two challenges, in this
paper, we propose an adaptive semi-supervised learning model.
Different from previous semi-supervised learning approaches, our
new model needn’t construct the graph Laplacian matrix. Thus,
our method avoids the huge computational cost required by pre-
vious methods, and achieves a computational complexity linear to
the number of data points. Therefore, our method is scalable to
large-scale data. Moreover, the proposed model adaptively sup-
presses the weights of boundary points, such that our new model
is robust to the boundary points. An efficient algorithm is derived
to alternatively optimize the model parameter and class probability
distribution of the unlabeled data, such that the induction of clas-
sifier and the transduction of labels are adaptively unified into one
framework. Extensive experimental results on six real-world data
sets show that the proposed semi-supervised learning model out-
performs other related methods in most cases.
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1. INTRODUCTION
In most data mining applications, the data are generally abun-

dant, however, labeled data is often scarce. Labeling data is a te-
dious work, and costs huge amount of time and money. In this
situation, how to fully utilize the abundant unlabeled data becomes
very important.

Semi-supervised learning is a learning paradigm that suits for
this situation, where both the labeled data and unlabeled data are
used to learn the prediction model. There are two types of semi-
supervised learning models: transductive learning models and in-
ductive learning models. Transductive semi-supervised learning
methods learn the labels of unlabeled data by propagating the la-
bel from labeled data to unlabeled data. The drawback of this kind
of methods is that they can not be used for out-of-sample testing
(i.e., new testing data from not included in the unlabeled data). So
when a new testing data arrives, such methods need to merge those
new testing data into the previous data we have, and then recon-
struct the whole model based on the merged data. Obviously, such
a way is very inefficient for the testing of new out-of-sample data.

Inductive semi-supervised learning methods learn a classifier us-
ing both labeled data and unlabeled data. Then the learned classifier
can be used for the classification of both unlabeled data using for
training and also new out-of-sample testing data. In view of the
convenience of out-of-sample testing, inductive semi-supervised
learning methods are more attractive in practice.

Many graph based learning approaches have been proposed in
recent years [1, 3, 5, 6, 13, 14, 15, 20]. Some of the most repre-
sentative graph based semi-supervised learning models are: local
and global consistency (LGC) [18], random walk (RW) [19], and
gaussian field harmonic function (GFHF) [21], Laplacian regres-
sion [12], and semi-supervised discriminant analysis [2]. All of
these models utilize the Laplacian graph and propagate the labels
over the graph. Therefore, in order to use these models, an n × n
graph Laplacian matrix has to be built beforehand.

However, the computational cost of building the n × n graph
Laplacian matrix is at least O(n2). Such computational cost is
daunting in the circumstance of large-scale data, where the number
of data can easily reach billion level. So such graph based algo-
rithms are not scalable to large-scale data.
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Figure 1: Data samples with boundary points (the black cir-
cles). The red circle point and the blue circle point are the la-
beled data points. All the rest data are unlabeled.

On the other hand, when we do classification, there are many
data points lie around the decision boundary, which we call bound-
ary points in the paper. These data points are very noisy for learn-
ing the correct classifier, and thus will deteriorate the classification
performance of the learned classifier.

To address the above two challenges, a large-scale adaptive semi-
supervised learning model is proposed in this paper. The proposed
semi-supervised learning model has many good characteristics which
will be discussed in detail after we introduce the model.

2. NEW LARGE-SCALE SEMI-SUPERVISED
LEARNING MODEL

2.1 Motivation
Most semi-supervised learning methods are based on graph Lapla-

cian matrix, like in the following works: local and global consis-
tency (LGC) [18], random walk (RW) [19], and gaussian field har-
monic function (GFHF) [21], Laplacian regression [12], and flexi-
ble manifold embedding (FME) [8].

One major drawback of such kind of methods is that the com-
putational cost of constructing the n × n graph Laplacian matrix
is very high, which is at least O(n2). What’s more, if we use the
gaussian kernel to construct the graph, the bandwidth parameter σ
should be tuned carefully in order to achieve good performance.
This makes the Laplacian graph based semi-supervised learning
methods impractical to solve large-scale applications in which the
number of samples n is often more than billion. If we can develop
semi-supervised learning methods without constructing the graph
Laplacian matrix, most of the computational cost can be avoided,
such that the method can be applied to large-scale data.

On the other hand, when we do classification, there exist many
bad data points that lie around the decision boundary. Consider the
situation demonstrated in Figure 1. The red circle point and the
blue circle point are the labeled data points. Considering the distri-
bution of the data, the ideal decision boundary to classify these data
points into two classes should be close to the vertical line x = 0.
However, there are many data points lie around the decision bound-
ary (the black circles in the figure). We call these points boundary
points in the following. These boundary points will blur the clear
distribution of the whole data, and are very noisy for learning the

correct classifier. If these boundary points dominated the loss func-
tion, the learned classifier maybe distorted far way from the ground
truth. In the example of Figure 1, if we consider too much of these
boundary points, the learned classifier may become a horizontal
line close to y = 25. If we do not consider these boundary points,
and consider only the remaining clearly classified points, the cor-
rect vertical decision boundary can be easily discovered. There-
fore, in order to learn the correct classifier, boundary points should
be considered less. In fact, boundary points widely existed in all
data sets. Especially when the class number of the data is large,
boundary points existed around every decision boundary of each
two classes. Therefore, it is very important to develop algorithms
that is adaptive to boundary points. By adaptive, we mean that the
algorithm can automatically distinguish the boundary points and
clearly classified points, and pay less attention to boundary points
while learning the classifier.

To address the above two important challenges, in this paper, we
propose a new semi-supervised learning model.

2.2 Adaptive Semi-Supervised Learning
In [7], the label is obtained by the label propagation procedure

and then used in a regression model. Inspired by [7], in this paper,
we propose a new adaptive semi-supervised learning model where
the label matrix Y is used as weights and optimized simultaneously
with W . Our new model aims to solve the following objective
function:

min
W,b,Y

∥∥XT
l W + 1nlb

T − Yl

∥∥2

F
+

n∑
i=1

c∑
k=1

yr
ik

∥∥xT
i W + bT − tTk

∥∥2

F

s.t. ∀i, yik ∈ [0, 1],
c∑

k=1

yik = 1 (1)

where Xl ∈ �d×nl is the labeled data set, nl is the number of
labeled data, d is the number of feature, 1nl is a column vector
of size nl whose elements are all one, W ∈ �d×c is the model
parameter matrix that need to be learned, c is the number of classes,
b ∈ �c×1 is the regression bias, Yl ∈ �nl×c is the label of labeled
data; yik is the probability of the i-th unlabeled data belongs to the
k-th class, which should be in a value between [0,1], Y ∈ �n×c

is the matrix formed by yik, which should also be learned along
with W , n is the number of unlabeled data, xi ∈ �d×1 is the i-th
unlabeled data, tk ∈ �c×1 is a class indicator vector for k-th class,
where the k-th element of tj : tjk = 1, and the rest elements are
zeros. r is an adaptive parameter that need to be tuned, and r ≥ 1.

The first term in the objective function is the total loss of labeled
data, the second term is the loss of unlabeled data, weighted by
the probability distribution matrix Y . There is only one parameter,
i.e. r, in our proposed ASL model. In our further analysis in the
experiment section, we will show that the range of r can be fixed,
and a reasonable interval is suggested.

It is interesting to note that the parameter actually serves for mul-
tiple purposes: from the macro level, r balance the two terms in
the objective function, decides how much unsupervised infor-
mation is used; from the micro level, after r is fixed, the weights
of boundary points will be suppressed to make the model robust
to boundary points. Following are some more detailed analysis
for the conclusion.

From a macro point of view, r serves as a tradeoff between the
first term (supervised part with label information available) and the
second term (unsupervised part without label information). Note
that we do not need another tradeoff parameter before the second
term because r is able to balance the two terms. When r becomes
large, yrik will become small since it is a probability which is defi-
nitely less than 1, thus the weight of the second term become small.
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In the extreme case, when r approaches infinity, the second term
vanishes to zero, so only the first term counts, which means the
objective function reduces to supervised learning.

From a micro point of view, r automatically adjust the impor-
tance (weight: yr

ik in the objective function Eq. (1)) of each data
instance. Consider the i-th data instance: if it is clearly classi-
fied, yik (k = 1, ..., c, the probability for xi belongs to differ-
ent class) will show obvious magnitude difference. For boundary
points, however, yik (k = 1, ..., c) will be more likely equal to one
another. Without loss of generality, assuming a binary classifica-
tion problem, and r = 2. For clearly classified points, yi1 and yi2
would be one large and one small, say yi1 = 0.9 and yi2 = 0.1,
then yr

i1 = 0.92 = 0.81, yri2 = 0.12 = 0.01. Thus, those clear
classified points still have large weights in total and contribute a
lot to the second term in the objective function. For boundary
points, however, yi1 and yi2 would be more likely equal. Assum-
ing yi1 = yi2 = 0.5, then yr

i1 = yr
i2 = 0.52 = 0.25. Thus, those

boundary points will have small weights and contribute much less
to the second term in the objective function. The above analysis is
based on binary classification. Actually, in multi-class problems,
for boundary points, yik (k = 1, ..., c) may tend to be 1

c
. There-

fore, when c becomes larger, yik becomes smaller, and yr
ik will be

much smaller than the case in binary classification.
From the above analysis, we can see that: when r increases,

yr
ik will decrease for both clearly classified points and boundary

points. However, the weights of boundary points are suppressed
much more faster than clearly classified points. In this way, our
model will relatively pay more attention to the clearly classified
points and pay less attention to the boundary points. This makes
our model adaptive and robust to boundary points, therefore, a bet-
ter classifier can be learned.

It is innovative to use the class probability matrix of unlabeled
data to do inductive learning. In our model, the induction of the
classifier W is dependent on the class probability matrix Y of un-
labeled data, and the transduction of labels to unlabeled data is de-
pendent on the classifier W . The two steps are unified together
by simultaneously optimize W and Y . This adaptive procedure
is expected to benefit both the induction of classifier and also the
transduction of labels to unlabeled data. However, in previous in-
ductive semi-supervised learning methods, only the feature matrix
X of unlabeled data is utilized to learn the classifier. And in those
previous methods, an additional step is needed after the model is
learned in order to predict the label of unlabeled data.

We summarize the characteristics of our model as following:
(1) Computational efficient: different from common graph-based

semi-supervised learning methods, our model avoids the computa-
tional expensive step of constructing the graph Laplacian matrix.

(2) Adaptive and robust to boundary points: our model can
adaptively adjust the weights of each data point. Boundary points
will get much smaller weights than other points. This makes our
model pay less attention to boundary points, and thus robust to
boundary points.

(3) Adaptive optimization procedure: we simultaneously op-
timize the model parameter W and the class probability matrix Y
of unlabeled data. This adaptive procedure is expected to benefit
both the induction of classifier and also the transduction of labels
to unlabeled data.

(4) Only one parameter: there is only one parameter to be tuned
in our model, and the single parameter serves for multiple purposes.
A reasonable range of the parameter can be given to facilitate the
tuning procedure.

In the following section, an efficient iterative algorithm will be
derived to solve the proposed objective function.

3. OPTIMIZATION ALGORITHM
In this section, we derive an efficient iterative algorithm that al-

ternatively optimize over the model parameter W, b and the class
probability matrix Y .

(1) When the model parameters W and b are fixed, we solve the
class probability matrix Y . Since the first term becomes a constant,
the objective function is reduced to:

min
Y

n∑
i=1

c∑
k=1

yr
ik

∥∥xT
i W + bT − tTk

∥∥2

2

s.t. ∀i, yik ∈ [0, 1],
c∑

k=1

yik = 1 (2)

Denote pik =
∥∥xT

i W + bT − tTk
∥∥2

2
, Eq. (2) can be written as:

min
Y

n∑
i=1

c∑
k=1

yr
ikpik

s.t. ∀i, yik ∈ [0, 1],
c∑

k=1

yik = 1 (3)

Obviously, Eq. (3) can be decoupled between samples. So it is
equivalent to solving:

min
yi·

c∑
k=1

yr
ikpik

s.t. ∀i, yik ∈ [0, 1],
c∑

k=1

yik = 1 (4)

where yi· represents the i-th row of Y .
When r = 1, obviously, the optimal solution of Eq. (4) is:

yik = 1, if k = k∗;

yik = 0, if k �= k∗; (5)

where k∗ = argmin
k

pik.

When r > 1, we solve Eq. (4) in the following way. The La-
grangian function of Eq. (4) is:

c∑
k=1

yr
ikpik − β(

c∑
k=1

yik − 1) (6)

where β is the Lagrangian multiplier. In order to get the optimal
solution of the subproblem, we set the derivative of Eq. (6) with
respect to yik to zero. Thus, we get:

yik = ( β
rpik

)
1

r−1 . (7)

Substituting Eq. (7) into the constraint
c∑

k=1

yik = 1, we get the

closed form solution of Y as following:

yik = ( 1
pik

)
1

r−1 /
c∑

k=1

( 1
pik

)
1

r−1 (8)

(2) When the class probability matrix Y is fixed, we solve the
model parameter W and b. Note that the second term in the objec-
tive function in Eq. (1) sums over the number of unlabeled points n
and the number of classes c. If we directly taking the derivative of
the second term with respect to W , the resulting algorithm would
need to iterate over n and c, which would be slow.

It is interesting to note that we can write the objective function
in Eq. (1) into compact matrix representation in the following way:

min
W,b

∥∥∥XT
l W + 1nlb

T − Yl

∥∥∥
2

F
− 2Tr(F (WTX + b1T

n ))

+Tr(WTX + b1T
n )S(W

TX + b1T
n )

T
(9)
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where F = Y r ∈ �n×c (here Y r denotes to perform power
operation on each element in Y ), S ∈ �n×n is a diagonal matrix

with the i-th diagonal element equal to sii =
c∑

k=1

Fik.

Setting the derivative of Eq. (9) with respect to b to zero, we get:

b = q[(Y T
l −WTXl)1nl + (FT −WTXS)1n] (10)

where q is a scalar, q = 1
nl+1T

nS1n
.

Setting the derivative of Eq. (9) with respect to W to zero, and
plug in Eq. (10), we get:

[Xl(Inl −Q1)X
T
l +X(In −Q2)SX

T −XlQ3X
T −XQ4X

T
l ]W

= Xl(Inl −Q1)Y +X(In −Q2)F −XlQ3F −XQ4Y (11)

where Q1 = q1nl1
T
nl, Q2 = qS1n1

T
n , Q3 = q1nl1

T
n , Q4 =

q1n1
T
nl.

Denote C = Xl(Inl−Q1)X
T
l +X(In−Q2)SX

T−XlQ3X
T−

XQ4X
T
l , and A = Xl(Inl−Q1)Y +X(In−Q2)F −XlQ3F −

XQ4Y , then the optimal solution of W is:

W = C−1A (12)

The optimization procedure is summarized in Algorithm 1. The
two step optimization procedure alternatively optimize the model
parameter W and the class probability matrix Y of unlabeled data.
The induction of the classifier W is dependent on the class prob-
ability matrix Y of unlabeled data, and the transduction of labels
to unlabeled data is dependent on the classifier W . This adaptive
procedure is expected to benefit both the induction of classifier and
also the transduction of labels to unlabeled data. It is novel to use
the class probability matrix of unlabeled data to do inductive learn-
ing.

Because the algorithm get the minimum in each updates of W, b
and Y , so the objective value decreases in each updates. What’s
more, the objective function is lower bounded by zero. Therefore,
it is obvious that our algorithm will converge. We will show in the
experiment section that the algorithm actually converges quite fast
on all data sets.

Algorithm 1 Algorithm to solve the problem (1).

Initialize W .
repeat

Update Y : using Eq. (5) if r = 1; using Eq. (8) if r �= 1.
Update W and b by Eq. (12) and Eq. (10), respectively.

until Converges

3.1 Complexity Analysis and Scalability
The major computational cost lies in our algorithm lies in the

updating of W = C−1A, where c is a d× d matrix. The computa-
tional cost of matrix inverting is O(d3). In fact, the computation of
matrix inverse can be avoided. Note that we are aiming to compute
C−1A, which is the solution of the following problem:

min
W

WTCW − 2WTA (13)

The solution of this minimization problem can be get iteratively us-
ing gradient descent method using the updating formula: Wt+1 =
Wt−α(CWt−A), with a computational cost of O(Td2c), where
T is the number of iterations, c is the number of columns in A.

In addition, getting the d× d matrix C cost O(nd2), getting the
d × c matrix A cost O(ndc). Therefore, the total computational
cost of our algorithm is upper bounded by O(nd2) + O(ndc) +
O(Td2c). Consider in real situation c is always smaller in mag-
nitude compared to d and n, the total computational cost can also

be written as O(nd2) + O(Td2). This shows that the computa-
tional cost of our algorithm is linear with respect to the number
of data samples n. Therefore our algorithm is able to scale to
large-scale data.

However, for those graph based semi-supervised learning meth-
ods, without taking into consideration of the huge computation cost
for tuning the gaussian kernel bandwidth parameter and the run-
ning time of the algorithms themselves, constructing the Laplacian
graph matrix already takes at least O(n2). In the big data applica-
tions, the number of data n can easily reach billion level. So such
graph based algorithms are not scalable to large-scale data.

4. EXPERIMENTAL RESULTS

4.1 Data Sets Descriptions
In order to show the effectiveness of the proposed adaptive semi-

supervised learning method, experiments are conducted on six real
world data sets: AR [4], YALE-B [17], MSRC-V1 [16], PIE [11],
FERET [10] and ORL [9]. These six data sets are all comprising
of human faces, represented using gray scale pixel values. Figure
2 demonstrate some sample images from each data set. Important
statistics are summarized in Table 1.

Table 1: Data Sets Descriptions
# sample # feature # class

AR 840 768 120
YALE-B 2414 1024 38

MSRC-V1 1799 1024 12
CMU-PIE 3329 1024 68

FERET 1400 1296 200
ORL 400 644 40

4.2 Experimental Settings
In order to evaluate the effectiveness of the proposed Adaptive

Semi-supervised Learning (ASL) method, we compare it with some
most representative state-of-the-art semi-supervised learning meth-
ods. Since our method is a unified model which can simultaneously
perform transduction and induction, we compare our methods with
both transductive semi-supervised learning methods and inductive
semi-supervised learning methods.

In this paper, we compare our method with three representative
transductive semi-supervised learning methods: local and global
consistency (LGC) [18], random walk (RW) [19], and gaussian
field harmonic function (GFHF) [21].

Inductive semi-supervised learning methods learn a classifier us-
ing both labeled data and unlabeled data. Then the learned classifier
can be used for the classification of both unlabeled data using for
training and also new out-of-sample testing data. Compared with
our method which can directly learn the labels of unlabeled data,
common inductive semi-supervised learning methods need an ad-
ditional step to get the labels for unlabeled data used in training.

Two representative inductive semi-supervised learning methods
are compared with our method: flexible manifold embedding (FME)
[8], and Laplacian regression (LapReg) [12]. LapReg aims to solve
the manifold regularized problem, which has the following objec-
tive function:

min
W

||Yl −XT
l W ||2F + γ1Tr(W

TXLXTW ) + γ2||W ||2F (14)

where Yl,Xl are the labels and feature matrix of labeled data, re-
spectively, X is formed by both labeled data and unlabeled data, L
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(a) AR (b) YALE-B (c) MSRC-V1

(d) CMU-PIE (e) FERET (f) ORL

Figure 2: Sample face images from each data set.

is the graph Laplacian matrix constructed using X , γ1 and γ2 are
regularization parameters to balance the three terms.

Semi-supervised discriminant analysis (SDA) [2] is also a com-
monly used semi-supervised learning method. It aims to learn a
projection matrix to map the data in high dimension to a lower
dimension subspace. Since our method aims to learn a classifier
rather than projection matrix for dimension reduction, we do not
compare with SDA in this paper.

In our experiment, we repeat every methods 20 times to compute
the average classification accuracy and standard deviation. Each
data are first preprocessed using PCA such that 95% of the en-
ergy are retained. Different number of labeled points are used for
training to study the sensitivity of those methods to the number
of labeled data. We randomly choose 1,3,5 labeled points from
each class as labeled data, and the remaining as unlabeled data.
For transductive methods, since they can not perform out-sample
testing, only the accuracy for unlabeled data is computed. For in-
ductive methods, 33% of data are leaved out for out-of-sample test-
ing, then the remaining training data is splited into labeled data and
unlabeled data. The accuracy for both unlabeled data and out-of-
sample testing are computed.

For our method, the parameter r is tuned from 1 to 2 with a step-
size of 0.1. For LGC and RW, the tradeoff parameter α is tuned in
[0.1:0.1:0.9,0.99] (i.e. from 0 to 0.99 with a step-size of 0.1, 0.99
is also included). GFHF is parameter-free. For LapReg and FME,
both of them have two regularization parameters, and are tuned in
{10−5, 10−4, ..., 104, 105}. The classification results of using the
best tuned parameter are recorded.

4.3 Demonstration on Synthetic Data
In this section, we show the working mechanism of the proposed

adaptive semi-supervised learning model on a synthetic data. The

synthetic data (demonstrated in Figure 3(a)) is generated as follow-
ing: 50 data points (corresponding to the samples in the left part of
the figure) are sampled from a gaussian distribution with a mean of
-15, and a standard deviation of 5 ; Another 50 data points (corre-
sponding to the samples in the right part of the figure) are sampled
from a gaussian distribution with a mean of 15, and also a standard
deviation of 5. Then 20 boundary points are generated around the
ideal decision boundary (i.e. the vertical line x = 0) with a mean
of 0 and a standard deviation of 12. All the above data points are
unlabeled data. After that, we add only one labeled point to each
part (i.e., red circle box in the left, blue circle box in the right).
Note that we intentionally place the labeled point in the upper left
corner and lower right corner. Compared to randomly label one
point from each part, this labeling strategy will make it harder for
a model to recover the correct decision boundary.

Figure 3 (c) shows the weights/importance of each unlabeled
data point learned by our model . The weights of the i-th data

point is
c∑

k=1

yr
ik. If the weight of a data point is large, it will con-

tribute more to the learning of the classifier. The last 20 samples are
boundary points (points in the middle part of Figure 3 (a)). We can
see that the weights of those boundary points are very small com-
pared to other point. Therefore, our model can adaptively adjust
the weights of each point, and thus robust to boundary points.

Figure 3 (b) shows the data after classification using our adap-
tive semi-supervised learning model. The size of each point is pro-
portional to their weights. Boundary points in the middle part get
smaller weights. The correct vertical decision boundary (the green
line in the figure) is perfectly recovered, even with only one se-
lected labeled point from each class, and the one labeled point is
intentionally set to make it harder to recover the correct decision
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(b) Toy data after classification using our
model
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Figure 3: Demonstration on Synthetic Data: Figure (a) shows the original data distribution, the red circle box and the blue circle
box are the labeled points, all other points are unlabeled; Figure (b) shows the data after classification by our model, the vertical
green line is the recovered decision boundary. The size of each point is proportional to their weights. Boundary points in the middle
part get smaller weights; Figure (c) shows the weights/importance of each sample learned by our model. The last 20 samples are the
boundary points in Figure (a)

boundary. This shows that our model is able to learn the correct
classifier with the presence of boundary points.

4.4 Parameter Discussions
There is only one parameter, i.e. r, in our proposed ASL model.

As discussed before, the parameter actually serves for multiple pur-
poses. In order to achieve the best performance, a proper r should
be used to balance the supervised part and unsupervised part in the
objective function, and in the meantime, make our model robust to
boundary points.

If r is too large, the yrik will tend to be zero, and the unsupervised
information is lost. So r can not be too large. That’s why r is
suggested to vary in [1,2] (Consider the class number is often larger
than 10, r = 2 is large enough to suppress; when the class number
is small, the range of r can be extended correspondingly. Generally,
[1,4] is totally sufficient for all small class number problems.)

In the following, we will show how the change of parameter r
influence the weights of data points , and the influence on classifi-
cation performance.

4.4.1 r and Number of Important Points
When r varies, the contribution of each data instance to the model

also changes. We define a data point as an important point if the
sum of weights over all classes exceeds an threshold value, i.e. it
satisfies the following condition:

c∑

k

yr
ik > t (15)

where t is a pre-specified threshold. In our experiment, t is set as
0.25 since it is reasonable to assume that an important point should
belong to one certain class with a probability larger than 0.5, so
c∑
k

yr
ik > 0.52 = 0.25 when r < 2.

Figure 4 shows the number of important points using different r
values. From the figure we can see that:

(1)When r = 1, all points are regarded as important points be-

cause
c∑
k

y1
ik = 1. In this case, all samples contributes equally to

the loss function since their sum of weights over all class are the
same.

(2)When r increases, the number of important points will de-
crease. In this process, boundary points will become unimportant
(contribute less to the objective function) with a small r value. This
makes our model robust to boundary points. Some non boundary
points may become unimportant with a relatively large r value. In
the early stage of the increasing of r (say r < 1.4), the decreas-
ing of important points is mainly because boundary points become
unimportant. In the later stage of the increasing of r (say r > 1.4),
the decrease of number of important points may also be due to that
some non boundary points also become unimportant. Note that
the number of important points on some data sets become zero in
the later stage, but this does not mean unlabeled data points are
not used in our model. Remember that the threshold we are us-
ing is 0.25, so the unlabeled data information is still utilized in the
model with a relatively small weight. In the extreme case, when
r approaches to infinity, all points will become totally unimportant
with weight 0. In this case, unlabeled data points are not used in
the model, which reduces to supervised learning.

Therefore, in order for the model to utilize the unlabeled data
to the best degree, a proper r value should be chosen. The proper
r value should: in the macro level, balance the supervised term
and unsupervised term in the objective function; in the micro level,
automatically adjust the weights of data points, so that the model
become robust to boundary points, and thus learn a better classifier.

(3) On some data sets with large number of classes (FERET with
200 classes, AR with 120 classes), the number of important points
will decrease drastically to zero. In the contrary, on some data
sets with small number of classes (MSRC-V1 with 12 classes), the
number of important points will decrease much slower, and still
has many important points when r = 2. This is because when the
class number is small, there tend to be less boundary points, and
the probability yik will be relatively larger, so even with a large r
value, there are still many important points. However, when the
class number is large, there tend to be much more boundary points
whose yik are small (tend to be 1

c
in the worst case). So even

with small r value, those boundary points become unimportant. In
this case, the benefits of our proposed model, which suppresses the
weights of boundary points, will be more obvious.
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(c) MSRC-V1
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(d) CMU-PIE
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(e) FERET
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(f) ORL

Figure 4: The number of important points using different r values on six data sets. One labeled data point is used from each class.

4.4.2 r and Classification Accuracy
After the above analysis, we know that r will influence the learned

model from both macro level (the weight of unsupervised term in
the objective function) and micro level (suppress the weights of
boundary points). Different model will lead to different classifica-
tion results. In this section, we show how the r value will influence
the classification performance.

Figure 5 shows the classification accuracy using different r value
on the six data sets. From the figure we can see that: the classifi-
cation accuracy changes with the parameter r, and the best clas-
sification results is achieved by different r value on different data
sets.

On all the data sets, the best classfication accuracy is not achieved
when r = 1, which is the common practice in many papers. This
is because: by setting yr

ik as data weights, our model is more ro-
bust to boundary points by suppressing the weights of boundary
points. Therefore, by setting the weights of data as yr

ik rather than
the commonly used yik is more meaningful.

4.5 Classification Performance Comparison
In this section, we present extensive empirical study of the clas-

sification performance on six real world data sets. The classifica-
tion accuracy and standard deviation for running different semi-
supervised learning methods are reported in Table 2 to Table 7.
From these tables, we can conclude that:

(1) The ASL method outperforms other comparing inductive semi-
supervised learning methods (LapReg and FME) in most cases, and
is significantly better than other transductive methods (LGC, RW,
and GFHF) on all the six data sets. This justifies the effectiveness
of the proposed ASL method. Because the ASL method is able to
automatically balance the supervised part and unsupervised part in
macro level. What’s more, in the micro level, the ASL method can

suppress the weights of boundary points, which makes the model
robust to boundary points, and thus, learn a better classifier.

(2) In general, the inductive semi-supervised learning methods
perform better than transductive methods.

(3) The performance of the three transductive methods are com-
parable to each other. The performance of these transductive meth-
ods is pretty good on the MSRC-V1 and ORL data sets. The rea-
son maybe that the number of classes is small on these two data
sets compared to other data sets. It seems that those transductive
methods can not perform well when the data has large number of
classes.

(4) The performance of LapReg and FME are comparable to each
other. On the AR data set, the performance of FME is slightly better
than the ASL method. This shows the effectiveness of using the
manifold regularization to utilize the unlabeled data information.
However, the drawback of LapReg and FME is that both of them
have two regularization parameters, and the parameters’ range is
pretty large and not fixed (vary in [10−5, 105] or even larger). This
makes it hard to tune the parameter.

(5) When the number of labeled data points from each class(i.e.
kl) increases, the performance also become better on all data sets.
Especially when number of labeled data points increase from 1 to 3,
the classification accuracy improved significantly. Therefore, when
the labeled information is scarce, to acquire more labeled data can
be very helpful in semi-supervised learning.

4.6 Convergence Speed
In this section, we show the converge speed of the proposed al-

gorithm empirically. Figure 6 shows the objective function value
versus number of iterations. We can see that the proposed iterative
algorithm converges in less than 20 iterations on all data sets.

In our experiment, running our algorithm 20 iterations only takes
about 1 second on a laptop with 2.70GHz double core Intel Core i7
cpu, 16GB memory. Since the major computational cost in our al-
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Table 2: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on AR Data
Set. “kl” represents the number of labeled points from each class used. The column “Unlabeled” record the classification accuracy
of unlabeled data using transductive methods or inductive methods. The column “Testing” record the classification accuracy of out
of sample testing data using inductive methods. “NA” represents the value is not available.

AR kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 22.42±1.57 NA 34.69±1.99 NA 41.92±3.53 NA
RW 20.40±1.60 NA 33.09±1.63 NA 40.40±2.65 NA

GFHF 20.89±1.43 NA 32.67±1.79 NA 40.96±2.41 NA
LapReg 75.56±1.64 73.65±1.94 92.63±1.72 92.92±1.81 94.67±1.89 94.77±1.09

FME 67.02±2.63 67.79±2.55 92.58±1.43 93.29±1.76 95.67±2.65 95.83±1.23
ASL 77.36±2.23 76.08±2.81 93.15±1.60 93.46±1.67 96.83±1.96 95.08±1.33

Table 3: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on YALE-B
Data Set.

YALE-B kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 42.47±2.11 NA 60.42±2.42 NA 68.16±1.48 NA
RW 43.98±2.43 NA 61.37±2.38 NA 68.69±1.42 NA

GFHF 43.75±1.96 NA 63.05±1.71 NA 70.32±2.12 NA
LapReg 51.36±2.88 50.88±3.11 86.09±1.73 86.51±1.92 94.90±0.82 95.02±1.07

FME 51.24±2.01 50.90±3.17 85.70±2.55 85.54±2.92 94.61±2.03 94.83±2.11
ASL 59.35±2.91 58.98±8.08 96.06±1.86 96.13±1.92 99.14±0.54 99.00±0.85

Table 4: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on MSRC-
V1 Data Set.

MSRC-V1 kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 62.38±3.46 NA 88.34±5.38 NA 95.19±3.58 NA
RW 60.05±3.78 NA 88.98±5.29 NA 96.88±2.94 NA

GFHF 55.73±6.01 NA 89.73±4.39 NA 97.07±2.72 NA
LapReg 81.91±4.44 81.83±4.65 97.54±2.08 97.55±1.90 98.69±1.69 98.61±1.61

FME 80.72±4.34 80.45±4.50 97.17±2.64 97.28±2.57 99.29±0.88 99.22±0.98
ASL 82.55±3.64 82.29±3.74 98.39±1.92 98.45±1.82 99.36±1.25 99.42±1.15

Table 5: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on CMU-
PIE Data Set.

CMU-PIE kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 26.36±1.60 NA 44.76±0.85 NA 54.67±1.36 NA
RW 26.71±1.40 NA 44.03±1.15 NA 54.28±1.36 NA

GFHF 26.34±1.62 NA 45.33±1.72 NA 55.58±1.17 NA
LapReg 62.18±2.11 61.89±1.83 86.08±1.56 86.26±1.23 91.44±0.81 91.45±0.96

FME 60.31±1.53 60.68±1.73 86.68±1.78 85.36±1.66 91.35±1.05 91.31±1.42
ASL 63.12±2.20 62.80±2.76 90.64±1.73 90.70±1.64 93.53±0.84 93.38±0.90

Table 6: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on FERET
Data Set.

FERET kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 14.65±0.60 NA 26.74±1.13 NA 31.74±1.52 NA
RW 13.98±0.49 NA 25.02±1.14 NA 30.39±1.65 NA

GFHF 12.07±0.56 NA 21.57±1.38 NA 29.52±2.16 NA
LapReg 27.51±1.20 27.39±1.74 58.29±2.62 57.45±1.66 71.55±1.98 70.21±2.01

FME 26.14±1.42 26.64±1.95 57.61±2.63 56.58±2.51 70.50±2.61 71.10±2.27
ASL 31.79±1.50 31.06±1.95 59.75±2.36 58.54±2.55 73.70±1.95 71.97±1.46
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Figure 5: The classification accuracy using different r values on the six data sets. One labeled data point is used from each class.

Table 7: Classification accuracy and standard deviation for running different semi-supervised learning methods 20 times on ORL
Data Set.

ORL kl=1 kl=3 kl=5

Unlabeled Testing Unlabeled Testing Unlabeled Testing
LGC 75.95±2.48 NA 88.84±2.78 NA 90.20±2.54 NA
RW 75.86±1.46 NA 86.55±2.49 NA 90.65±1.70 NA

GFHF 74.99±1.73 NA 86.54±2.66 NA 89.85±2.27 NA
LapReg 72.38±2.44 68.58±3.95 87.16±2.54 84.50±2.98 92.94±2.41 90.29±3.03

FME 73.65±2.86 69.08±4.29 87.72±2.54 85.21±3.00 93.00±2.88 90.08±2.43
ASL 76.42±2.02 72.17±3.01 87.16±3.16 86.08±3.33 93.75±2.91 90.47±2.54

gorithm lies in the inverse of a d by d matrix, when the algorithm is
used on data with high dimensionality, the computational cost can
be reduced by using PCA for dimensionality reduction beforehand.

5. CONCLUSION
In this paper, we propose an adaptive semi-supervised learning

model. Different from previous semi-supervised learning, our pro-
posed model needn’t construct the graph Laplacian matrix. Thus,
our method avoids the huge computational cost required by previ-
ous methods, and achieves a computational complexity linear to the
number of data points. Therefore, our method is scalable to large-
scale data. Moreover, the proposed model adaptively suppresses
the weights of boundary points. This makes our model robust to
boundary points. An efficient algorithm is derived to alternatively
optimize the model parameter and class probability distribution of
unlabeled data, such that the induction of classifier and the trans-
duction of labels are adaptively unified in one framework. Our
model only has one parameter need to be tuned, and a fixed range
is also suggested. Extensive experimental results show that the pro-
posed semi-supervised learning model outperforms other state-of-
the-art methods in most cases.
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