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ABSTRACT
This paper presents an efficient active-transductive approach
for classification. A common approach of active learning al-
gorithms is to focus on querying points near the class bound-
ary in order to refine it. However, for certain data distri-
butions, this approach has been shown to lead to uninfor-
mative samples. More recent approaches consider combin-
ing data exploration with traditional refinement techniques.
These techniques typically require tuning sampling of un-
explored regions with refinement of detected class bound-
aries. They also involve significant computational costs for
the exploration of informative query candidates. We present
a novel iterative active learning algorithm designed to over-
come these shortcomings by using a linear running-time active-
transductive learning approach that naturally switches from
exploration to refinement. The passive classifier employed
in our algorithm builds a random-walk on the data graph
based on a modified graph geometry that combines the data
distribution with current label hypothesis; while the query
component uses the uncertainty of the evolving hypothe-
sis. Our supporting theory draws the link between the spec-
tral properties of our iteration matrix and a solution to the
minimal-cut problem for a fused hypothesis-data graph. Ex-
periments demonstrate computational complexity that is or-
ders of magnitude lower than state-of-the-art, and compet-
itive results on benchmark data and real churn prediction
data.
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1. INTRODUCTION
Active learning is concerned with the design of algorithms

that efficiently select a set of labeled training samples. The
goal is to query those labels from a teacher which poten-
tially optimize the prediction accuracy for the remaining
unlabeled set. An active learner chooses at each trial a
point (or possibly a batch) to be labeled by the teacher,
and then learns a classification model. This process repeats
itself until a label budget is used up. It has been shown that
in some cases actively querying training samples expedites
the learning process over traditional semi-supervised learn-
ing (e.g. [3, 15]), and is valuable especially when labels are
scarce, expensive to obtain, or when unlabeled samples are
abundant.

Past work on active learning can be roughly divided into
two main approaches: First, an approach that focuses on
refinement of the version space by actively probing the class
decision boundary (e.g. [28]). This approach, typically an
inductive one, often fails as it misses class boundaries that
were not sampled, simply by focusing on refinement of bound-
aries already discovered and avoiding ’outlier’ portions of the
data. A second approach is a combined one, which employs
both refinement of the version space and general exploration
of the feature space (e.g. [3, 4, 6, 23]). These methods typi-
cally use graph-based techniques, where the exploration step
samples pockets of data that the learner misclassifies and re-
fines their class boundaries. However, the detection of such
pockets is computationally challenging.

In this paper we focus on transductive learning and in
particular on the second approach which combines explo-
ration with boundary refinement since it captures both com-
mon types of classification failures. Our contribution is
an active-transductive approach that yields competitive re-
sults while its implementation and computational effort are
significantly simpler and lower than state-of-the-art algo-
rithms. These advantages render it useful for real large data
sets. In addition, unlike the combined approach that al-
ternates between boundary refinement and exploration by
use of pre-calculated parameters (e.g. [3, 23]), our method
demonstrates early preference for exploration and naturally
switches to refinement without the need for such parameters.

Our query strategy adapts the ’uncertainty sampling’ cri-
terion [20] to the graph setting, and shows that it can be
used to both probe unexplored data pockets and refine de-
cision boundaries in linear running time. It builds upon
a probabilistic framework that combines the density and
geometry of data with the current label hypothesis that
emerges in the active learning process. Our framework uses

462



label-adapted kernels which also improve the accuracy of the
querying process when class distribution is not smooth over
the data. This advantage is emphasized since many other
(passive and) active-transductive approaches assume such
limiting smoothness for their success (e.g. [8,15,32,35]). In
this paper we introduce theoretical justification for the use
of label-adapted kernels as well as a convergence analysis,
demonstrating its advantages in active-transductive learn-
ing. Our supporting theory relies on a careful spectral anal-
ysis of the iterative technique of Jacobi [13] for a particular
system of equations and its connection with spectral graph
theory [10].

Aside from the observed improved accuracy, the presented
classifier and the query components both have asymptotic
running time that is linear in the size of the data set. In
particular, and unlike other active classifiers (e.g. [3,23,35]),
our algorithm does not require a separate run of several clas-
sifiers for each query, and does not employ computationally
demanding clustering algorithms, such as [4,22]. It exhibits
orders of magnitude speedup in empirical experiments, con-
firming its asymptotic complexity, while achieving superior
accuracy.

The structure of the paper is as follows: in section 2 we
review related work, and in section 3 we briefly introduce
the problem of active learning. In section 4 we describe our
approach and give a detailed description of our algorithm
components and their running time. Section 5 consists of
running time and accuracy experiments with benchmark and
real data. We conclude in section 6.

2. RELATED WORK
The literature on semi-supervised learning is extensive

(see [8] for an overview). Semi-supervised learning algo-
rithms use unlabeled data during training to improve learn-
ing performance. In the transductive setting the unlabeled
set is transduced with label information from other points.
Graph-based algorithms have been developed to accurately
transduce labels from a few training points to the unlabeled
set of points by relying on graph structure (e.g. [5, 8,11,19,
32–34]). A basic assumption behind these methods is that
class structure is smooth over the graph, or in other words,
that classes separate well with respect to the data density
patterns. This assumption allows to construct Markov pro-
cesses whose transition probabilities rely on proximity in
the data feature space (e.g. [8,11,27,34]) in order to propa-
gate label information. Alternatively, others use the smooth
eigenvectors of the graph Laplacian (similar to the eigen-
vectors of the Markov matrix) as a basis to extend the la-
beling function from training samples to the unlabeled set
(e.g. [26], [5]).

Much of the research in active learning focuses on the
tradeoff between refinement and exploration (e.g. [3,6,23]),
which is central in motivating our approach. As an exam-
ple for algorithms that conduct merely refinement, we con-
sider ’SIMPLE’ [28]. ’SIMPLE’ queries points closest to
the center of the largest hypersphere that fits in the ver-
sion space. Yet, ’SIMPLE’ assumes a fairly symmetric ver-
sion space and centrality of the hypersphere, which in many
cases is not true. The geometry of the version space may
be complex and requires exploration first, as naturally in-
corporated in our approach. Moreover, ’SIMPLE’ has a
high running time, which scales between O(N2) − O(N3),
as the number of support vectors is multiplied by the time

to compute the kernel for each query. Other algorithms
such as ’COMB’ [3] incorporate exploration to overcome the
shortcomings of ’refiner’-type algorithms. ’COMB’ employs
three active learners: the inductive ’SIMPLE’ [28], a risk
minimization active learner [24], and KFF (Kernel Farthest
First) [3] which is an ’explorer’-type active learner. At each
stage of ’COMB’ a learner is chosen based on the reward util-
ity assigned by each learner. While this approach, in fact,
introduces a tradeoff between three different querying ap-
proaches, its implementation and choice of algorithm selec-
tion parameter are complex. Its computational complexity is
also far from being negligible, as it uses ’SIMPLE’. A second
example is the exploration method suggested in [23]. This
algorithm combines ’SIMPLE’ with KFF. The authors use
an adaptable probabilistic parameter to choose the learner.
However, the implementation is still demanding in terms of
running time. As a third example we consider the algorithm
+EXPLORE of [4]. The authors use spectral clustering [21]
to expose uncovered clusters that the learner missed while
querying samples. Otherwise they use uncertainty sam-
pling [20]. +EXPLORE is augmented to graph-based active-
transductive algorithms such as [5,19,32,35] and introduces
a remarkable improvement to these algorithms. Yet, +EX-
PLORE involves a significant computational effort in order
to discover data clusters at each learning step. +EXPLORE
is very close to our approach as its graph construction also
relies on the currently available hypothesis to change the
graph similarities. Even so, it also deviates from our ap-
proach in two fundamental ways: first, it uses the compu-
tationally consuming spectral clustering [21] (which has to
be used after each query), whereas we use a iterative linear
time diffusion kernel approach. And second, +EXPLORE
uses a ’hard’ decision criterion to connect same label nodes
by an edge, while we use a ’soft’ local one.

The algorithms [34] and [32] are two iterative graph trans-
ductive learning algorithms that inspired active learning ex-
tensions such as [34], [29], and [17]. These approaches rely on
the limiting smoothness assumption, whereas we introduce a
new label-adapted iteration to overcome this limitation. We
note [26] and [11] that use variations of function-adapted
kernels in the context of passive learning. However, these
ideas were not used before or extended into the active learn-
ing setting.

In a recent work by [31], which focuses on active learn-
ing for unsupervised spectral clustering, the authors use the
eigenvalue decomposition of the data graph Laplacian to
probe query points that preserve matrix structure. Our sup-
porting theory also relies on the spectral properties of the
data graph. Yet, for our carefully designed iteration ma-
trix the query component uses a linear combination of the
dominant first and second eigenfunctions which are shown
to minimize a combined cost function that captures simulta-
neously the labeling-function graph-cut and the data graph-
cut. Finally, we consider recent work on batch-mode learn-
ing (e.g. [9,18,30]). Batch-mode active learning reduces the
number of classifier calls per query, yet, it involves optimiza-
tion procedures that are computationally demanding (poly-
nomial or exponential in number of points). The tradeoff in
running time should be carefully investigated with big data
sets. For small data sets such as UCI’s SEGMENTATION
(as reported in [9]) the accuracy of our linear running time
algorithm is favorable (see Sec. 5). Also, [9] reports run-
ning time results on data sets of a few hundred points and
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the reported ones (e.g. WAVEFORM) have higher running
time than those reported for our algorithm in single-query
mode. [18,30] do not report running times. Our experiments
on big data sets include a simplistic uncertainty-based batch
selection approach, and we mark more advanced batch-mode
learning as future work.

3. PROBLEM SETTING
We address the problem of actively learning a classifier.

Without loss of generality, consider the binary case with a
set Sl+u = {xi, yi}l+u

i=1 ⊆ R
D × {+1,−1} of l + u points in

R
D and their binary labels h ∈ {+1,−1}. In transductive

learning the learner receives Xl+u = {xi}l+u
i=1 and a random

training set Sl = {xi, yi}li=1. The learner generates a soft
prediction χ̂ = (χ̂1, .., χ̂l+u), where χ̂i ∈ [+1,−1], and out-

puts ĥ = sign(χ̂i). In our active-transductive setting the l
training samples are actively chosen from Xu by the learner
with the goal to minimize some loss-function on the remain-
ing unlabeled points in Xu. We also consider in our experi-
ments an active learning problem in which Xu = {Xu1, Xu2}
such that the learner is allowed to query points only from
Xu1, and predicts for Xu2.

4. THE ALGORITHM AND ITS IMPLEMEN-
TATION

We describe below our approach, supporting theory, and
the detailed implementation of our algorithm, including its
extension to the multi-class problem and its running-time
complexity analysis.

4.1 Notation and Preliminary Setting.
We start by defining a finite weighted graph G = (V,E)

consisting of a set of vertices V , a set of edges E ⊂ V ×
V , and a nonnegative weighting function W : E → R

+.
We interpret the weight W (v, ṽ) as a measure of similarity
between the vertices v and ṽ, when (v, ṽ) ∈ E. The graph
kernel is defined by

K = D−1W, (1)

where D is diagonal with Dii = di =
∑

j W (vi, vj). Thus
Kf is a weighted averaging operator of some arbitrary func-
tion f to be studied: fi = (di)

−1
∑

i j wijfj , with the weights
measured by the similarities Wij ; it has the ’averaging effect’
of smoothing the function f over the graph.

In the data context, a graph G can be constructed in which
the vertices of G correspond to the data points in X. W
represents similarity between data points:

W (xi, xj) = m1

(
ρ(xi, xj)

2

σ1(i, j)

)
, (2)

where σ1(i, j) is a local scaling parameter, and typically
m1(a) = exp(−a) with ρ as the Euclidean distance. The
actual similarities used are the local ones in order to pre-
serve local geometry and reduce computation time by using
sparse matrices. These local similarities are realized by com-
puting the k -nearest neighbors for each point x, denoted by
Nk(x). Throughout our experiments we select σ1(i, j) to be
the median distance among the k nearest neighbors of xi

and xj :

σ1(i, j) = (3)

median{ρ(xi, xl)l∈Nk(xi), ρ(xj, xq)q∈Nk(xj)}.

To facilitate notation σ1(i, j) will be typically denoted by
σ1. K(xi, xj) follows immediately from (1):

K(xi, xj) = d−1
i W (xi, xj). (4)

4.2 Classification via Diffusion Kernels.
At the center of our algorithmic ideas lies a Markov pro-

cess that is used to propagate labels from Sl to Xu. We
start with the row-stochastic kernel defined by (1), which
is viewed as the transition probabilities of a Markov ran-
dom walk on the data neighborhood graph. The weights for
each row i correspond exactly to the transition probabilities
of a random walk starting at xi. Specifically, the one step
transition probability between states xi and xk is given by

pik = K(xi, xk) =
Wik∑
j Wij

, (5)

where we denote W (xi, xj) by Wij to facilitate notation.
We consider a random walk as means to assign a label to
xi ∈ Xu. The predicted label of xi is associated with the
probability of arriving to a labeled point of class 1 after
performing a random walk starting at xi [34] (we consider
the binary case w.l.g.). Marking this probability as p(yend =
1|i), we consider the relation

p(yend = 1|i) =
∑
j

p(yend = 1|j)pij , (6)

and associate p(yend = 1|i) with the probability p(yi = 1|xi).
For labeled points p(yend = 1|i) = 1, or 0 otherwise. De-
noting 2p(yend = 1|i) − 1 by χ we see that χ ∈ [−1, 1] and

its sign can be used to generate ĥ. χ can be partitioned as
χ = [χl, χu]. Similarly, D and W are partitioned into blocks

D =

(
Dll 0
0 Duu

)
and W =

(
Wll Wlu

Wul Wuu

)
.

Eq. (6) can be transformed and re-written for the unlabeled
points Xu and χ in matrix form as

χu = (D−1
uuWul D−1

uuWuu)

(
χl

χu

)
, (7)

resulting in the system

Luuχu = Wulχl (8)

for the unlabeled samples, where L = D − W is the graph
Laplacian, and the sign of each χi gives the label of xi.
A similar system, motivated by quadratic energy minimiza-
tion, is obtained by minimizing

C(χ) =
1

2

l+u∑
i,j=1

Wij(χi − χj)
2 = χTLχ (9)

while forcing equality on the labeled set χl = Yl [8]. Specif-
ically, minimizing (9) with respect to χu leads to

LulYl + Luuχu = 0 ⇔ Luuχu = −LulYl, (10)

which is the same as (8), since Lul = −Wul.
The system (10) can be solved via the well-known Jacobi

method [8, 25]. The iterative Jacobi method solves the sys-
temMx = b by approximating the solution at the step (t+1)
by

x
(t+1)
i =

1

Mii

⎛
⎝bi −

∑
j �=i

Mijx
(t)
j

⎞
⎠ . (11)
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The Jacobi iteration matrix is defined to be BJ = D−1(R+
L), where D is the diagonal matrix with Mii on its i-th
diagonal element, and R and L are the upper and lower
triangular matrices of M . Hence, in matrix notation the
iterative scheme is

x(t+1) = D−1(b− (R + L)x(t)) ⇔ x(t+1) = BJx
(t) +D−1b.

(12)
For faster convergence one may consider the damped iter-
ation involving a parameter ω ∈ [0, 1], where the iteration
matrix is defined as Bω = (1− ω)I + ωBJ , so that

x(t+1) = Bωx
(t) + ωD−1b. (13)

For the system (10) we have M = Luu, x = χu, and
b = LulYl, which then yields the iteration

χ
(t+1)
i =

1

Luu(xi, xi)

⎛
⎝−(LulYl)i −

∑
j �=i

Luu(xi, xj)χ
(t)
j

⎞
⎠
(14)

It is clear that (14) is a label diffusion process: transduc-
ing a label to xi as a weighted average of the labels of its
neighbors. In a slightly different view, it is equivalent to the
iterative application of the kernel (1) on the characteristic
vector χ, while restarting χl to Yl after each iteration. Its
probabilistic justification is in the random walk framework
(6), which leads to classification. The summary of the label
diffusion algorithm DiffuseLabels is given in Fig. 1.

We note that this formulation is related to various label
propagation algorithms suggested in [11, 32, 33] except for
the normalization steps there. Also, when t → ∞ Diffuse-
Labels is related to the harmonic classifier of [34]. Yet, the
equivalence we have just drawn between our label propa-
gation and the Jacobi iteration plays an important role in
deriving convergence and solution properties for the follow-
ing iterative process that we propose for classification and
active learning. We prove bellow that our label diffusion
process converges, and provide a multi-class extension to
our approach.

Corollary 1. The iteration in DiffuseLabels (14)

χ
(t+1)
i =

1

Luu(xi, xi)

⎛
⎝−(LulYl)i −

∑
j �=i

Luu(xi, xj)χ
(t)
j

⎞
⎠

converges as t → ∞.

Proof. The proof relies on the convergence proof of the
Jacobi method [25]: if M (11) is strictly diagonally dom-
inant then the iteration converges. Since for Luu we have
Luu(xi, xi) =

∑l+u
j=1 L(xi, xj) , we have that ∀i Luu(xi, xi) >∑

j Luu(xi, xj), therefore M = Luu is strictly diagonally

dominant. This implies that the row sums {s1, ..., sn} of the
iteration matrix BJ are smaller than 1. Since ‖Luu‖∞ =
max{s1, ..., sn} < 1, we obtain that the spectral radius of
BJ is bounded by 1: maxi |λi| ≤ ‖Luu‖∞ < 1, therefore BJ

is a convergent matrix and the Jacobi iteration (14) con-
verges.

The multi-class case. In the multi-class setting we con-
sider C = {c1, ..., cm} classes, and Ξ = {χ(c1), ..., χ(cm)}
characteristic assignment vectors instead of a single one as
in the binary case. Each χ(cj), 1 ≤ j ≤ m, is a ’one vs. all’
vector: χi(cj) = 1 if xi ∈ Xu belongs to cj , or χi(cj) = −1,
if xi ∈ Xu belongs to ck, k �= j, otherwise χi(cj) = 0. The

DiffuseLabels(Xl+u,Sl, t, K, χ)
Input: Xl+u: data, Sl: training set, K: kernel,
χ: current labeling approx. t: number of iterations.
Output: χ̄
if K and χ are empty:
K = ConGeometKernel(Xl+u)
Initialize χ with labeling of Sl and 0 elsewhere.

for i = 1 to t, do:
χ̄ = Kχ ; χ̄l = Yl ; χ = χ̄ ;

end for
Return χ̄.

Figure 1: The algorithm DiffuseLabels.

label diffusion is applied to each vector and the classification
is computed for a data point xi as argmaxj{χ̄i(cj)}.

4.3 Classification via Label-Adapted Kernels.
The diffusion of labels (DiffuseLabels) depends only on in-

formation from data feature space encoded into the weights
Wij . In particular, the minimization of the quadratic energy
(9) relies on the assumption that data points that belong to
different classes will have a low similarity weight. It is this
assumption on the smoothness and separability of the class
label function which guarantees that the diffusion process
will capture the class structure. This smoothness assump-
tion, which is used in semi-supervised classification tasks, is
often both local and global, i.e. h does not change much
between nearest neighbors and on clusters of data points.
However, in many real data sets this might not be the situ-
ation, as h may not be smooth with respect to W . To this
end, we propose to modify the geometry captured by W so
that the geometry of χ̄ - a smoothed version of χ that cap-
tures the current labeling hypothesis, is taken into account.
To achieve this goal we consider the following label-adapted
weight matrix in a second diffusion process:

Definition 1. The label-adapted weight matrix is de-
fined as

W χ̄(xi, xj) = m1

(
ρ1(xi, xj)

2

σ1

)
m2

(
ρ2(χ̄(xi), χ̄(xj))

2

σ2

)
,

(15)
and its associated kernel is Kχ̂. m1 and m2 are de-
caying exponentials, ρ1 and ρ2 are distance metrics
in R

D and R
k (typically k = 1), σ1 is a data scaling

parameter that is chosen as in (3), σ2 is a scaling
parameter in the label feature space (its selection
is discussed below), and χ̄ is a smoothed soft label
estimate for h obtained via DiffuseLabels with the
kernel K.

The construction in (15) assigns stronger affinity between
points that are believed to belong to the same class, and
weaker affinities between points of different classes. In par-
ticular, when σ2 << σ1, the associated averaging kernel K
will average locally, but much more along the (estimated)
contours of h than across them. Thus the selection of σ2

depends on the importance of the estimation of h by χ̄. A
median approach (3) can be used, which captures the level
of uncertainty in χ̄. Or σ2 = 1, which captures the average
distance between the two labels {-1,1}.

We therefore consider a second label diffusion process in-
volving the kernel (15), which follows a diffusion process
with the kernel (4). This second diffusion process yields a
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new labeling estimation denoted by χ̂, as described in the
pseudo-code LAClassifier in Fig. 2. The label diffusion
process involving Kχ̂ will manifest fast label diffusion along
the (suspected) same-class samples and slow diffusion along
class boundaries. This property is advantageous to acceler-
ate and improve classification, in particular when classes do
not separate over the data, or in other words, the smooth-
ness assumption does not hold. In this case our resulting
iterant χ̂ will provide an approximation to h and not only
to the data density distribution. In order to establish these
claims, we first introduce Theorem 1 which shows that the
Jacobi iteration with the label-adapted kernel (15) converges
to an approximation of the class decision boundary indepen-
dently of the smoothness assumption. Second, we show in
Theorem 2 that in the modified graph geometry the energy
function (9) is further minimized by χ̂.

Theorem 1. Let x̂ be the resulting iterant from the
Jacobi iteration with the kernel (15) in LAClassifier.
Then x̂ approximates a minimal graph-cut in a graph
constructed from the unknown true binary label func-
tion h and the data. In particular, x̂ approximates h.

Proof. See appendix.

Theorem 2. Let χ̄ and χ̂ be the corresponding min-
ima of the quadratic energy function (9) with W and
W χ̄. Then the label-adapted weight matrix and χ̂ fur-
ther minimize (9). In particular,∑

i∈u,j∈l+u

W χ̄
ij(χ̂i − χ̂j)

2 ≤
∑

i∈u,j∈l+u

Wij(χ̄i − χ̄j)
2

Proof. See appendix.

Theorem 1 and its proof reveal the structure of χ̂: it is domi-
nated by the first eigenvectors of the kernelW χ̄. The combi-
nation of the 1st and 2nd eigenvectors provides a real smooth
approximation of a graph-cut of the points of the binary set
h. As such it is simply an approximation of h. Most impor-
tant, we show below how χ̂ is used within active learning:
its transition from negative to positive values indicates the
class decision boundary, and precise zero values indicate un-
explored data portions. Another strength of Theorem 1 is in
its independence from the smoothness assumption and class
separation in data space: Popular data-constructed kernels
(4) as, for example, in [5,11,32–34] result in a good estimate
for h only if the smoothness assumption holds.

Theorem 2 establishes that the new solution χ̂ is smoother
in the modified geometry as it minimizes the classification
error (9) with W χ̄. Using W χ̄ in the quadratic energy func-
tion (9) is more meaningful than using W , because it con-
tains a penalty that does not depend only on the data but
also depends on the labels approximation χ̄. Connecting
this with Theorem 1 and its proof, the resulting iterant χ̄
that minimizes the classification error contains the smooth
components which better approximate h. As a result, the
query component which relies on the absolute values of χ̄
attains better accuracy, as shown in the following section.

To this end the label-adapted diffusion suggests two key
advantages: First, it computes the soft label approximation
χ̂ in linear running time, while other methods, relying on
black-box clustering algorithms, run with higher complexity
(e.g. [4, 22, 23]) (see Sec. 4.5). Second, it suggests a clas-
sifier that is highly accurate and can be applied to classifi-
cation problems where there is no class separation over the

LAClassifier(Xl+u,Sl, t)
Input: Xl+u: all data measurements,
Sl: the training set, t: number of iterations.
Output: χ̂
K = ConGeometKernel(Xl+u)
Initialize χ with labeling of Sl and 0 elsewhere.
χ̄ = DiffuseLabels(t,K, χ)
Kχ̄ = ConstructLAKernel(W,χ̄) (Eq. (15))
χ̂ = DiffuseLabels(t,Kχ̄, χ)
Return χ̂

Figure 2: Label propagation with label-adapted kernels

LAClassifier.

data density. Our supporting theory links χ̂ directly with h,
which is key in constructing an efficient active learning al-
gorithm, referred to as Label Adapted Active Learning
(LAAL).

4.4 Active Learning with Label-Adapted
Kernels.

Theorem 1 and its proof establish that the output of LA-
Classifier - χ̂, is an approximation to the true binary la-
beling function h. As such, low χ̂ absolute values indicate
either a class decision boundary or a yet unexplored region
where a decision boundary could exist. With this observa-
tion we choose to adapt an uncertainty sampling criterion to
perform active learning in our transductive setting. In gen-
eral, representative points whose approximated soft labels

{χ̂i}(l+u)
i=l+1 have a low absolute value: q = argmini(|χ̂i|) are

queried. Such points indicate that the labeling function has
not been sampled sufficiently or that a decision boundary
exists. We distinguish between the two cases:

1. Exploration: Our fundamental observation is that
after the iterative label-adapted diffusion process com-
pletes, regions of Xu that have not been explored will
be identified as Xu points with label weights that are
essentially zero: χ̂i = 0. Zero-label points indicate
clusters or even disconnected graph components that
are unreachable by the labeling propagation process.
Representative points of such data portions are poten-
tial candidates to reduce the hypotheses space, and
should be explored. These representative points are
identified by a high value of di which approximates the
probability density function p(xi). This exploration is
fast since the propagation algorithm has linear running
time (see section 4.5), and the choice of the next query
is based on merely sorting χ̂.

2. Refinement: Our second observation is that once ex-
ploration is mature, the label-adapted diffusion from
Sl to Xu will essentially cover the whole graph. At
that stage χ̂ will be non-zero everywhere. This situ-
ation naturally redirects LAAL’s query selection pro-
cess to query points along decision boundaries, since
their soft labels are close to zero but numerically are
not zero. The decision boundary points are captured
by low χ̂ weights, as suggested by Theorem 1, which
shows that χ̂ is a soft approximation of h.

Our query strategy is justified by the following probabilistic
argument in Lemma 1:
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LAAL(Xl+u,l)
Input: Xl+u, l: number of points to query,
Output: h =sign(χ̂)
S0 = ∅.
for i = 1 to l
χ̂ = LAClassifier(Xl+u, Si−1).
(xq, yq) = Query(χ̂,Xu);
Si = Si−1 ∪ (xq , yq);
Xu = Xu \ xq;

end for
χ̂ = LAClassifier(Xl+u, Sl).
Return sign(χ̂)

Figure 3: Pseudo-code for LAAL.

Lemma 1. Choosing q = argmini{|χ̂i|} minimizes the
expected error criterion E[(ŷi − yi)

2|xi]p(xi), where
p(x) is the density of X.

Proof. We expand the error expectation term:

E[(ŷi − yi)
2|xi]

= p(yi = 1|xi)(ŷi − 1)2 + p(yi = −1|xi)(ŷi + 1)2

= (ŷ2
i + 1)− 2ŷi(p(yi = 1|xi)− p(yi = −1|xi)).

Following Theorem 1, the difference p(yi = 1|xi) − p(yi =
−1|xi) can be well approximated by |χ̂i| : E[(ŷi − yi)

2|xi] ≈
(ŷ2

i + 1) − 2|χ̂i|. Therefore, when χ̂i is minimal, and p(xi)
(approximated by di) is maximal the expected error is max-
imal, which suggests querying such points.

Remark 1. If |χ̂q| �= 0 we do not use the representa-
tive criterion argmaxi{di : i = argmini |χ̂i|} since class
decision boundary may not correspond to data den-
sity, and therefore choosing according to density may
cause contamination.

Description of the algorithm. We are now ready to de-
scribe the label-adapted active learning algorithm (LAAL)
in Fig. 3. LAAL is a meta-algorithm that employs the
label-adapted diffusion classifier LAClassifier (Fig. 2) to
produce the current labeling hypothesis, and a query selec-
tion component Query. LAAL iterates the two procedures
and outputs the final hypothesis once the required number
of labels l had been queried. The query selection algorithm
- Query uses the current soft hypothesis to select the point
xq
i that satisfies the criterion of a minimal absolute value:

q = argmini{|χ̂i|}, in accordance with Lemma 1. If χ̂i = 0
Query selects xq

i to be a representative of an unexplored
data portion or cluster by choosing the candidate with the
maximal sum of weights - di. Alternatively, when all χ̄i’s are
nonzero (i.e. exploration is saturated), Query will enforce
the minimum criterion only.
A toy example. Fig. 4 illustrates the active learning pro-
cess of LAAL on a simple XOR-type binary classification
problem (A), where class separation does not correspond to
the data density. In this example, points are queried using
LAAL, a hypothesis is generated for the rest of the points
Xu, and accuracy is reported. In sub-figures B-D black
circles correspond to queried points, and the data points
circle-filling colors correspond to the soft hypothesis gener-
ated by LAAL. Sub-figure B demonstrates the exploration
stage: data portions for which the soft hypothesis is essen-
tially zero are queried. In C all Xu points found to be as-
signed with a non-zero soft label - indicative of a saturated

 

 

 

 

 

 

A B: 71% C: 84% D: 98%

Figure 4: Demonstration of LAAL with accuracy
rates. A: the XOR data set. B: Exploration stage
(20 queries). C: Maturity of exploration: most of
Xu are assigned with soft labels (50 queries). D: Re-
finement stage: additional 190 queries concentrate
mostly on class boundary refinement.

exploration phase. As seen, a rough sketch of the correct
classes is well captured by the current hypothesis. Finally,
in sub-figure D the query process is naturally redirected to
the refinement of class boundaries. The advantages of using
the label-adapted process are further discussed in our exper-
imental results in Fig. 5-right for the same XOR problem,
where we show that active learning with label adaptation
attains significantly better error rates (10%) than without
label-adaptation.

4.5 Running time of the algorithm.
In the following we show that the running time of LAAL

is linear in the size of the data set and its dimension. We un-
derline two key observations: First, the diffusion of labels in
DiffuseLabels is an iteration of a product of a sparse ma-
trix of size N ×N (N = l+u) with a vector. Given that the
kernel is k−sparse, the total complexity of DiffuseLabels
is O(t ·N · k). In practice, t is small and was found to give
optimal results in our experiments when t = 2, 3. Care-

ful analysis shows that optimally t ≈ log(N/l)
log(k)

≈ log(N).

Secondly, the first query selection process (Query) performs
O(|Xl|kt ·log(|Xl|·kt)) operations to sort and find the lowest
values of χ̂. This running time can be further reduced on
subsequent iterations by using simple book keeping on the
last iteration sorting results and a heap: there are at most
kt elements in |Xu| that are influenced by the last query
which need to be updated. Therefore the query running
time is O(ktlog(|Xl| · kt)). In practice of LAAL’s running
time is mostly dominated by the graph construction proce-
dure, which involves finding nearest neighbors for all data
points in Xl+u. Naive exact nearest neighbor algorithms
have running time that is O(N2D), whereas space parti-
tioning algorithms exhibit exponential complexity in high
dimensions. We therefore resort to an approximate search
(e.g. [1]) that suggests a tradeoff of an almost linear time
complexity with a prescribed error constant ε.

For comparison, we discuss the running time of a few rele-
vant active learners: Both [4] and [22] employ full clustering
schemes for each query. ’+ EXPLORE’ [4] involves a spec-
tral algorithm whose computational effort in general is cubic
in N . As the authors report they had to half the size of stan-
dard benchmark UCI data sets in order to reduce a running
time of over a month with 20 CPUs. [22] uses K-medoids
clustering with complexity that scales as O(i ·K · (N − k)2)
with i as the number of iterations. Algorithms such as [35],
also involve a computationally demanding procedure for es-
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Table 1: Data sets used for experiments.
Data set / Info size D type m source

XOR 6400 2 Real 2 [3, 23]
XOR-REDUCED 1000 2 Real 2 [3, 23]

XOR-HUGE 560000 2 Real 2 [3, 23]
MUSH 8124 139 Cat,Int 2 UCI
MUSK 476 166 Int 2 UCI
MAGIC 19020 11 Real 2 UCI

MAGIC-REDUCED 7762 10 Real 2 UCI
WAVEFORM 5000 21 Real 3 UCI
IONOSPHERE 351 34 Real,Int 2 UCI

CHURN 50000 171 Real,Int,
Cat

2 [14]

COVERTYPE 581012 54 Real,Int 7 UCI
SUSY 1027000 18 Real 2 UCI

SEGMENTATION 2310 19 Real 7 UCI

timating the risk for each query candidate. In [23] and [3],
support vector machines are used, and therefore for each
query the running time is O(|Xu| · |Vh| ·Tk), where Vh is the
number of support vectors and Tk is the time to compute
the kernel. To this end LAAL’s linear time complexity and
observed accuracy suggest a significant improvement over
current active algorithms, rendering it as practical for large
data sets.

5. EXPERIMENTS
Active learning has already gained a significant body of

algorithmic approaches. In our experiments we compare
LAAL’s performance with several carefully chosen represen-
tative baseline methods. First, the spectral-clustering based
+EXPLORE of [4] with representative sampling which is
closely related to our iterative approach mostly since it uses
label adaptation via a ’hard’ criterion, namely, by deleting
graph edges of differently labeled points and establishing
edges between similar label nodes. As shown in our accuracy
experiments +EXPLORE indeed shows the closest perfor-
mance to LAAL’s; however, in our running time experiments
it is significantly slower.

In addition, we compare LAAL with baseline uncertainty
sampling approaches [20] where a variety of recent approaches
have been proposed [12], [24]: We use a parametric ver-
sion with a Bayes classifier [24], a non-parametric version
referred to as ’Non-Adaptation’ which amounts to using χ̄
for uncertainty sampling. We also compare with ’Large Mar-
gin’ inductive approaches with Support Vector Machines [7],
and with the ensemble approach of [23] and the algorithms
of [3] and [28]. As control experiments we demonstrate
LAAL’s performance against a random query sampling ap-
proach and with and without label-adaptation. We use the
’XOR’ data as a specific experiment to compare our perfor-
mance on non-smooth data sets. We note that both [23] and
[4] provide performance comparison with additional algo-
rithms [3,5,19,28,32], therefore our comparison with [4] pro-
vides an even broader view of LAAL’s performance. Other
approaches focusing on batch learning [9,18,18,30], are fun-
damentally different and discussed in Sec. 2.

We start with an accuracy comparison that demonstrates
LAAL’s competitive accuracy, and then continue to a run-
ning time comparison on data sets of size up to 1 million
which demonstrates LAAL’s outstanding efficiency. The
data sets used are summarized in table 1.
Parameters choice. t = log(N), σ1 according to (3), and
σ2 = 1 (see 4.3).
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Figure 5: XOR-REDUCED data set. Left: results
of [28] (SIMPLE), [3] (KFF and COMB), [23] (ex-
plor), random queries (random), and LAAL. Right:
Comparison of LAAL with/without label-adapted
kernels, and with random queries.

5.1 Accuracy experiments.
Non-smooth class function. We start with the binary

’XOR-REDUCED’ classification problem which involves a
synthetic data set from [3, 23], similar to Fig. 4. In ’XOR’
the labeling function is not separable on the data, and there-
fore serves here as an example to compare LAAL’s perfor-
mance with various other methods some of which assume
separability. The data is a generalization of the exclusive
OR: a d-dimensional, n×n× ...×n ”checkerboard” in which
every square contains 250 points collected to a data set X
(‖X‖ = 250nd). We repeated the following experiment 50
times: 100 points were randomly selected from X to serve
as the test set Xu2 and the remaining points were placed
in Xu1. Classification error rates of LAAL as a function of
the size of the training set Xl are shown in Fig. 5 1 for
d = 2, n = 4. Each curve is the average of 50 runs. The left
sub-figure demonstrates a fast learning curve that LAAL ex-
hibits over the other methods [3,23,28]. The result after 250
queried points is comparable to the best algorithm suggested
in [23], with a faster convergence rate for LAAL. The right
sub-figure depicts a performance comparison of LAAL with
kernel methods that do not use the label-adapted kernel, but
only the kernel that entails the geometric proximity of the
data points, as in [32, 33]. This figure also provides a com-
parison in which active learning is disabled, so that the data
points are selected randomly. In this case LAAL performs
with significant accuracy improvement when compared with
the other diffusion-based methods: the label-adapted kernel
improves classification, and, most important, it enhances ac-
curacy when our active query process is used.

The following accuracy experiments involved UCI data
sets MUSK, MUSH, MAGIC-REDUCED, IONOSPHERE,
and IMAGE SEGMENTATION [2]. We used our codes for
LAAL, ’+EXPLORE’ [4], uncertainty sampling [20] in 3 dif-
feren versions: 1. with the parametric Bayes classifier [24]
(coded ’US’), 2. with non-parametric DiffuseLabels (with-
out label-adapted kernel - using only χ̄) (coded ’NAdapt’),
and 3. inductive SVM-based large margin approach [7, 28]
(coded ’ISVM’). As a control experiment we also used a ran-
dom query selection (coded ’Rand’) with LAAL. In these
experiments Xl was minimal and the test set includes the
rest of the data Xu. We run each algorithm to query 50 data
points and checked the accuracy at each step. To fairly com-

1left figure contains results of [23], courtesy of Kun Deng
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Figure 6: Error rate vs. number of labeled samples. Left to right: MUSK, MUSH, MAGIC, IONOSPHERE,
and SEGMENTATION data sets.

pare LAAL and NAdapt with other methods we decided that
points that have zero labels (typically because of being far
away from labeled ones) will have a random label sampled
which depends on the current proportion of positively clas-
sified labels. Results are reported in Fig. 6. LAAL demon-
strates accuracy that is significantly better than the other al-
gorithms over the full active learning period. ’+EXPLORE’
has a closer performance to LAAL and in early learning has
short segments of better error performance; however, in all
cases its overall behavior is less accurate than LAAL’s, and
we note again its higher running time. The Bayes classifier
with uncertainty sampling shows to be less accurate, and dif-
fusion without label-adapted kernels (using only χ̄) performs
worse than LAAL, as it relies on the smoothness assump-
tion. The inductive ISVM sometimes shows high accuracy
at latent stage of learning - when enough points have been
labeled. Lastly, we demonstrate the application of LAAL
on a noisy large churn prediction tournament [14] data set,
obtained from the telecommunication industry. The binary
classification problem for predicting churn involves a noisy
labeling function of a human decision process, and typically
a rare class. We chose 10 random initial training sets and
corresponding pool sets Xu1 of size 5K. To simulate a re-
alistic distribution of the churn class we selected a test set
that contains 3% churn samples, and a training set with
50% churn class. We started with a preliminary experiment
involving the Stochastic Gradient Boosting (SGB) classifier
with decision trees [16]. We then introduced feature selec-
tion based on the output of SGB for the top 25 features. The
selected features were used in a following experiment with
LAAL and SGB. Results are reported in table 2 for the lift
value of the top decile, showing an average improvement of
15% over SGB.

Table 2: Lift values for LAAL and SGB over 10
churn prediction data sets.
Alg./dataset|D1|D2|D3|D4|D5|D6|D7|D8|D9|D10|mean

LAAL |2.2|2.6|1.8|2.3|2.3|1.4|2.3|2.2|2.4| 1.9| 2.1
SGB |1.9|1.8|1.9|1.9|1.8|1.9|2.0|1.9|1.9| 1.9| 1.9

5.2 Running time experiments.
To demonstrate the efficiency of LAAL we performed run-

ning time comparisons with three representative algorithms:
First, a baseline linear-running time parametric uncertainty
sampling algorithm [20] with a Bayes classifier which in
terms of speed should be the fastest algorithm to be exam-
ined (marked as ’US’). Second, the closely related clustering-
based ’+EXPLORE’ [4] which uses the passive transduc-

tive classifier of [32] and spectral clustering [21] (marked as
’+EXPLOR’). And third, an inductive active learning with
SVM [7] (marked as ’ISVM’). We set an accuracy goal of
0.8 and run each algorithm until this accuracy is obtained,
or until the query pool is exhausted. The experiment shows
the tradeoff between accuracy and running time. CPU run-
ning time (log scale) vs. data size is reported in Fig. 7. The
superiority of LAAL is clear: demonstrating 2-4 orders of
magnitude speedup relative to ’US’ and ’+EXPLOR’. When
data has a clear class-cluster structure (e.g. MUSH data set)
’+EXPLORE’ attains better running time than ’US’. How-
ever, LAAL, which also detects clusters, does so more effi-
ciently. The results involving ’ISVM’ demonstrate that once
a single clear boundary exists, ’ISVM’ is very accurate in re-
fining it. However, its computational complexity is shown
to be prohibitive. In many cases ISVM simply exhausted
the query pool without reaching the desired accuracy: for
example, in the ’XOR’ data set where ISVM concentrated
only on a single decision boundary.

Big data sets. To further demonstrate LAAL’s efficiency
we experimented with data sets that are 1-2 orders of mag-
nitude bigger, including over 1,000,000 data points. There
(as well as on previous experiments shown in Fig. 7) run-
ning time could not be measured for all algorithms as they
mostly caused the system to crash, or simply run indefi-
nitely beyond 105 seconds. In particular, in ’+EXPLORE’
the spectral clustering is a major computational bottleneck.
We took a different approach with the other algorithms in
order to provide the reader with an informative compari-
son: the algorithms were transformed to use batch learn-
ing with an uncertainty sampling criterion. Specifically, the
query batch of size b = 20 was chosen as the sorted set
Q = {qi1 , ..., qib} of minimal |χ̂i| values. Batch learning has
indeed accelerated the convergence of the algorithms to the
desired accuracy. However, at N ≈ 104 both US and ISVM
exhausted the pool, run indefinitely, or crashed. We provide
three experiments with big data sets: UCI COVERTYPE,
UCI SUSY, and XOR-HUGE. Because of space limitations
we plot running times for two of them in the bottom of
Fig. 7. When applied to XOR-HUGE, ISVM exhausts the
pool and crashes at N ≈ 104. LAAL was running at ∼ 102

seconds. For the COVERTYPE data set ISVM crashed at
N ≈ 3 × 104, and shows a very steep slope. LAAL con-
tinues from N ≈ 104 to N = 5.8 × 105 with 102 − 103

seconds. The experiments with the SUSY data set starting
at N = 4.8× 105 show a similar trend towards and beyond
1M points.
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Figure 7: Running time (log-scale) vs. data
size. Left to right: XOR and UCI data sets:
WAVEFORM, MAGIC, MUSH, COVERTYPE, and
SUSY.

6. CONCLUSIONS AND FUTURE WORK
We presented an efficient label diffusion method for active-

transductive classification. LAAL demonstrates improved
classification results over state-of-the-art active learning al-
gorithms, and a significant reduction of running time. Our
approach relies on the combination of classical geometric
kernels with label-adapted kernels and on uncertainty sam-
pling for query selection. These properties allow LAAL to
efficiently overcome certain challenging situations in active
learning such as non-smoothness of the class labeling func-
tion over the data distribution. Future work aims at accel-
erating the iteration process via low rank matrix approxi-
mation, an adaptive selection of the σ parameters to adapt
to the distance from the nearest class decision boundary,
imbalanced class distribution, and batch-mode learning.
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APPENDIX
Proof of Theorem 1

Proof. We start with showing that a Jacobi iteration
using an iteration matrix that is built from the true bi-class
labels (using m2 in (15)) results in an approximation to the
class decision function:

Definition 2. The class weight matrix is defined as

W h(xi, xj) = exp
(

ρ2(h(xi),h(xj))
2

σ2

)
, Kh = (Dh)−1W h and

Bh
J are the corresponding kernel and iteration matrix.

Finally, the class graph Laplacian is defined as Lh =
Dh −W h.

Lh (and Kh) has similar eigenvectors to those of Bh
J . Let

v1, ..., vn and λ1, ..., λn be the set of eigenvectors of Bh
J or-

dered in the decreasing order of its eigenvalues. We have
that a general solution is given by

χ(t+1) = (Bh
J )

tχ(0) = c1λ
t
1v1 + ...+ cnλ

t
nvn, (16)

where c1, ..., cn are coefficients that are prescribed by the
initial condition χ(0): χ(0) = c1v1 + ... + cnvn. For a large
enough t, and since ∀i |λi| < 1, we have that the dominant

components in χ(t+1) are the highest eigenvectors v1 and v2.
v1 has a constant sign, and the structure of h: it is piece-
wise constant on the indices belonging to the same class in

h. A second component that may be dominant (for suffi-
ciently small t and since c2 is large because of negative and
positive training samples), is v2. v2 obeys v2 ⊥ v1, and thus
approximates a minimal cut in h [10]:

MinCut = min
h′

∑
i,j

W h
ij |h′

i − h′
j |2. (17)

Therefore v2 is an approximation for the binary function h,
and its transition from negative to positive entries is cor-
responds to the decision boundary. λ2 corresponds to how
well h can be partitioned (the algebraic connectivity of the
graph) [10], in particular, if h has a clear partition then λ2

is close to λ1. The combination of v1 and v2 in (16) forms
an approximation to h, since h′ = h itself provides the min-
imum of (17). Clearly, h is partially known and we use
instead χ̄ to build up a kernel and the Jacobi iteration pro-
cess. Since χ̄ is approximates h from training samples and
the propagated labels, the same spectral analysis applies for
an iteration using χ̄ instead of h.

Now, consider the label-adapted kernel (15) in its matrix
representation

Kχ̂ = (Dχ̄)−1(W ·W χ̄), (18)

where W χ̄ corresponds to m2 in (15). The associated energy
function is then

C(χ) =
∑
i,j

Wij ·W χ̄
ij |χi − χj |2. (19)

In this case the solution obtained by iterating with Bχ̂
J will

have components corresponding to the eigenvectors of Kχ̂:
a constant sign component vχ̂1 , and a second component

vχ̂2 that reflects a cut in a fused graph constructed from a
weight-by-weight multiplication ofW χ̄

ij withWij - the weight
of the graph constructed from X. In particular, it will cap-
ture a cut that minimizes (19). The cut reflects the data
density and geometry as in (4), and, as shown above for W h

the currently approximated hypothesis h ≈ χ̄.

Proof of Theorem 2

Proof. Note that i does not include labeled points indices
because those are always restarted in our algorithm to Yl.
We need to show that

exp

(
−‖xi − xj‖2

σ1

)
exp

(
−|χ̂i − χ̂j |2

σ2

)
|χ̂i − χ̂j |2

≤ exp

(
−‖xi − xj‖2

σ1

)
|χ̄i − χ̄j |2.

We distinguish between two cases 1. |χ̄i − χ̄j | ≤ |χ̂i − χ̂j |,
and 2. |χ̂i − χ̂j | ≤ |χ̄i − χ̄j |.
1. Since 0 < |χ̄i − χ̄j | ≤ |χ̂i − χ̂j | ≤ 2 we can choose σ2

so that

exp

(
−|χ̂i − χ̂j |2

σ2

)
|χ̂i − χ̂j |2 ≤ |χ̄i − χ̄j |2.

Or alternatively we can choose a less tight σ2 s.t.

∑
j∈l+u

exp

(
−|χ̂i − χ̂j |2

σ2

)
|χ̂i − χ̂j |2 ≤

∑
j∈l+u

|χ̄i − χ̄j |2.

2. Since exp
(
− |χ̄i−χ̄j |2

σ2

)
≤ 1 the result is immediate.
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