
Time-Varying Learning and Content Analytics
via Sparse Factor Analysis

Andrew S. Lan
Rice University

Houston, TX 77005
mr.lan@sparfa.com

Christoph Studer
Cornell University
Ithaca, NY 14853

studer@sparfa.com

Richard G. Baraniuk
Rice University

Houston, TX 77005
richb@sparfa.com

ABSTRACT
We propose SPARFA-Trace, a new machine learning-based
framework for time-varying learning and content analytics
for educational applications. We develop a novel message
passing-based, blind, approximate Kalman filter for sparse
factor analysis (SPARFA) that jointly traces learner con-
cept knowledge over time, analyzes learner concept knowl-
edge state transitions (induced by interacting with learning
resources, such as textbook sections, lecture videos, etc., or
the forgetting effect), and estimates the content organiza-
tion and difficulty of the questions in assessments. These
quantities are estimated solely from binary-valued (cor-
rect/incorrect) graded learner response data and the specific
actions each learner performs (e.g., answering a question or
studying a learning resource) at each time instant. Exper-
imental results on two online course datasets demonstrate
that SPARFA-Trace is capable of tracing each learner’s con-
cept knowledge evolution over time, analyzing the quality
and content organization of learning resources, and estimat-
ing the question–concept associations and the question dif-
ficulties. Moreover, we show that SPARFA-Trace achieves
comparable or better performance in predicting unobserved
learner responses compared to existing collaborative filtering
and knowledge tracing methods.

Keywords
Expectation maximization, Kalman filter, learning analyt-
ics, personalized learning, sparse factor analysis

1. INTRODUCTION
The traditional “one-size-fits-all” approach to education is

a major bottleneck to improving learning outcomes world-
wide. Fortunately, significant progress has been made over
the past few decades on new technologies that provide timely
feedback to learners as they follow personalized learning
pathways through nonlinearly interconnected learning con-
tents. Increasingly, these technologies are based on machine
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learning algorithms that automatically mine data from a po-
tentially large number of learners interacting with learning
contents (see [14, 15] for examples).

In our view, a personalized learning system (PLS) con-
sists of two key components: (i) learning analytics (LA),
which estimate each learner’s knowledge state and dynam-
ically trace its changes over time, as they either learn by
interacting with various learning resources (e.g., textbook
sections, lecture videos, labs) and questions (e.g., in quizzes,
homework assignments, exams, and other assessments), or
forget (see [30]), and (ii) content analytics (CA), which pro-
vide insight on the quality, difficulty, and organization of the
learning resources and questions.

1.1 SPARse Factor Analysis (SPARFA)
The recently developed sparse factor analysis (SPARFA)

framework [18] proposes a set of statistical model and al-
gorithms for machine learning-based LA and CA. SPARFA
models Yi,j , the binary-valued graded response of learner j
to question i, as a Bernoulli random variable (with 1 repre-
senting a correct response and 0 an incorrect one):

Yi,j ∼ Ber(Φ(Zi,j)) with Zi,j = wT
i cj − µi.

Here, Φ(·) is the inverse logit/probit link function, and the
slack variable Zi,j depends on three factors: (i) the question–
concept association vector wi which characterizes how ques-
tion i relates to each abstract concept, (ii) the learner con-
cept knowledge vector cj of learner j, and (iii) the intrinsic
difficulty µi of question i. Given a dataset of graded learner
response data Y, SPARFA jointly estimates cj , ∀j to effect
LA and wi and µi, ∀i to effect CA.

While powerful, the SPARFA framework has two key lim-
itations. First, it assumes that the learners’ concept knowl-
edge states remain constant over time; this reduces it’s ef-
ficacy when applied to scenarios, where learners learn (and
forget) concepts over time (weeks, months, years, decades) [4].
Second, SPARFA models only the learners’ interactions with
questions, which measure concept knowledge states, and
not other kinds of learning opportunities, such as reading
a textbook, viewing a lecture video, or conducting a labo-
ratory or Gedankenexperiment; this complicates its applica-
tion in automatically recommending new resources to indi-
vidual learners for remedial or enrichment studies.

1.2 SPARFA-Trace: Time-varying Learning
and Content Analytics

In this paper, we extend the SPARFA framework to ad-
dress these limitations. We develop SPARFA-Trace, an on-
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Figure 1: The SPARFA-Trace framework processes the graded learner response matrix Y (binary-valued,
with ‘1’ denoting a correct response, ‘0’ an incorrect one, and ‘?’ indicates an unobserved one) and the learner

activity matrices {R(t)} (binary-valued, with ‘1’ denoting that a learner studied a particular learning resource,
and ‘0’ otherwise). Upon analyzing this data, SPARFA-Trace jointly traces the learner concept knowledge

states c
(t)
j (a happy face represents high concept knowledge, and a sad face represents low concept knowledge)

over time, and estimates the learning resource content organization and quality parameters Dm, dm and Γm,
together with question–concept association parameters wi and question difficulty parameters µi.

line estimation algorithm that jointly performs time-varying
LA and CA. The core machinery is based on blind approxi-
mate Kalman filtering. The working principles of SPARFA-
Trace are illustrated in Figure 1. Time-varying LA is per-
formed by tracing the evolution of each learner’s concept

knowledge state vector c
(t)
j over time t, based on observed

binary-valued (correct/incorrect) graded learner responses
to questions matrix Y and on the learner activity matri-
ces R(t). CA is performed by estimating the learner con-
cept knowledge state transition parameters Dm, dm, and
Γm, the question–concept associations and the question in-
trinsic difficulties wi and µi, based on the estimated learner
concept knowledge states at all time instances.

Tracing the learners’ concept knowledge states over time
is non-trivial due to the fact that the observations are noisy,
binary-valued graded learner responses to questions. To per-
form this on-line estimation process, we develop a novel mes-
sage passing-based algorithm in Section 3 that employs an
approximate Kalman filter [12]. Furthermore, the underly-
ing state-transition and observation parameters are, in gen-
eral, unknown in real educational scenarios. Therefore, in
Section 4, we introduce a set of novel convex optimization-
based algorithms to estimate these parameters directly (and
solely) from learner response data.

To test and validate the effectiveness of SPARFA-Trace,
we conduct a series of validation experiments in Section 5 us-
ing real-world educational datasets collected with OpenStax
Tutor [3, 21]. We show that SPARFA-Trace can effectively
trace learner concept knowledge, estimate learner concept
knowledge state transition parameters, and estimate the
question-dependent parameters. Furthermore, we show that
it achieves comparable or better performance than existing
approaches on predicting unobserved learner responses.

1.3 Related work in knowledge tracing
The closest related work to SPARFA-Trace is knowledge

tracing (KT), a popular technique for tracing learner knowl-

edge evolution over time and for predicting future learner
performance (see, e.g., [5, 22]). Powerful as it is, KT suf-
fers from three drawbacks. First, KT uses binary learner
knowledge state representations, characterizing learners as
to whether they have mastered a certain concept or not,
which provides limited explanatory power. Second, KT
assumes that each question is associated with exactly one
concept. This restriction limits KT to very narrow educa-
tional domains and prevents it from generalizing to typical
courses/assessments involving multiple concepts. Third, KT
uses a single “probability of learning” parameter to charac-
terize learner knowledge state transitions. This limits KT’s
ability to analyze the quality and organization of different
learning resources that would lead to different learner knowl-
edge state transitions.

2. SPARFA-TRACE STATISTICAL MODEL
We start by extending SPARFA [18] to model learner con-

cept knowledge evolution over time. Then, in Section 2.2,
we characterize the transitions of a learner’s concept knowl-
edge states between consecutive time instances as an affine
model.

2.1 Model for graded learner responses
The SPARFA-Trace statistical model characterizes the

probability that a learner answers a question correctly at a
particular time instance in terms of (i) the learner’s knowl-
edge on every concept at this particular time instance, (ii)
how the question relates to each concept, and (iii) the in-
trinsic difficulty of the question. To this end, let N de-
note the number of learners, K the number of latent con-
cepts in the course/assessment, and T the total number of
time instances throughout the course/assessment. We de-

fine the K-dimensional vector c
(t)
j ∈ RK , t ∈ {1, . . . , T}, j ∈

{1, . . . , N}, to represent the latent concept knowledge state
of the jth learner at time instance t. Let Q be the to-

453



tal number of questions. We further define the mapping
i(t, j) : {1, . . . , T} × {1, . . . , N} 7→ {1, . . . , Q}, which maps
learner and time instance indices to question indices; this
information can be extracted from the learner activity log.

We will use the shorthand notation i
(t)
j = i(t, j) to denote

the index of the question that the jth learner answers at

time instance t as i
(t)
j . Under this notation, we define the

K-dimensional vector w
i
(t)
j

∈ RK , i ∈ {1, . . . , Q}, as the

question–concept association vector of this question. Fi-
nally, we define the scalar µ

i
(t)
j

∈ R to be the intrinsic diffi-

culty of question i
(t)
j , with positive values of µ

i
(t)
j

represent-

ing difficult questions, and negative µ
i
(t)
j

representing easy

ones.
Given these quantities, we characterize the binary-valued

graded response (where 1 denotes a correct response and 0

an incorrect one), of learner j to question i
(t)
j at time in-

stance t as a Bernoulli random variable:

Y
(t)
j ∼ Ber(Φ(Z

(t)
j )), (t, j) ∈ Ωobs,

Z
(t)
j = wT

i
(t)
j

c
(t)
j − µi(t)j

, ∀t, j. (1)

Here, the set Ωobs ⊆ {1, . . . , T}×{1, . . . , N} contains the in-
dices associated with the observed graded learner response
data, since some responses might not be observed in prac-
tice. Φ(z) denotes the inverse probit link function Φpro(z) =∫ z
−∞N (t) dt, where N (t) = 1√

2π
exp(−t2/2) is the standard

normal distribution. (The inverse logit link function could
also be used; the inverse probit link function is preferred
because it simplifies the calculations in Section 3.2.) The

likelihood of an observation Y
(t)
j can, alternatively, be writ-

ten as

p(Y
(t)
j |c

(t)
j ) = Φ

(
(2Y

(t)
j − 1)(wT

i
(t)
j

c
(t)
j − µi(t)j

)
)
,

a shorthand expression we will use in what follows.
Following the original SPARFA framework [18], we impose

the following model assumptions:

(A1) The number of concepts is much smaller than the num-
ber of questions and the number of learners, K �
Q,N : This assumption imposes a low-dimensional
model on the learners’ responses to questions.

(A2) The vector wi is sparse: This assumption is based
on the observation that each question should only be
associated with a few concepts out of all concepts in
the domain of a course/assessment.

(A3) The vector wi has non-negative entries: This assump-
tion enables one to interpret the entries in cj to be the
latent concept knowledge of each learner, with posi-
tive values representing high concept knowledge, and
negative values representing low concept knowledge.

These assumptions are reasonable in most real-world ed-
ucational scenarios and alleviate the common identifiability
issue inherent to factor analysis (if Zi,j = wT

i cj , then we
have Zi,j = wT

i QTQcj = w̃T
i c̃j for any orthonormal matrix

Q. Hence, the estimation of wi and cj is non-unique up to a
unitary transformation). The assumptions also improve the
interpretability of the variables wi, cj , and µi.

2.2 Model for state transitions
In this section, we propose a latent state transition model

that characterizes the learner concept knowledge evolution
between two consecutive time instances. We assume here
that the concept knowledge state evolves for two primary
reasons: (i) A learner may interact with learning resources
(e.g., read a section of an assigned textbook, watch a lec-
ture video, conduct a lab experiment, run a computer sim-
ulation, etc.), all of which are likely to result in an increase
of their concept knowledge. (ii) A learner may simply forget
a learned concept, resulting in a decrease of their concept
knowledge. For the sake of simplicity of exposition, we will
treat the forgetting effect [30] as a special learning resource
that reduces learners’ concept knowledge over time.

We assume that there are a total of M distinct learning
resources. We define the mapping m(t, j) : {1, . . . , T} ×
{1, . . . , N} 7→ {1, . . . ,M} from time and learner indices to
learning resource indices; this information can be extracted
from the learner activity log. We will use the shorthand no-

tation m
(t−1)
j = m(t− 1, j) to denote the index of the learn-

ing resource that learner j studies between time instance t−1
and time instance t. Armed with this notation, the learner
activity summary matrices R(t) illustrated in Figure 1 are

defined by R
(t)

j,m
(t)
j

= 1, ∀(t, j), meaning that learner j in-

teracted with learning resource m
(t)
j between time instances

t and t + 1, and 0 otherwise. We are now ready to model
the transition of learner j’s latent concept knowledge state
from time instance t− 1 to t as

p(c
(t)
j |c

(t−1)
j ) =

N
(

c
(t)
j |(IK + D

m
(t−1)
j

)c
(t−1)
j + d

m
(t−1)
j

, Γ
m

(t−1)
j

)
, (2)

where N (x|µ,Σ) represents a multivariate Gaussian distri-
bution with mean vector µ and covariance matrix Σ. IK is
the K ×K identity matrix; D

m
(t−1)
j

, d
m

(t−1)
j

, and Γ
m

(t−1)
j

are latent learner concept knowledge state transition param-
eters, which define an affine model on the transition of the
jth learner’s concept knowledge state by interacting with

learning resource m
(t−1)
j between time instances t− 1 and t.

D
m

(t−1)
j

is a K ×K matrix, and d
m

(t−1)
j

is a K × 1 vector.

The covariance matrix Γ
m

(t−1)
j

characterizes the uncertainty

induced in the learner concept knowledge state transition by

interacting with learning resource m
(t−1)
j .

In order to reduce the number of parameters and to im-
prove identifiability of the parameters D

m
(t−1)
j

, d
m

(t−1)
j

and

Γ
m

(t−1)
j

, we impose three additional assumptions on the

learner knowledge state transition matrix D
m

(t−1)
j

:

(A4) D
m

(t−1)
j

is lower triangular : This assumption means

that, the kth entry in the learner concept knowledge

vector c
(t)
j is only influenced by the the 1st, . . . , (k−1)th

entry in c
(t−1)
j . As a result, the upper entries in c

(t−1)
j

represent pre-requisite concepts covered early in the
course, while lower entries represent advanced concepts
covered towards the end of the course.

(A5) D
m

(t−1)
j

has non-negative entries: This assumption

ensures, for example, that having low concept knowl-
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edge at time instance t− 1 (negative entries in c
(t−1)
j )

does not result in high concept knowledge at time in-

stance t (positive entries in c
(t)
j ).

(A6) D
m

(t−1)
j

is sparse: This assumption amounts for the

observation that learning resources typically only cover
a small subset of concepts among all concepts covered
in a course.

In contrast to the learner concept knowledge transition
matrix D

m
(t−1)
j

, we do not impose sparsity or non-negativity

properties on the intrinsic learner concept knowledge state
transition vector d

m
(t−1)
j

in (2); this enables our framework

to model cases of poorly designed, misleading, or off-topic
learning resources that distract or confuse learners. Note
that the forgetting effect can be modeled as a learning re-
source with negative entries in d

m
(t−1)
j

. To further reduce

the number of parameters, we assume that the covariance
matrix Γ

m
(t−1)
j

is diagonal.

3. TIME-VARYING LEARNING
ANALYTICS

Time-varying LA requires an on-line algorithm [13] that
traces the evolution of learner concept knowledge over time.
Designing such an algorithm is complicated by the fact that
the binary-valued graded learner responses correspond to a
non-linear and non-Gaussian observation model. The parti-
cle filter [6] is an on-line state estimation algorithm in non-
linear and non-Gaussian systems, which uses a set of Monte-
Carlo particles to approximate the latent state distribution.
However, its excessive computational complexity prevents it
from being applied to personalized learning at large scale
(especially if immediate feedback is required). On the con-
trary, the Kalman filter [12] is an efficient on-line state esti-
mation algorithm for linear dynamical systems (LDSs) with
Gaussian observations, but it cannot be directly applied to
time-varying LA because of the non-linear, non-Gaussian
observation model (1).

In order to recast the time-varying LA problem as an ap-
proximate Kalman filter, we next introduce a set of approx-
imations that build upon ideas in expectation propagation
[20, 23]. We begin in Section 3.1 by reviewing the key ele-
ments of the Kalman filtering and smoothing approach, and
then detail our approximate Kalman filter in Section 3.2.
For notational simplicity, we will omit the learner index j
in this section, i.e., the quantities D

m
(t−1)
j

and d
m

(t−1)
j

are

replaced by Dm(t−1) and dm(t−1) . Moreover, we use the

shorthand notation Dm(t−1) for the quantity IK + Dm(t−1) .

3.1 Kalman filtering and smoothing
The Kalman filter [9, 12] solves the problem of state es-

timation in LDSs, where the system consist of a series of
continuous latent state variables that are separated by lin-
ear state transitions; the state observations are corrupted
by Gaussian noise. We briefly summarize the main find-
ings from [19]. Let the LDS consists of a series of T

latent state variables c(t), t = 1, . . . , T , and observations
y(t), t = 1, . . . , T . The factor graph [17, 28] associated
to this LDS is visualized in Figure 2. The latent states
(denoted by dashed circles) form a Markov chain, mean-
ing that the next state only depends on the current state

... ...

Figure 2: Factor graph message passing algorithm
for the estimation of a set of T latent state variables
with Markovian transition properties from (possibly
noisy) observations.

but not on previous ones. The Kalman filter estimation
procedure of the variables c(t), ∀t based on the observa-
tions y(t), ∀t (denoted by solid circles) can be formulated
as a message-passing algorithm that consists of two phases.
First, a forward message passing phase (i.e., the Kalman
filtering phase) is performed. Then, using the estimates ob-
tained during the Kalman filtering phase, a backward mes-
sage passing phase—often referred to as Kalman smoothing
or Rauch-Tung-Streibel (RTS) smoothing—is performed.

In the forward message passing phase (see Figure 2), the

goal is to estimate latent state variables c(t) based on the
previous observations y(1), . . . ,y(t). In other words, the
value of interest is p(c(t) | y(1), . . . ,y(t)), ∀t. This quantity
can be obtained via a left-right message passing algorithm
outlined in Figure 2.

In Figure 2, the outgoing message α(c(t)) from variable

node c(t) is given by [19]

α(c(t)) = α′(c(t)) p(y(t) |c(t))

=
(∏t

τ=1 b
(τ)
)
p(c(t) |y(1), . . . ,y(t)),

where b(t) = p(y(t) | y(1), . . . ,y(t−1)) is a scaling factor.

We can see that a scaled version of α(c(t)), α̂(c(t)) =
α(c(t))∏t
τ=1 b

(τ) = p(c(t) | y(1), . . . ,y(t)), is exactly the value of

interest, which can be obtained in recursive fashion via

b(t) α̂(c(t)) = p(y(t) |c(t))

∫
p(c(t) |c(t−1)) α̂(c(t−1))dc(t−1).

(3)

The key to obtaining a tractable and efficient estimator
for p(c(t) | y(1), . . . ,y(t)) is that the transition probability

p(c(t) | c(t−1)) and the observation likelihood p(y(t) | c(t))

satisfy certain properties such that the messages α̂(c(t)) and

α̂(c(t−1)) take on the same functional form, just with differ-
ent parameters. A LDS satisfies this requirement, in which
the transition probability and the observation likelihood are
(multivariate) Gaussians of the following form:

p(c(t) |c(t−1)) = N (c(t) |Dm(t−1)c
(t−1) + dm(t−1) ,Γm(t−1)),

p(y(t) |c(t)) = N (y(t) |Wi(t)c
(t),Σi(t)).

Here, Γm(t−1) is the covariance matrix for state transition,
Wi(t) is the measurement matrix, and Σi(t) is the covari-
ance matrix for the multivariate observation of the system.
The functional form of the messages is also Gaussian, i.e.,
α̂(c(t)) ∼ N (c(t) |m(t),V(t)). Under these conditions, the
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forward message passing recursion (3) is given by

b(t) α̂(c(t)) = N
(
c(t) |m(t),V(t)

)
, (4)

with the parameters b(t), m(t) and V(t) given by

m(t) = Dm(t−1)m
(t−1) + dm(t−1)

+ K(t)
(
y(t) −Wi(t)

(
Dm(t−1)m

(t−1) + dm(t−1)

))
,

V(t) =
(
I−K(t)Wi(t)

)
P(t−1),

b(t) = N
(
y(t) |Wi(t)

(
Dm(t−1)m

(t−1) + dm(t−1)

)
,

Wi(t)P
(t−1)WT

i(t) + Σi(t)

)
,

in which the matrices K(t) and P(t−1) are

K(t) = P(t−1)WT
i(t)

(
Wi(t)P

(t−1)WT
i(t) + Σi(t)

)−1
,

P(t−1) = Dm(t−1)V
(t−1)D

T
m(t−1) + Γm(t−1) .

The recursion starts with p(c(1)) = N (c(1) | m(0),V(0)),

where we assume c(1) to be m(0) = 0K and V(0) = σ2
0IK .

Kalman smoothing uses future observations y(τ), τ > t
to obtain a better estimate of the latent state at time in-
stance t. In other words, the value of interest is now
p(c(t) | y(1), . . . ,y(T )). In order to estimate this value, a
set of backward recursions similar to the set of forward re-
cursions (3) can be used:

α̂(c(t−1))β̂(c(t−1)) = α̂(c(t−1))∫
c(t)

p(c(t) |c(t−1))p(y(t) |c(t))
α̂(c(t))β̂(c(t))

b(t) α̂(c(t))
dc(t), (5)

where β̂(c(t)) = p(y(t+1),...,y(T )|c(t))∏T
τ=t+1 b

(τ) . The quantity of inter-

est p(c(t) |y(1), . . . ,y(T )) = α̂(c(t))β̂(c(t)) can be computed
recursively as a backward message passing process, given
the estimates (4) following the completion of the forward
message passing process detailed above.

Specifically, in an LDS, the recursions take the form:

α̂(c(t−1))β̂(c(t−1)) = N (c(t−1) |m̂(t−1), V̂(t−1)), (6)

with the parameters m̂(t−1) and V̂(t−1) given by

m̂(t−1) =m(t−1)+J(t−1)
(
m̂(t)−Dm(t−1)m

(t−1) − dm(t−1)

)
,

V̂(t−1) = V(t−1) + J(t−1)
(
V̂(t) −P(t−1)

)
(J(t−1))T ,

J(t−1) = V(t−1)(Dm(t−1))
T (P(t−1))−1,

with m̂(T ) = m(T ) and V̂(T ) = V(T ).

3.2 Approximate Kalman filtering for
Learning Analytics

The basic Kalman filtering and smoothing, i.e., (4) and (6)
are only suitable for applications with a Gaussian latent
state transition model and a Gaussian observation model,
while the forward and backward recursions (3) and (5) hold
for arbitrary state transition and observation models. When
attempting to trace latent learner concept knowledge states
under the SPARFA model, it is not possible to make Gaus-
sian observations of these states. Concretely, we have only
binary-valued graded learner responses as our observations.

We will now detail approximations that enable the estima-
tion of latent learner concept knowledge states for our model.

As introduced in Section 2, the observation model at
time t is given by (1) and the state transition model is given
by (2). Therefore, the recursion formula for the forward
message passing process (3) becomes

b(t)α̂(c(t)) = p(Y (t) |c(t))

∫
p(c(t) |c(t−1)) α̂(c(t−1))dc(t)

=Φ
((

2Y (t)−1
)(

wT
i(t)c

(t)−µi(t)
))
N
(
c(t)|m̃(t), Ṽ(t)

)
, (7)

where m̃(t) = Dm(t−1)m(t−1) + dm(t−1) and Ṽ(t) =

Dm(t−1)V(t−1)D
T
m(t−1) +Γm(t−1) .

Equation 7 shows that, α̂(c(t)) is no longer Gaussian even

if α̂(c(t−1)) is Gaussian, under the probit binary observation
model. Thus, the closed-form updates in (4) and (6) can
no longer be applied. Therefore, we have to perform an
approximate message passing approach within the Kalman
filtering framework to arrive at a tractable estimator of c(t).

A number of approaches has been proposed to approxi-

mate α̂(c(t)) by a Gaussian distribution N
(
c(t) |m(t),V

(t)
)

;

here, the bar on the variables denote the means and covari-
ances of the approximated Gaussian messages. These ap-
proaches include the extended Kalman filter (EKF) [7, 10],
which uses a linear approximation of the likelihood term
around the point m̃(t), and thus reduce the non-Gaussian
observation model to a Gaussian one; the unscented Kalman
filter (UKF) [11, 27], which uses the unscented transform

(UT) to create a set of “sigma vectors” from p(c(t−1)) and

uses them to approximate the mean and covariance of α̂(c(t))
after the non-Gaussian observation; and Laplace approxi-
mation [23, 31], which use an iterative algorithm to find the

mode of α̂(c(t)) and the Hessian at the mode to approxi-
mate the mean and covariance of the approximated Gaus-
sian messages. We will employ an approximation approach
first introduced in the expectation propagation (EP) litera-
ture [20].

It is known that the specific values for m(t) and V
(t)

that minimize the Kullback-Leibler (KL) divergence be-

tween N
(
c(t)|m(t),V

(t)
)

and a target distribution q(c)

are the first and second moments of q(c) [23]. For-

tuneately, for the probit observation model p(Y (t) | c(t)) =

Φ
((

2Y (t) − 1
)(

wT
i(t)

c(t)−µi(t)
))

, m(t), V
(t)

and b(t) have

closed-form expressions (details omitted for simplicity):

m(t) = m̃(t) +
(

2Y (t) − 1
) Ṽ(t)wi(t)√

1 + wT
i(t)

Ṽ(t)wi(t)

N (z)

Φ(z)
,

V
(t)

= Ṽ(t) −
Ṽ(t)wi(t)w

T
i(t)

Ṽ(t)

1 + wT
i(t)

Ṽ(t)wi(t)

(
z +
N (z)

Φ(z)

)
N (z)

Φ(z)
,

b(t) = Φ(z), (8)

with

z =
(

2Y (t) − 1
) wT

i(t)
m̃(t) − µi(t)√

1 + wT
i(t)

Ṽ(t)wi(t)

,

and m̃(t), Ṽ(t) as given by (7).
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The inverse probit link function is preferred over the in-
verse logit link function, due to the existence of the closed-
form first and second moments described above. Therefore,
we will focus on the inverse probit link function in the sequel.

Armed with the efficient approximation (8), the forward
Kalman filtering and backward Kalman smoothing message
passing scheme described in Section 3.1 can be applied to the
problem at hand. Using these recursions, estimates of the
desired quantities p(c(t) | y(1), . . . ,y(T )) can be computed
efficiently, providing a way for learner concept knowledge
tracing under the model (1).

4. TIME-VARYING CONTENT
ANALYTICS

So far, we have described an approximate Kalman fil-
tering and smoothing approach for learner concept knowl-

edge tracing, i.e., to estimate p(c
(t)
j | y

(1)
j , . . . ,y

(T )
j ), ∀t, j.

The method proposed in Section 3 is only able to provide
these estimates if all learner initial knowledge parameters

m
(0)
j ,V

(0)
j , ∀j, all learner concept knowledge state transi-

tion parameters Dm, dm, and Γm, ∀m, and all question
parameters, wi and µi, ∀i, are given a priori.

However, in a typical PLS, these parameters are unknown
and need to be estimated from the observed data. We now
detail a set of convex optimization-based techniques to esti-
mate the parameters Dm, dm, and Γm, ∀m, and wi, µi, ∀i,1
given the estimates of the latent learner concept knowledge

states c
(t)
j obtained from the approximate Kalman filtering

approach described in Section 3. The techniques we detail
in this chapter allows SPARFA-Trace to jointly trace learner
concept knowledge and estimate learner, learning resource,
and question-dependent parameters, using an expectation-
maximization (EM) approach.

4.1 SPARFA-Trace as an EM algorithm
EM has been widely used in the Kalman filtering frame-

work to estimate the parameters of interest in the system
(see [2, Chap. 13] and [9] for more details) due to numerous
practical advantages [24]. SPARFA-Trace performs param-
eter estimation in an iterative fashion in the EM framework.
All parameters are initialized by random values, and then
each iteration of the algorithm consist of two phases: (i)
the current parameter estimates are used to estimate the la-

tent state distributions p(c
(t)
j |y

(1)
j , . . . ,y

(T )
j ), ∀t, j, and (ii)

these latent state estimates are then used to maximize the
expected joint log-likelihood of all the observed and latent
state variables, i.e.,

maximize
Dm,dm,Γm,∀m,wi,µi,∀i

T∑
t=2

N∑
j=1

E
c
(t−1)
j ,c

(t)
j

[
logp(c

(t)
j |c

(t−1)
j ,D

m
(t−1)
j

,

d
m

(t−1)
j

,Γ
m

(t−1)
j

)
]
+
∑

(t,j)∈Ωobs

E
c
(t)
j

[
logp(Y

(t)
j |c

(t)
j ,w

i
(t)
j

,µ
i
(t)
j

)
]
, (9)

in order to obtain new parameter estimates. SPARFA-Trace
alternates between these two phases until convergence, i.e.,
a maximum number of iterations is reached or the change in
the estimated parameters between two consecutive iterations
falls below a given threshold.

1The estimation of the learner initial knowledge parameters

m
(0)
j ,V

(0)
j , ∀j is trivial and can be found in [2].

4.2 Estimating the state transition parameters
We start by estimating the latent learner concept knowl-

edge state transition (i.e., learning resource) parameters
Dm, dm, and Γm, ∀m. To this end, define Mm as the
set containing time and learner indices (t, j) indicating that
learner j studies the mth learning resource between time in-
stances t−1 and t. With this definition, we aim to maximize
the expected log-likelihood (9) with respect to Dm and dm,
subject to the assumptions (A4)–(A6). We start by estimat-
ing Dm and dm given Γm. In order to induce sparsity on Dm

to take (A6) into account, we impose an `1-norm penalty on
Dm, which is defined as the sum of the absolute values of all
entries of Dm [8]. Taking only the terms containing Dm and
dm, we can formulate the following augmented optimization
problem:

(Pd) minimize
Dm∈L+,dm

∑
t,j:(t,j)∈Mm

E
c
(t−1)
j ,c

(t)
j

[
(D̃mc̃

(t−1)
j )TΓ−1

m

(D̃mc̃
(t−1)
j )−(c

(t)
j − c

(t−1)
j )TΓ−1

m (c
(t)
j − c

(t−1)
j )

]
+γ‖Dm‖1 ,

where L+ denotes the set of lower-triangular matrices with
non-negative entries. For notational simplicity, we have

written [Dm dm] as D̃m. We also write the augmented

latent state vectors [(c
(t−1)
j )T 1]T as c̃

(t−1)
j , when multiplied

by D̃m, correspondingly. Note that the `1-norm penalty
only applies to the matrix Dm in this notation.

The problem (Pd) is convex in D̃m, and hence, can be
solved efficiently. In particular, we use the iterative fast iter-
ative shrinkage and thresholding algorithm (FISTA) frame-
work [1]. In each iteration ` = 1, 2, . . . , Lmax, the algorithm
performs two steps. First, a gradient step that aims to lower
the objective function performs

D̂`+1
m ← D̃`

m − η`∇f(D̃m), (10)

where f(D̃m) corresponds to the differentiable part of the
objective function (excluding the `1-norm penalty) in (Pd).
The quantity η` is a step size parameter for iteration `. De-
tails on how to choose η` can be found in [1]. The gradient

∇f(D̃m) in (10) is given by

∇f(D̃m) =−Γ−1
m

∑
t,j:(t,j)∈Mm

(
[J

(t−1)
j V̂

(t)
j +m̂

(t)
j (m̂

(t−1)
j )T

−V̂
(t−1)
j −m̂

(t−1)
j (m̂

(t−1)
j )T m̂

(t)
j − m̂

(t−1)
j ]

−D`
m

[ V̂
(t−1)
j + m̂

(t−1)
j (m̂

(t−1)
j )T m̂

(t−1)
j

(m̂
(t−1)
j )T 1

])
,

where the parameters J
(t−1)
j , m̂

(t−1)
j , m̂

(t)
j , V̂

(t−1)
j , and V̂

(t)
j

are obtained from the backward recursions in (6). Next, the
FISTA algorithm performs a projection step, which takes
into account the sparsifying regularizer γ‖Dm‖1, and the
assumptions (A4) and (A5):

D̃`+1
m ← PL+(max{D̂`+1

m − γη`, 0}), (11)

where PL+(·) corresponds to the projection onto the set of
lower-triangular matrices by setting all entries in the upper
triangular part of D`+1

m to zero. The maximum operator
acts element-wise on D`+1

m . The updates (10) and (11) are
repeated until convergence, eventually providing a new esti-

mate D̃new
m for [Dm dm].
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Using these new estimates, the update for Γm can be com-
puted in closed form, which will be omitted for simplicity.

4.3 Estimating the question parameters
We next show how to estimate the question-dependent

parameters wi, µi, ∀i. To this end, we define Qi as the
collection set of time and learner indices (t, j) that learner
j answered the ith question at time instance t. We then
minimize the expected negative log-likelihood of all the ob-
served binary-valued graded learner responses (1) for the ith

question, subject to (A2) and (A3). In order to impose spar-
sity on wi, we add an `1-norm penalty to the cost function,
which leads to the following optimization problem:

(Pw) minimize
wi:wi,k≥0,∀k

∑
(t,j)∈Qi

E
c
(t)
j[

− logΦ((2Y
(t)
j − 1)(wT

i c
(t)
j − µi))

]
+ λ‖wi‖1 .

The problem (Pw) is convex in wi, thanks to the fact that
the negative log-likelihood of the observation likelihood is
convex and the linearity of the expectation operator (see [18]
for details). However, the inverse probit link function pro-
hibits us from obtaining a simple form of this expectation.
In order to develop a tractable algorithm to approximately
solve this problem, we utilize the unscented transform (UT)
[27] to approximate the cost function of (Pw).

Following the paradigms of the UT, we generate a set of

sigma vectors {(c̃(t)
j )n} and a corresponding set of weights

{un}, n ∈ {1, . . . , 2K + 1}, for each latent state vector c
(t)
j ,

given the mean m̂
(t)
j and covariance V̂

(t)
j . The cost func-

tion in the optimization problem (Pw) can now be approxi-
mated by a weighted average of the cost function evaluated

at {(c̃(t)
j )n}. Once again, (Pw) can be solved efficiently by

using the FISTA framework [1]. The gradient step is given
by

ŵ`+1
i ← w`

i − η`∇f(wi). (12)

The gradient ∇f(wi) is given by ∇f(wi) = −C̃ir̃i, where r̃i

is a (2K+ 1)|Qi| × 1 vector ri = [a1
i . . . ,a

|Qi|
i ]T . The vector

aqi is defined by aqi = [(gqi )1, . . . , (g
q
i )2K+1], where

(gqi )n = un2(Y
(tq)
jq
− 1)

N
(

2(Y
(tq)
jq
− 1)wT

i (c̃
(tq)
jq

)n
)

Φ
(

2(Y
(tq)
jq
− 1)wT

i (c̃
(tq)
jq

)n
) ,

in which (tq, jq) represents the qth time–learner index pair

in Qi. The K × (2K + 1)|Qi| matrix C̃i is defined as C̃i =[
(Gi)1, . . . , (Gi)|Qi|

]
, where the K× (2K+ 1) matrix (Gi)q

is given by

(Gi)q =
[
(c̃

(tq)
jq

)1, . . . , (c̃
(tq)
jq

)2K+1

]
.

The projection step is given by

w`+1
i ← max{ŵ`+1

i − λη`, 0}. (13)

For simplicity of exposition, the question intrinsic difficul-
ties µi are omitted in the derivations above, as they can be
included as an additional entry in wi as [wT

i µi]
T ; the corre-

sponding latent learner concept knowledge state vectors c
(t)
j

are augmented accordingly as [(c
(t)
j )T − 1]T .

Table 1: Comparisons of SPARFA-Trace against
knowledge tracing (KT) on predicting responses for
new learners using using Dataset 1. SPARFA-Trace
slightly outperforms KT on all three metrics.

Performance metric KT SPARFA-Trace

Prediction accuracy 86.42± 0.16% 87.49 ± 0.12%
Prediction likelihood 0.7718± 0.0011 0.8128 ± 0.0044
Area under the ROC curve 0.5989± 0.0056 0.8157 ± 0.0028

5. EXPERIMENTAL RESULTS
We now demonstrate the efficacy of SPARFA-Trace using

real-world educational datasets. We begin by comparing
SPARFA-Trace against two established methods on predict-
ing unobserved binary-valued learner response data, namely
knowledge tracing (KT) [5, 22] and SPARFA [18]. Then, we
show how SPARFA-Trace is able to visualize learners’ con-
cept knowledge state evolution over time, and the learning
resource and question quality and their content organiza-
tion. The regularization parameters λ and γ are chosen via
cross-validation [8], and all experiments are repeated for 25
independent Monte–Carlo trials.

5.1 Predicting responses for new learners
We now compare SPARFA-Trace against the KT method

described in [22] for predicting responses for new learners
that do not have previous recorded response history.

The dataset we use for this experiment is from an under-
graduate computer engineering course collected using Open-
Stax Tutor (OST) [21]. We will refer to this dataset as
“Dataset 1” in the following experiments. This dataset con-
sists of the binary-valued graded response from 92 learners
answering 203 questions, with 99.5% of the responses ob-
served. The course is organized as three independent sec-
tions: The first section is on digital logic, the second on
data structures, and the third on basic programming con-
cepts. The full course consist of 11 assessments, including
8 homework assignments and an exam at the end of each
section; we assume that the learners’ concept knowledge
state transitions can only happen between two consecutive
assignments/exams, due to their interaction with all the lec-
tures/readings/exercises.

Since KT is only capable of handling educational datasets
that involve a single concept, we partition Dataset 1 into
three parts, with each part corresponding to one of the three
independent sections. We run KT independently on the
three parts, and aggregate the prediction results. We ini-
tialize the four parameters of KT (learner prior, learning
probability, guessing probability, slipping probability) with
the best initial value we find over 5 different initializations.
For SPARFA-Trace, we use K = 3, with each concept cor-
responding to one section of the dataset.

For cross-validation, we randomly partition Dataset 1 into
5 folds, with each fold consisting of 1/5 of the learners an-
swering all questions. Four folds of the data are used as
the training set and the other fold is used as the test set.
We train both KT and SPARFA-Trace on the training set
and obtain estimates on all learner, learning resource and
question-dependent parameters, and test their prediction
performances on the test set. For previously unobserved
new learners in the test set, both algorithms make future

predictions of Y
(t)
j based on these estimates and observa-

tions Y
(1)
j , . . . , Y

(t−1)
j , for t = 1, . . . , T .
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Table 2: Comparisons of SPARFA-Trace against
SPARFA-M on predicting unobserved learner re-
sponses for Dataset 1.

SPARFA-M SPARFA-Trace

Dataset 1 Dataset 2 Dataset 1 Dataset 2

Accuracy 87.10± 0.04% 86.64 ± 0.14% 87.31 ± 0.05% 86.29± 0.25%

Likelihood 0.727± 0.001 0.704± 0.002 0.730 ± 0.001 0.707 ± 0.003

We compare both algorithms on three metrics: prediction
accuracy, prediction likelihood, and area under the receiver
operation characteristic (ROC) curve. The prediction ac-
curacy corresponds to the percentage of correctly predicted
responses; the prediction likelihood corresponds to the av-
erage the predicted likelihood of the unobserved responses,

i.e., 1
|Ωc

obs
|
∑
t,j:(t,j)∈Ωc

obs
p(Y

(t)
j |wi

(t)
j

, c
(t)
j , µ

i
(t)
j

) where Ωcobs

is the set of unobserved learner responses in the test set; the
area under the ROC curve is a commonly-used performance
metric for binary classifiers (see [22] for details).

The means and standard deviations of all three metrics
covering multiple cross-validation trials are shown in Ta-
ble 1. We can see that SPARFA-Trace slightly outperforms
KT on all performance metrics for Dataset 1. We also em-
phasize that SPARFA-Trace is capable of achieving superior
prediction performance while simultaneously estimating the
quality and content organization parameters of all learning
resources and questions.

5.2 Predicting unobserved learner responses
We now compare SPARFA-Trace against the original

SPARFA framework [18], which offers state-of-the-art col-
laborative filtering performance on predicting unobserved
binary-valued graded learner responses.

We will use two datasets in this experiment. The first
dataset is the full Dataset 1 with 92 learners answering
203 questions, explained in Section 5.1. The second dataset
we use is from a signals and systems undergraduate course
on OST, consisting of 41 learners answering 143 questions,
with 97.1% of the responses observed. We will refer to this
dataset as “Dataset 2” in the following experiments. All the
questions were manually labeled with a number of K = 4
concepts, with the concepts being listed in Figure 5(b). The
full course consist of 14 assessments, including 12 assign-
ments and 2 exams.

We randomly partition the 143×43 (or 203×92) matrix Y
of observed graded learner responses into 5 folds for cross-
validation. Four folds of the data are used as the training
set and the other fold is used as the test set. We train both
the probit variant of SPARFA-M and SPARFA-Trace on the
training set to obtain estimates of all model parameters and
then use these estimates to predict unobserved held-out re-
sponses in the test set.

The means and standard deviations of the prediction ac-
curacy and prediction likelihood metrics covering multiple
cross-validation trials are shown in Tables 1 and 2. We see
that SPARFA-Trace achieves comparable or better perfor-
mance than the static SPARFA-M on both datasets.

5.3 Visualizing time-varying Learning and
Content Analytics

In this section, we showcase another advantage of
SPARFA-Trace over existing KT and collaborative filtering
methods, i.e., the visualization of both learner knowledge
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Figure 3: Estimated latent learner concept knowl-
edge states for all time instances, for Dataset 1.
(a) Learner 1’s latent concept knowledge state evolu-
tion; (b) Average learner latent concept knowledge
states evolution.

state evolution over time and the estimated learning resource
and question quality and content organization parameters.

Figure 3(a) shows the estimated latent learner concept
knowledge states at all time instances for Learner 1 in
Dataset 1. We can see that their knowledge on Concepts 2
and 3 gradually improve over time, while their knowledge
on Concept 1 does not. Therefore, recommending Learner 1
remedial material on Concept 1 seems necessary, which is
verified by the fact that Learner 1 often responds incorrectly
on questions covering Concept 1 towards the end of the
course. Hence, SPARFA-Trace can enable a PLS to provide
timely feedback to individual learners on the their concept
knowledge at all times, which reveals the learning progress of
the learners. Figure 3(b) shows the average learner concept
knowledge states over the entire class at all time instances
for Dataset 1. Using this information, SPARFA-Trace can
also inform instructors on the trend of the concept knowl-
edge state evolution of the entire class, in order to help them
make timely adjustments to their course plans.

Figure 4(a) and Figure 4(b) show the quality and content
organization of learning resources 3 and 9 for Dataset 2.
These figures visualize the leaners’ concept knowledge state
transitions induced by interacting with Learning Resources 3
and 9. Circular nodes represent concepts; the leftmost set of
dashed nodes represent the concept knowledge state vector
c(t−1), which are the learners’ concept knowledge states be-
fore interacting with these learning resources, and the right-
most set of solid nodes represent the concept knowledge state
vector c(t), which are the learners’ concept knowledge states
after interacting with these learning resources. Arrows rep-
resent the the learner concept knowledge state transition
matrix Dm, the intrinsic quality vector of the learning re-
source dm, and their transformation effects on learners’ con-
cept knowledge states. Dotted arrows represent unchanged
learner concept knowledge states; these arrows correspond
to zero entries in Dm and dm. Solid arrows represent the
intrinsic knowledge gain of some concepts, characterized by
large, positive entries in dm. Dashed arrows represent the
change in knowledge of advanced concepts due to their pre-
requisite concepts, characterized by non-zero entries in Dm:
High knowledge level on pre-requisite concepts can result in
improved understanding and an increase on knowledge of
advanced concepts, while low knowledge level on these pre-
requisite concepts can result in confusion and a decrease on
knowledge of advanced concepts.

As shown in Figure 4(a), Learning Resource 3 is used in
early stage of the course, and we can see that this learn-
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Figure 4: Visualized learner knowledge state tran-
sition effect of two distinct learning resources for
Dataset 2. (a) Learner knowledge state transition
effect for Learning Resource 3; (b) Learner knowl-
edge state transition effect for Learning resource 9.

ing resource gives the learners a positive knowledge gain of
Concept 2, while also helping on the more advanced Con-
cepts 3 and 4. As shown in Figure 4(b), Learning resource 9
is used in later stage of the course, and we can see that it
uses the learners’ knowledge on all previous concepts to im-
prove their knowledge on Concept 4, while also providing a
positive knowledge gain on Concepts 3 and 4.

By analyzing the content organization of learning re-
sources and their effects on learner concept knowledge state
transitions, SPARFA-Trace enables a PLS to automati-
cally recommend corresponding learning resources to learn-
ers based on their strengths and weaknesses. The estimated
learning resource quality information also helps course in-
structors to distinguish between effective learning resources,
and poorly-designed, off-topic, or misleading learning re-
sources, thus helping them to manage these learning re-
sources more easily.

Figure 5 shows the question–concept association graph
obtained from Dataset 2. Circle nodes represent concept
nodes, while square, box nodes represent question nodes.
Each question box is labeled with the time instance at which
it is assigned and its estimated intrinsic difficulty. From the
graph we can see time-evolving effects, as questions assigned
in the early stages of the course cover basic concepts (Con-
cepts 1 and 2), while questions assigned in later stages cover
more advanced concepts (Concepts 3 and 4). Some ques-
tions are associated with multiple concepts, and they mostly
correspond to the final exam questions (boxes with dashed
boundaries) where the entire course is covered.

Thus, by estimating the intrinsic difficulty and content or-
ganization of each question, SPARFA-Trace allows a PLS to
generate feedback to instructors on the underlying knowl-
edge structure of questions, which enables them to identify
ill-posed or off-topic questions (such as questions that are
not associated to any concepts in Figure 5(a)).

6. CONCLUSIONS
We have proposed SPARFA-Trace, a novel blind approx-

imate Kalman filtering approach for time-varying learning
and content analytics. The proposed method jointly traces
latent learner concept knowledge evolution over time and si-
multaneously estimates the quality and content organization
of the corresponding learning resources (such as textbook
sections or lecture videos) and the questions in assessment
sets. Being able to trace learners’ concept knowledge evo-
lution over time will enable a PLS to make timely feedback
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Figure 5: (a) Question–concept association graph
and concept labels for Dataset 2. (a) Question–
concept association graph. Note that for the vi-
sualization to be compact, we show only 1/3 of all
questions in the dataset; (b) Label of each concept.

to learners on their strengths and weaknesses. Furthermore,
the estimated content-dependent parameters provide rich in-
formation on the knowledge structure and quality of learning
resources. Together with the question parameters estimated,
a PLS would be able to operate in an autonomous manner,
requiring only minimal human input and intervention; this
paves the way of applying SPARFA-Trace to MOOC-scale
education scenarios, where the massive amount of data pre-
cludes manual intervention.

We note that SPARFA-Trace has potential to be applied
to a wide range of other datasets, including (but not neces-
sarily limited to) the analysis of temporal evolution in leg-
islative voting data [29], and the study of temporal effects
in general collaborative filtering settings [16, 25, 26, 32].
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