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ABSTRACT
In many applications, classification labels may not be associ-
ated with a single instance of records, but may be associated
with a data set of records. The class behavior may not be
possible to infer effectively from a single record, but may be
only be inferred by an aggregate set of records. Therefore,
in this problem, the class label is associated with a set of
instances both in the training and test data. Therefore, the
problem may be understood to be that of classifying a set
of data sets. Typically, the classification behavior may only
be inferred from the overall patterns of data distribution,
and very little information is embedded in any given record
for classification purposes. We refer to this problem as the
setwise classification problem.

The problem can be extremely challenging in scenarios
where the data is received in the form of a stream, and the
records within any particular data set may not necessarily
be received contiguously. In this paper, we present a first
approach for real time and streaming classification of such
data. We present experimental results illustrating the effec-
tiveness of the approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

Keywords
Data Streams; Data Classification

1. INTRODUCTION
In many applications, classification labels are not associ-

ated with individual records, but with groups of records in
the underlying data. Thus, each group of records is treated
as an indivisible entity, along with an associated class la-
bel. In most cases, the classification behavior can only be
inferred from the overall distribution pattern of the records
in this entity, and a given record typically provides very lit-
tle information about classification behavior. This kind of
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Figure 1: Setwise Classification Scenario

problem can arise in the context of a wide variety of appli-
cations:

• In a sensor application, a single event of significance
may cause a large number of data records, and the na-
ture of the event can only be classified on the basis of
the aggregate patterns of these different records. Any
single record is unlikely to provide any useful under-
standing of the underlying causality.

• A large supermarket chain may have thousands of stores,
each of which is associated with buying behavior of dif-
ferent customers. It may be very difficult to make any
prediction of the geographical information of a partic-
ular buying pattern from a single transaction. It is
much easier to make predictions from aggregates.

• In an environmental application, many large scale pre-
dictions can often be made only on the basis of mul-
tiple samples of the data from different geographical
regions. In such cases, the overall pattern of the data
is more relevant than the value on any specific record.

This problem is referred to as the setwise classification
problem. We note that each set may contain tremendous
variations in the feature values of the given records, and in
many applications, it is by analyzing the specific patterns of
these variations, that the setwise entities can be assigned a
particular class. In many cases, individual records cannot
be meaningfully assigned to classes, because many different
classes may contain very similar data points. In order to
illustrate this point, we have shown the distribution of the
data records in a two such entities belonging to different
classes in Figure 1, which are marked by ‘x’ and ‘o’ respec-
tively. At first sight, it would seem that there is no difference
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in the distributions of the two classes, and the two entities
have identical distributions. The subtle differences in distri-
bution can be understood only upon closer examination. In
particular, the setwise entity belonging to the class marked
‘x’ has marginally greater concentrations at the peripheries
of the data ranges, whereas the setwise entity belonging to
the class marked ‘o’ has marginally greater concentration at
the central regions. The average behaviors of the records in
the two entities are also not very different. In such cases,
it may not be meaningful to classify any single data point,
because of the fact the differences in distributions are very
subtle over different regions of the data. The example in
Figure 1 is a very simple case, in which we have shown the
relative behavior of only two such entities. In practice, there
may be thousands of such entities with subtle variations in
their data distributions and shapes. For example, another
entity belonging to class ’x’ may not necessarily be concen-
trated at the peripheries, but may have a slightly different
shape which is characteristic of that class. Typically, there
may be a small number of characteristic properties in the
data distributions for a particular class, but different enti-
ties may use a different subset of these characteristic prop-
erties. When the entire data is viewed as a distribution
of individual records across different classes, it may be vir-
tually impossible to distinguish the instances at the lowest
level. The challenge is to learn these subtle differences and
similarities at the entity-distribution level efficiently in the
stream scenario. Since the data points for a particular set
entity are not received sequentially, this further increases
the challenge from the perspective of stream processing [1,
6]. In this paper, we will design an efficient classification
method which captures the subtle entity-specific character-
istics in the form of classification signatures. These clas-
sification signatures essentially create a summarized model
of the typical patterns in the underlying class behavior of
different entities. We will show how to use this model for
effective classification.

This paper is organized as follows. We will present related
work in the remainder of this section. In section 2, we de-
sign efficient methods for classification of multi-set streams.
The experimental results are presented in section 3. The
conclusions and summary are present in section 4.

1.1 Related Work
The problem of classification has been widely studied in

the machine learning and data mining literature [9, 12, 21,
23]. Surveys on data classification may be found in [7]. Re-
cently, the problem has also been extended to the stream
scenario. The earliest work in the area focussed on the
extension of decision trees for stream classification [6, 11,
14, 15, 16, 22]. A popular ensemble classifier was proposed
in [24], and the use of data selection for stream classification
for explored in [13]. A method for on-demand classification
of data streams was proposed in [2]. Recently, stream clas-
sification has also been adapted to the rare-class detection
problem [8, 17, 18, 19]. A survey of stream classification
may be found in [3]. All these methods are proposed for the
model construction and classification of test instances.

A setwise method for the clustering problem has recently
been proposed in [4]. Other methods have also been pro-
posed in which test instances are classified on the basis of
the a-priori knowledge that all test instances belong to the
same class [20], or for labels to be attached to bags of train-

ing instances [10]. However, we note that these problems still
attach labels to individual instances at a fundamental level
both during training and testing. The specification of labels
with bags of instances is simply a result of either unavailabil-
ity of labels with individual training instances, or additional
meta-information provided with test instances. Individual
instances can be meaningfully classified to labels in these
cases. In the case of [10], the attaching of labels to bags
of training instances is simply an approximation because of
unavailability of labels about individual training instances
instances. In the case of [20], the additional knowledge that
a set of test instances belong to the same class simply en-
hances the accuracy of classification of individual instances,
which could otherwise be performed without this informa-
tion. Our model is fundamentally different, because labels
are attached to setwise entities both during training and
testing, and it is not even meaningful to attach labels to
individual instances of data records. Rather, the classifica-
tion behavior of an entity can only be defined on the basis
of the distribution of the records inside it. This is a much
more challenging scenario for the classification process, and
especially so in the stream scenario.

2. SETWISE STREAM CLASSIFICATION
We will first introduce the notations and definitions which

are relevant to our work. We assume that the different set-
wise entities in the training stream are denoted byD1 . . .DN .
Each entity Di is associated with the class label li. We as-
sume that there are a total of k classes, and the class label
is drawn from {1 . . . k}. The dimensionality of each data set
is d, and each data set has the same set of features. It is
assumed that the ith data set Di has ni records. The jth
record of the ith training entity is denoted by Xj(i). Since
the dimensionality of the data is d, it is evident that the
record Xj(i) is a vector containing d components. In addi-
tion, we have a set of n test entities, which are denoted by
T1 . . . Tn. The jth record of the ith test entity is denoted by
Zj(i).

Definition 1 (Setwise Classification). Given a set
of entities D1 . . .DN , with associated labels l1 . . . lN , con-
struct a training model M, which allows us to classify the
different set entities T1 . . . Tn.

The aforementioned problem definition is actually a simplifi-
cation from the stream scenario. In the stream scenario, the
individual records of an entity may be received in any par-
ticular order. Therefore, the individual records are tagged
with the identifier of their entity, and also the corresponding
entity label.

We assume that the data is received in the form of a
stream < Y1, entityid1, label1 > . . . < Yr, entityidr, labelr >
. . .. The tuple Yr represents a d-dimensional data point
which could be either from the training or the test data, the
notation entityidr represents the id of the entity, and labelr
represents the label of the underlying data. The value of
labelr is drawn from {1 . . . k}, if the record Yr is drawn from
an entity belonging to the training data. Otherwise, the
record Yr is drawn from an entity belonging to the test data,
and the value of labelr is −1. Thus, the records are not only
out of order, but the records from the training and test stream
may also be mixed with one another. Furthermore, we note
that the class label for a test entity can be predicted as soon
as a sufficient number of records are received in order to be
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able to predict its underlying distribution. As more records
are received, the predicted label for a test entity will change
(and typically become more accurate), because its underly-
ing data distribution can also be estimated more accurately.
The entity identifier is an integer drawn from [1, N ], if the
entity is drawn from the training data. Otherwise, the entity
identifier is an integer drawn from [1, n]. Therefore, assum-
ing that Yr is the jth data point of its entity, the value of
Yr is the same as either Xj(entityidr) or Zj(entityidr) de-
pending upon whether the rth record is a training record or
test record respectively.

2.1 Setwise Model Maintenance
In this section, we will describe the process of setwise

model maintenance of the different entities. The core idea is
to create a set of supervised entity profiles which concisely
characterize the distribution of the different entities. One
possibility is to use a density estimation approach [25], which
can model the relationships between the different classes and
the corresponding data distributions. However, such an ap-
proach is unlikely to computationally efficient in the stream
scenario, because of the need to track the densities over
many different portions of the space; the number of such
portions typically grows exponentially with the dimension-
ality of the space. Therefore, we will design a method which
computes supervised class fingerprints in order to construct
an effective classification model.

In order to concisely represent the distribution behavior of
the different entities, we will use the concept of fingerprints
in order to concisely summarize them. The idea of a finger-
print is to maintain the distribution patterns of the different
entities in the data stream. These distribution patterns can
be further leveraged to create concise representations of the
profiles of different classes in the underlying data in online
fashion. Clearly, such a model needs to be updated contin-
uously. As more data points arrive in the stream, existing
entity distribution patterns may evolve because of concept
drift, and other entities with entirely new distribution pat-
terns are received.

We note that the data points in the underlying data stream
may belong to either labeled or unlabeled entities, depend-
ing upon whether they need to be used for model build-
ing (training data) or model-based prediction (test data).
Clearly, this can be the case in many real applications, in
which the model construction and prediction needs to be
performed simultaneously. A given data point is used for
model building, only if a label is associated with it, which
is drawn from {1 . . . k}. Otherwise, if the label value is −1,
the entity is a test instance, and we update its current clas-
sification status with the new data record, which is added to
the distribution of the test instance. This goal is achieved by
modeling the entity distributions in relation to landmarks or
anchor points that are generated from the underlying data.
The entity-specific statistical information, which are also re-
ferred to as fingerprints, are used to dynamically maintain
the sets of class profiles. These represent the common entity
distributions which are relevant to the different classes. A
given class may contain multiple class profiles, since there
may be distributional differences in the profiles belonging to
that class. For a given test entity, we determine its class
label by using the relationship of the existing class labels to
the current distribution of that test entity. If a given test
entity is classified multiple times during stream progression,

its reported class label may change, as more and more data
points are received for that entity, and its underlying distri-
bution changes. The changed distribution may sometimes
more closely match the profile for another class. Such situa-
tions are quite natural, because the test entity can be known
more accurately over time, as new data points arrive.

The supervised model maintenance process continuously
maintains the entity-specific profiles, and the different class
profiles which represent the key entity distribution charac-
teristics. At the same time, we maintain the class-specific
profiles of the different fingerprints. Both these statistics
need to be maintained simultaneously in the stream sce-
nario. Correspondingly, we also need two input parameters
that correspond to the granularity of the fingerprint mainte-
nance and that of class profile maintenance. The granularity
of the fingerprints is regulated by the parameter q, which
represents the number of anchor points used for fingerprint
construction. An additional input to the algorithm is the pa-
rameter p, which represents the total number of class profiles
tracked in the data. The value of p is typically much larger
than k, which is the total number of classes in the data.
This ensures that the variations in the distributions of the
entities belonging to a particular class can be captured by
one of these class profiles. We will denote the q different
anchor points by W1 . . .Wq. The simultaneous maintenance
of the class profiles together with the fingerprints can be sig-
nificantly challenging, because the former depends upon the
latter, and the latter can change significantly, as new data
points arrive and the distributions of the different entities
evolve over time. The concept of fingerprints [4] is formally
defined as follows;

Definition 2 (Fingerprints). Let the entity contain-
ing the data points Y1 . . . Yr be partitioned into the q clusters
C1 . . . Cq, with anchors W1 . . .Wq respectively, where each
data point is assigned to its closest anchor. The correspond-
ing (relative) cluster frequencies are denoted by f1 . . . fq,
where

∑q
i=1 fi = 1. Then, the fingerprint of the set of data

points Y1 . . . Yr, defined with respect to these anchors is de-
noted by the q-dimensional tuple [f1 . . . fq].

We denote the fingerprint with respect to anchors W1 . . .Wq

and set of data points D by F(W1 . . .Wq,D). It is important
to notice that the fingerprints provide a way to represent
the distribution of the data points in a given entity. As
we will see later, this turns out to be very useful from the
perspective of classification.

In order to dynamically maintain the classification pro-
files, a total of q anchors W1 . . .Wq are used during classi-
fication. These anchors are fixed throughout the algorithm
execution, and are generated in an initial step with the use
of a k-means approach. Let Ei(t) be the subset of the train-
ing entity Di, at the time of the arrival of the tth point in
the data stream. The fingerprints for all the entities en-
countered so far, are actively maintained, and are denoted
by F(W1 . . .Wq, E1(t)) . . .F(W1 . . .Wq, EN(t)). Depending
upon the number of such entities which have been encoun-
tered so far, these fingerprints can either be maintained in
main memory, or they can be maintained on disk. If the
training and test entities are arriving simultaneously, then
the fingerprints of the test entities are maintained dynami-
cally. As the test entity becomes successively more refined
with the arrival of new data points, it is successively re-
classified with its new representation. Presumably, the new
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fingerprint is a more accurate representation of the class
structure and behavior. Let Hi(t) be the subset of the
test entity Ti, at the time of arrival of the tth point in the
data stream. We corresponding fingerprint is denoted by
F(W1 . . .Wq,Hi(t)).

These finger prints are used in order to maintain the dif-
ferent class distribution profiles. Multiple class distribution
profiles may be associated with a single class. This reflects
the fact that many entity distributions may be relevant to
a particular class. A class distribution profile is constructed
from a set of fingerprints, all of which belong to the same
class. Therefore, we define a class distribution profile as
follows:

Definition 3 (Class Distribution Profiles). The
class profiles for a set S = {L1, . . .Ls} of q-dimensional
fingerprints, which belong to the same class label l is
defined as the following (q+2)-tuple containing the following
components:

• We maintain q values containing the sum of each fin-
gerprint component and denote the vector by AG(S).

• We maintain the number of fingerprints in the cluster,
which is denoted by n(S) = |S| = s.

• We maintain the class label l of each fingerprint.

We will next describe the overall process of fingerprint and
class profile maintenance. As mentioned earlier, the finger-
prints are actively maintained by the algorithm. Since the
fingerprints are generated with the use of anchor points, it
is important to have an efficient method for generation of
the these anchors in the initial phase of the algorithm. Ide-
ally, the anchor points should be dense regions of the data,
around which the pattern of data points can be analyzed.
Therefore, we use a sample of the data points, denoted by
InitSample, and we apply a k-means clustering algorithm
on these data points in order to generate these initial an-
chors. The initial anchors are the centroids of the clusters
determined on the initial sample of the data points. We
denote these anchors by W1 . . .Wq.

In the event that the tth incoming point Yt is from a train-
ing entity set (and belongs to entity set Dj), we denote the
subset of entity set Dj to which the point belongs by Uj(t).
In the event that the tth incoming point is from a test entity
(and belongs to entity set Tj), we denote the subset of entity
set Tj to which the point belongs by Vj(t). This data point
is then assigned to its closest anchor point in the data. In
order to compute the closest anchor point, we compute the
euclidian distance between the data point Yt and the an-
chors W1 . . .Wq. Once the assignment has been performed,
the fingerprints are correspondingly updated. The update
process of a fingerprint needs to account for the addition of
the new data point. The index of the selected anchor is de-
noted bym. The fingerprints for the data subsets before and
after modification are denoted by [f1 . . . fq ] and [f ′

1 . . . f
′
q ] re-

spectively. Then, if the tth incoming data point is a training
point, the new fingerprint after the addition of a data point
is denoted as follows:

f ′
i =

{ fi·|Uj(t)|
|Uj(t)|+1

i �= m
fi·|Uj(t)|+1

|Uj(t)|+1
i = m

(1)

Algorithm Set-Classify(Stream: Y, Profiles: p,
Anchors: q);

begin
Generate q anchors W1 . . .Wq on

first InitSample points;
Divide p class profiles into k different classes

in proportion to initial class presence, and
denote by p1 . . . pk;

Cluster class-specific segment i with parameter pi;
t = 1;
for each < Ys, j >∈ Y do begin
if j ≥ 0 (training data point) do begin
Determine closest anchor Wr to data point Ys;
Update the fingerprint F(W1 . . .Wq, Ej(t)) with

data point Ys by adding to rth bucket;
if fingerprint has < min stat points

then add to tentative set R;
else begin
Determine closest profile with same

class to F(W1 . . .Wq, Ej(t));
Re-assign entity to closest class-profile if necessary;
Update class profile statistics;

end;
end;
else begin { Data point from test entity }
Determine closest anchor Wr to data point Ys;
Update the fingerprint F(W1 . . .Wq,Hj(t)) with
data point Ys by adding a data point
to rth bucket and updating relative frequencies;

Determine closest profile to
fingerprint F(W1 . . .Wq,Hj(t));

report label of closest class profile;
end

t = t+ 1;
end

end

Figure 2: Setwise stream classification

In the event that the tth incoming data point is a test point,
the new fingerprint after addition of the test point is as
follows:

f ′
i =

{ fi·|Vj(t)|
|Vj (t)|+1

i �= m
fi·|Vj(t)|+1

|Vj(t)|+1
i = m

(2)

The denominator always increases by one point since the
denominator represents the number of data points in the
entity. However, the numerator increases by one for the
case of the mth centroid, since only the fingerprint bucket
for that bin has been updated.

At the same time, we maintain the class profiles for the
different data points. Each class profile consists of a set of
closely related fingerprints, all of which belong to the same
class. A single class may of course contain multiple profiles,
since there may be different entity distributions belonging
to the same class. Only the entities which belong to the
training data are used to update the class profiles. We as-
sume that the p different class profiles which are consistently
maintained are denoted by P1 . . .Pp. Each class profile Pi

contains a number of different features which are tracked
with it, according to Definition 3. The entities that be-
long to the test data are not assigned to any of the profiles.
Rather, the fingerprints of these entities are continuously
constructed over the course of the data stream and are used
in order to perform the successively more accurate classifi-
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cations as it gradually becomes possible to characterize the
entity more and more accurately over time with the use of
its fingerprint.

The average fingerprint characterization of the entities in
a class profile Pi can be obtained by dividing each of the
bins in AG(Pi) by n(Si). This averaged profile can be very
useful for computing the similarity between a fingerprint and
an averaged class profile. For each incoming data point, we
update its underlying entity fingerprint, and assign it to its
closest class profile. The closeness of an entity fingerprint
to the class profile is computed with the use of the cosine
distance between the fingerprint and the averaged class pro-
file. Because an entity may contain many points, the finger-
print will be repeatedly updated, after it has already been
assigned to a particular class profile. Correspondingly, the
class-profile assignment may also vary with the arrival of
additional data points.

In order to meaningfully assign a fingerprint to a class
profile, the fingerprint needs to have a sufficient number of
data points, so that it can be characterized in a statistically
robust way. Therefore, we maintain a tentative set of fin-
gerprints R, which correspond to those entities for which a
sufficient number of data points have not been received so
far. We impose the condition that any fingerprint needs to
have a minimum of min stat data points in order to mean-
ingfully assigned to a class profile. Otherwise, it is assigned
to the tentative set R, where it “waits” for more individual
data points to be included in it. Therefore, a fingerprint
will always be assigned to a tentative set at the initial stage
of the algorithm. The first time that a fingerprint contains
more than min stat data points, it will be assigned to one
of the p class profiles denoted by P1 . . .Pp.

The other main issue is that each of the p different class
profiles belongs to a specific label from the k different classes.
In order to define the number of representatives of each class
among the class profiles, we use the initial sample of Init-
Sample points. Let r1 . . . rk be the fraction of entities which
belong to the k different classes in this initial sample. Then,
the p different class profiles are divided up among the k dif-
ferent classes in proportion to r1 . . . rk. Specifically, the j-th
class is assigned �p ·rj+0.5� different profiles. Furthermore,
each class is assigned at least one profile, in the event that
�p · rj + 0.5� evaluates to 0. Note that the profile distribu-
tion among the different classes may not necessarily sum to
p. In the event that the number of profiles (assigned to the
different classes) is more than p, we remove one profile al-
location from each of the classes with the largest number of
assigned profiles in decreasing order, until the total number
is p. In the event that the number of profiles is less than p,
we add one profile allocation to each of the classes with the
least number of assigned profiles in increasing order, until
the total number is p. We assume that the number of pro-
files allocated to the class i is denoted by pi. Therefore, we
have

∑k
i=1 pi = p.

As an initial step in the algorithm, we use the InitSample
(training) points in the data stream in order to create an
initial profile set of classes. This is achieved by applying a
k-means clustering algorithm to the entities (with at least
min stat points) from the initial sample of points. For each
class i, a different k-means clustering is applied with the use
of pi centroids. The set of entities in each cluster are used to
create a different class profile. Thus, a total of p profiles are
available, which are distributed among the different classes.

The entities which do not contain at least min stat points
are assigned to the tentative set R.

Subsequently, the online profile maintenance and classi-
fication processes are executed simultaneously. The train-
ing and test data points may be mixed with one another.
The training data points are used for profile maintenance,
whereas the test data points are used for online classification.
For each incoming (training) data point, we first update its
entity fingerprint by adding the data point to the appro-
priate anchor bin within the fingerprint. At this point, if
the fingerprint does not contain at least min stat points, we
allow it to stay in the tentative set R. Otherwise, we deter-
mine the closest class profile with the same class among
the current set of profiles, and update that class profile with
the modified fingerprint. This process of modification re-
quires us to remove the fingerprint from the profile to which
it was assigned earlier, and assign it to a new profile. This
requires us to subtract out the fingerprint from the old pro-
file and add it to the new profile. Because the information
stored in a profile is additive in nature, it is relatively easy
to subtract out the information in one profile and add it to
another. In some cases, the addition of a point to an en-
tity may cause it to exceed the threshold of min stat. In
such cases, the setwise entity is moved out of the tentative
set and added to the closest entity. In this case, the profile
only needs to be updated in terms of adding an entity to the
profile, but it does not need to be subtracted from a profile.

The fingerprints for the test entities are also maintained
simultaneously with the training entities. For each incoming
(test) data point, the fingerprint of its test entity is updated.
These test entities are maintained in a separate test profile
set Q. Each time a fingerprint in Q is updated, it is assumed
that the fingerprint is now presumably more “accurate” be-
cause of the addition of more data points to it. Therefore,
this refined fingerprint is classified with the use of the train-
ing profiles already stored. The classification process deter-
mines the closest training profile to the test fingerprint with
the use of the cosine metric. The label of this training profile
is reported as the relevant label at that instant. This ap-
proach essentially re-classifies a test entity every time new
information arrives in the stream in order to characterize it
more accurately. This seems like a logical way to perform
the classification in a scenario in which the entire entity is
never available at any given time. The basic algorithm for
classification is illustrated in Figure 2.

One observation about the process is that the change to
each training entity fingerprint of U(t) is relatively small
when the absolute number of elements in these sets (de-
noted by |U(t)|) is large. Therefore, it is not necessary to
update the class profile for a fingerprint, each time it is up-
dated. Rather, we only update the fingerprint of the entity,
but do not use it to update the class profile at all in most it-
erations. In fact, other than updating the fingerprint of the
entity, we do not make any operation (such as cosine dis-
tance computations) on the class profiles at all. In order to
decide the periods at which fingerprints have changed “suffi-
ciently” in order to allow updates, we maintain an additional
quantity for each training entity U(t) denoted by #U(t) at
any given instant t. This quantity denotes the number of
updates to the entity U(t) since the last time it was used to
update a class profile. The quantity is updated each time
the fingerprint is updated, and is reset to 0 every time the
fingerprint is used to update a class profile. As long as the
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entity U(t) has a significantly larger number of points than
the number of updates to it, we know that the fingerprint
has not changed significantly enough to worry about issues
with training. When the value of #U(t)/|U(t)| is less than
a pre-defined fraction (say 1%), we do not perform the up-
dates. The updates are performed, only when this threshold
is reached. An immediate observation is that the frequency
of class profile updates will reduce with progression of the
data stream, as the number of points in the fingerprint be-
come larger and larger. Since a specific percentage of points
in the fingerprint need to be added in order for the class
profiles to be updated, it is evident that the frequency of
profile updates reduces, as the absolute number of points in
each fingerprint increases over the progression of the stream.
In reality, the updates to the class profiles tend to be rela-
tively infrequent in steady state, and continuously reduces
over time. This results in an increasing efficiency of the
algorithm with stream progression.

3. EXPERIMENTAL RESULTS
In this section, we present results on two real and one

synthetic data sets. For the real data sets, the class labels
were either available with the data set, or could be derived
from one of the features of the data sets. For the synthetic
data sets, each class was generated from a mixture model
gaussian distribution.

3.1 Data Sets
We used two real data sets and one synthetic data set

in order to test our approach. The classes in these data
sets were highly mixed with one another, and could not be
distinguished from one another on the basis of individual
data points. These data sets are referred to as Hub64 Data
Stream, E-Cover Data Streams, and Gauss50Mix10D1000
Data Stream. We describe these data sets in detail below:

• Hub64 Data Stream: The data stream was gener-
ated from the Hub64 data set and contains the voice
signal of 64 different public personalities such as Wolf
Blitzer, Bill Clinton, Al Gore, Candy Crowley etc. As
we will see later, the identity of the speakers will be
useful in order to judge the effectiveness of the cluster-
ing process. We derived an 8-dimensional GPCC for-
mat from the compressed domain. Each record in this
format contained a micro-second sample of the under-
lying speech with the use of different features such as
pitch, amplitude etc. The samples from two different
speakers could be very similar, when this sample cor-
responds to a moment of silence or other sounds which
are not easily distinguishable across different speakers.
In such cases, the speakers can only be identified from
multiple sets of records rather than individual records
which did not contain meaningful information. In or-
der to create the multi-set entities, we segmented each
speaker data into 10 different multi-set entities, each
of which was given a different multi-set identifier. This
created a total of 640 entities spread out over a stream
of 397,041 data points. We randomly mixed the data
points for the different speakers, and created a stream
of data points that were tagged with the correspond-
ing multi-set identifiers. A total of 80% of the entities
were treated as training data, whereas the remaining
was treated as test data. The test and training data

were randomly mixed with one another, which made
the problem much more challenging.

• E-Cover Data Stream: This was a derivative data
stream from the forest cover data set, which was de-
signed to make it more challenging for the multi-set
clustering problem. The original version of the prob-
lem was labeled with cover-type. We used the first
attribute (elevation), in order to create the different
multi-set entities. This is because the elevation at-
tribute is very noisily related to the different attributes,
and the classification can only be inferred from the
overall distribution of the multi-set entities with the
same elevation. Let μ and σ be the mean and stan-
dard deviations of the different elevations. The eleva-
tions were divided into 10 different categories, based
on 9 different discretization points corresponding to
μ−1.3 ·σ, μ−0.7 ·σ, μ−0.3 ·σ, μ−0.1 ·σ, μ, μ+0.1 ·σ,
μ+0.3 · σ, μ+ 0.7 · σ, and μ+1.3 · σ respectively. We
divided each of the 10 different categories into 150 dif-
ferent multi-set entities, which resulted in 1500 entities
being spread over a stream of 581,012 records. The or-
der of the records was randomized in the data set in
order to create the stream. Each multi-data entity was
tagged with the corresponding multi-set identifier. We
removed the elevation attribute from the data set for
clustering purposes, though the discretized value was
retained as meta-information for evaluation purposes.
Each of the quantitative attributes was normalized by
its standard deviation. As before, used 80% of the en-
tities are training entities and 20% of the entities as
test entities.

• Gauss50Mix10D1000 Data Stream: The third data
stream was a 10-dimensional synthetic data stream
which was generated with the use of gaussian mix-
ture models. We generated 50 different classes, each
of which was a mixture model of 10 different clus-
ters. Furthermore, the clusters for different classes
overlapped with one another. Since each class was a
mixture model containing many clusters The center of
each cluster was chosen from a uniform distribution
in [0.1, 0.9], and the radius of each cluster along each
dimension was chosen from a uniform distribution in
[1, 1.5]. Note that the radius of each cluster is greater
than the range from which the centers are drawn. Fur-
thermore, since each multi-set distribution is drawn
from a mixture model of 10 different clusters with ran-
domly generated centers, it follows that the data sets
from the different distributions will be highly overlap-
ping with one another in terms of clustering behavior.
An example of a 2-dimensional cross-section of a sam-
ple of 4 of the distributions is illustrated in Figure 1.
It is evident that the different distributions are highly
mixed with one another and show little clustering in
terms of individual data points. The number of points
in each of the 50 ∗ 10 = 500 different constituent clus-
ters of the mixture model was generated from the Zipf
distribution 1/(i + 100)θ . The parameter of the Zipf
distribution was chosen to 0.1. A total of 106 data
points were distributed across the different clusters.
Each of the dimensions was normalized so as to equal-
ize the standard deviation across all attributes. For
each of the 50 mixture model distributions, we tagged
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the corresponding data points with one of 20 different
multi-set entities. Thus, the 106 different data points
were distributed across 1000 different multi-set enti-
ties. We set 80% of the entities as training entities and
the remaining as test entities. As in previous cases, the
data points from the different entities were randomly
mixed with one another in the form of a data stream.

3.2 Baseline Approach
We created multi-variate density distributions in order to

characterize the different entities, and used these density
distributions in order to construct the training models. The
density distributions are constructed as sampled grid points
in the data space. The number of such grid points are ex-
ponentially related to the number of dimensions. For each
dimension, we had 3 possible grid points at μi − σi, μi, and
μi + σi, where μi and σi are the mean and standard devia-
tion of dimension i. Therefore, for a d-dimensional data set,
we have 3d possible grid points. Since this number can be
very large, it is necessary to sample grid-points in order to
create the density profiles in a reasonably efficient way. We
used these density profiles were used as a surrogate for the
fingerprints in conjunction with the approach in Figure 2 as
the baseline technique. In order to create a comparable com-
putational efficiency with the multi-set clustering technique,
we constructed density estimates on as many grid points as
the number of anchors which were used by our multi-set
clustering technique. We used kernel density estimation on
the incoming stream in order to create the density profiles
at the grid points.

3.3 Effectiveness Results
All results were tested on an Lenovo X201 Thinkpad run-

ning Microsoft Windows XP, with a 2.4GHz CPU and 2.9
GB of main memory. The code was implemented with Mi-
crosoft Visual C++. In all cases, unless otherwise men-
tioned, the default number of anchors (or grid-points) used
was 50, the default number of classification profiles was 80,
and default initial number of sample points was 10,000. We
first tested the classification accuracy with increasing num-
ber of anchors. The results for the Hub64 data stream, E-
cover data stream and the Gauss50Mix10D1000 data stream
are illustrated in Figures 3(a), (b), and (c) respectively. The
number of anchors (or grid-points for the baseline scheme)
is illustrated on the X-axis, whereas the classification accu-
racy is illustrated on the Y -axis. The number of classifica-
tion profiles was set to its default value of 80. In most cases,
an increase in the number of anchors increased the classifi-
cation accuracy, though this was not always the case. This
is because a certain amount of noise is associated with the
anchor construction process, and a large number of anchors
may not always imply a higher classification accuracy. In all
cases, the accuracy of the Set-Classify scheme was signifi-
cantly higher than the density-based baseline. For example,
in the case of the Hub64 data stream, the classification accu-
racy of the Set-Classify scheme was greater than 40% with
the use of 75 anchors and 80 classification profiles, whereas
the classification accuracy of the density-based baseline was
about 25%. This difference was even larger for the other
two data sets. For example, for the case of the E-Cover
data set, the density-based scheme performed disastrously
with a classification accuracy of only about 20% at these
same parameter values. On the other hand, the Set-Classify

scheme had an accuracy which was greater than 80%. The
different between the two schemes was also very significant
in the case of the synthetic data set.

We also tested the classification accuracy of the schemes
with increasing number of classification profiles. The re-
sults for the Hub64 data stream, E-cover data stream and the
Gauss50Mix10D1000 data stream are illustrated in Figures
3(d), (e), and (f) respectively. The number of classification
profiles are illustrated on the X-axis, whereas the classifica-
tion accuracy is illustrated on the Y -axis. The number of
anchors was set to the default value of 50. As in the previous
case, the Set-Classify scheme was significantly more accurate
than the baseline methods. The other observation was that
the trend with increasing classification profiles was much
less clear as compared to the trend with increasing number
of anchors. This is because an increase in the number of
profiles increased the representation granularity (which im-
proves accuracy), but also reduced the number of points in
each profile (which reduces its robustness and therefore the
overall accuracy).

Finally, we also tested the classification accuracy with pro-
gression of the data stream. The results for the Hub64 data
stream, E-cover data stream and the Gauss50Mix10D1000
data stream are illustrated in Figures 3(g), (h), and (i) re-
spectively. The progression of the data stream (in terms of
the number of points) is illustrated on the X-axis, whereas
the classification accuracy (on the last block of points) is
illustrated on the Y -axis. The number of anchors and clas-
sification profiles was set to 50 and 80 respectively. We note
that the progression of the stream on the X-axis is illus-
trated in terms of the number of test data points, which
are mixed randomly with the training data points. It is
clear that in each case, the classification accuracy increases
rapidly with stream progression, but stabilizes over time,
as the distribution of classification profiles reaches steady
state. As in the previous cases, the classification accuracy
of the Set-Classify method is significantly greater than the
density-based baseline for all the three data sets.

3.4 Efficiency Results
We also tested the efficiency of the scheme in terms of

the number of data points processed per second. The pro-
cessing rates for training and testing wee tabulated sepa-
rately by separating out the running times for the algorithm
loops which correspond to the training and testing data.
The initialization times were charged to the training rates.
We tested the processing rates with increasing number of
anchors. The results for the Hub64 data stream, E-cover
data stream and the Gauss50Mix10D1000 data stream are
illustrated in Figures 4(a), (b), and (c) respectively. The
number of anchors are illustrated on the X-axis, whereas
the processing rate (in terms of the number of data points
processed per second) are illustrated on the Y -axis. The
number of classification profiles was set to its default value
of 80. The processing rates for all schemes reduces with an
increasing number of anchors. This is because an increase
in the number of anchors increases the amount of time it re-
quires to update each fingerprint. It is evident that both the
training and testing rates for the Set-Classify scheme are sig-
nificantly greater than that for the baseline scheme. This is
because the fingerprint generation process is much more ef-
ficient than the process of density estimation. Furthermore,
the training rates tend to be significantly higher than the
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Figure 4: Efficiency Results

testing rates. The reason for this was that the fingerprint
of a training entity only needed to be compared with the
class profiles which belonged to the same class, whereas the
fingerprint of a testing entity need to be compared with the
class profiles of every class. This ensured that the training
rates were always much higher than the testing rates. Fur-
thermore, the absolute training and testing rates were of the
order of several thousand data points per second. This en-
sures that very large volumes of streams could be processed
with the use of such an approach.

We also tested the processing rates with increasing num-
ber of classification profiles. The results for the Hub64 data
stream, E-cover data stream and the Gauss50Mix10D1000
data stream are illustrated in Figures 3(d), (e), and (f) re-
spectively. The number of classification profiles are illus-
trated on the X-axis, whereas the processing rates is illus-
trated on the Y -axis. The number of anchors was set to the
default value of 50. One observation was that while the pro-
cessing rates reduces with increasing number of classification
profiles, they were not quite as sensitive to this parameter,
as they were to the number of anchors. The reason for this
is that most of the time is spent in constructing the finger-
prints, and this phase is essentially independent of the num-
ber of class profiles. Therefore, the processing rates are only
mildly sensitive to the number of classification profiles. As
in the previous case, the processing rates of the Set-Classify
scheme are significantly greater than that of the density-
based classification scheme. Furthermore, these processing
rates are typically of the order of several thousands data
points per second. This ensures that our approach is an ef-

fective and efficient method for setwise classification of data
streams.

4. CONCLUSIONS AND SUMMARY
Setwise stream classification scenarios are increasingly com-

mon, where one needs to classify an entire set of data records,
rather than an individual data point. An additional compli-
cating factor is that the stream points from different multi-
set entities may be mixed with one another. This can make
the classification process much more challenging. This pa-
per designs a technique for online generation of classification
profiles, which are used for the purposes of classification. We
presented experimental results illustrating its effectiveness
and efficiency.
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