
Prototype-based Learning on Concept-drifting Data
Streams

Junming Sha1,2, Zahra Ahmadi1, Stefan Kramer1
1University of Mainz, 55128 Mainz, Germany

2University of Electronic Science and Technology of China , 611731 Chengdu, China
{junmshao, zaahmadi}@uni-mainz.de, kramer@informatik.uni-mainz.de

ABSTRACT
Data stream mining has gained growing attentions due to its
wide emerging applications such as target marketing, email
filtering and network intrusion detection.In this paper, we
propose a prototype-based classification model for evolving
data streams, called SyncStream, which dynamically mod-
els time-changing concepts and makes predictions in a lo-
cal fashion. Instead of learning a single model on a sliding
window or ensemble learning, SyncStream captures evolv-
ing concepts by dynamically maintaining a set of prototypes
in a new data structure called the P-tree. The prototypes
are obtained by error-driven representativeness learning and
synchronization-inspired constrained clustering. To identify
abrupt concept drift in data streams, PCA and statistics
based heuristic approaches are employed. SyncStream has
several attractive benefits: (a) It is capable of dynamically
modeling evolving concepts from even a small set of pro-
totypes and is robust against noisy examples. (b) Owing
to synchronization-based constrained clustering and the P-
Tree, it supports an efficient and effective data representa-
tion and maintenance. (c) Gradual and abrupt concept drift
can be effectively detected. Empirical results shows that
our method achieves good predictive performance compared
to state-of-the-art algorithms and that it requires much less
time than another instance-based stream mining algorithm.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining

Keywords
Data stream; Concept drift; Classification; Synchronization

1. INTRODUCTION
Data stream classification is a challenging data mining

task because of two important properties: potentially infi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623609.

P
1 P

2

t1 t2t0

P
1 P

2

t1 t2t0

(a) (b)

Figure 1: How to select suitable training examples
for learning a classification model on an evolving
data stream?

nite length and evolving nature. Currently, there are two
main strategies to mine evolving data streams: single model
learning and ensemble learning. Single model learning tries
to learn and update a classification model by training on a
fixed or adaptive window of recent incoming examples [9],
[12]. The prediction performance of this type of learning
usually suffers in the presence of concept drift. By contrast,
ensemble learning partitions continuous data streams into
smaller chunks and uses them to train a number of base
classifiers to capture evolving concepts [16], [2]. Ensembles
can scale up to large volumes of streaming data and adapt
quickly to new concepts. However, two existing limitations
of ensemble learning are considered only little. First, the
performance of ensemble learning depends on the accuracy
of each base classifier capturing the concept, where each base
classifier is actually used in a black-box fashion. For illus-
tration, let us take Fig. 1 as an example. If the size of
data chunk is small (data arrived during [t0, t1)), the con-
cept of the data stream for each base classifier cannot be
sufficiently learned. On the other hand, if the size of a data
chunk is too large (data arrived during [t0, t2)), base classi-
fiers may learn more than one concept. Second, it is difficult
to decide whether more recent or older examples are more
relevant (e.g., the relatively old example P1 is important for
predicting the class label of P2 in Fig. 1 (a)). Learning from
recent examples, as in most established algorithms, is not
always optimal. A more natural way is to dynamically se-
lect short-term and/or long-term representative examples to
capture the trend of time-changing concepts, and use them
to predict the test data (cf. Fig. 1 (b)).

In this paper, we propose a new prototype-based learn-
ing method to mine evolving data streams. To dynamically
identify prototypical examples, error-driven representative-
ness learning is used to compute the representativeness of
examples over time. Noisy examples with low represen-
tativeness are discarded, and representative examples can

412

be further summarized by a smaller set of prototypes using
synchronization-inspired constrained clustering. To dynam-
ically represent the online training data, a new data struc-
ture, the P-Tree, is proposed to update the set of prototypes,
to capture time-changing concepts and to support accurate
predictions.

Contributions
Building upon the data representation of synchronization-
inspired constrained clustering, SyncStream has several at-
tractive benefits, most importantly:

• Prototype-based Data Representation: Due to
the properties of synchronization-inspired constrained
clustering, examples in data streams can be well sum-
marized and represented as a set of prototypes, which
allows preserving the data structure as well as the class
distribution of the original examples.

• Concept Modeling: Instead of using a set of base
classifiers or learning on a window of recent data, Sync-
Stream provides an intuitive way to model evolving
concepts by dynamically maintaining a small set of
short-term and/or long-term prototypes based on error-
driven representativeness learning (see Section 3.4.1).

• High Performance: Thanks to the efficient and ef-
fective online data maintenance relying on the pro-
posed P-Tree data structure (see Section 3.4.2), Sync-
Stream allows adapting to time-changing concepts
quickly to make accurate predictions.

The remainder of this paper is organized as follows: In the
following section, we briefly survey related work. Section
3 presents our algorithm in detail. Section 4 contains an
extensive experimental evaluation. We finally conclude the
paper in Section 5.

2. RELATED WORK
Data stream classification has received much attention in

recent decades. Early algorithms focused on learning a sin-
gle model from evolving data (e.g., [9]). But very soon they
were replaced by ensemble models in order to obtain more
accurate predictions. Ensemble models (e.g., [16, 2]) are of
great interest, as each model can represent one possible dis-
tribution over the data, therefore current data can be gener-
ated from a mixture of distributions with changing weights
over time. Also, if one of the previous concepts reappears,
they can handle this case more effectively [8]. However, as
explained in Section 1, ensemble models have some short-
comings in determining a suitable window size and useful
instances. One efficient solution to address these shortcom-
ings is the use of instance-based learning, which has been
considered in some papers in recent years [10, 17, 13]. In
instance-based learning, instead of taking time to build a
global model, the target function is approximated locally
by means of selected instances. The inherent incremental
nature of instance-based learning algorithms and their sim-
ple and flexible adaptation mechanism makes this type of
algorithm suitable for learning in complex dynamic envi-
ronments. Nevertheless, instance-based learning algorithms
have to face their own challenges, such as their space re-
quirements and their sensitivity to noise. To manage mem-
ory consumption and accelerate nearest neighbor lookup,
researchers usually use a tree based data structure such as

the M-Tree [17, 13]. In this tree, instances of small neigh-
borhoods are kept in the leaves; inner nodes combine their
subnodes to form bigger spheres, and the root encompasses
all the data. The number of subnodes is determined heuris-
tically. In contrast, we provide an intuitive and effective
strategy to summarize data, and dynamically maintain a
small set of prototypes in the proposed P-Tree to support
effective and efficient online data maintenance.

To handle concept drift in an evolving data stream, one
strategy is to dynamically monitor the change of a distribu-
tion over time and set a flag whenever drift is detected. This
type of method is referred to as explicit concept drift detec-
tion. In contrast to this strategy, implicit methods adapt to
new concepts by updating a model continuously. The bene-
fit of using explicit methods is the ability to react to sudden
drift more quickly, while implicit methods are more suit-
able for data streams with gradual concept drift. Generally,
methods for concept drift detection are categorised into sta-
tistical techniques (e.g., [5]) and those based on performance
monitoring between two consecutive data chunks (e.g., [1]).
If concept drift is detected, the model may be reconstructed
from scratch (e.g., [7]) or only the affected parts of the model
are updated (e.g., [9]). Locally updating a model has the
benefit of maintaining useful knowledge from previous data
and is especially useful in recognizing recurring concepts. In
this paper, error-driven representativeness learning is intro-
duced to identify the most important prototypes to capture
the trend of time-changing concepts in an implicit and lo-
cal way, while sudden concept drift is handled based on two
heuristic strategies.

3. PROPOSED METHOD
In this section, we present the SyncStream algorithm for

mining evolving data streams. Before that, we provide an
overview of the algorithm and the intuition behind it.

3.1 Overview
As introduced in Section 1, the basic idea of our algo-

rithm is to dynamically keep track of short-term and/or
long-term representative examples to capture the trend of
time-changing concepts, and use them for prediction in a
local instance-based fashion. Specifically, a small set of
data examples is first regarded as initial prototypes and in-
serted into a proposed hierarchical tree structure called the
P-Tree, which is used to maintain prototypes and drifting
concepts on two levels, respectively. For each new exam-
ple, the nearest prototype in the P-Tree is used to predict
its label. Meanwhile, during the classification process, an
error-driven learning approach is employed to determine the
representativeness of prototypes in the P-Tree. If the near-
est prototype correctly predicts the new example, this in-
dicates that the prototype is in line with the trend of the
current concept of the new example. The representative-
ness of a prototype is thus increased (and decreased in the
opposite case). However, due to restricted memory, we can-
not store all prototypes in the P-Tree. To fit the P-Tree in
an any-space memory framework and support efficient pre-
diction, inappropriate or noisy examples with low represen-
tativeness are discarded. The representative examples are
further summarized as a smaller set of prototypes based on
synchronization-inspired constrained clustering, where each
prototype solely belongs to one specific class (cf. Section
3.2). Relying on constrained clustering, historical data is

413

summarized and, more importantly, the data structure of
the original examples is well preserved. To further han-
dle the evolving nature of data streams, PCA and statis-
tics based methods are introduced to detect sudden con-
cept drift, so that prototypes in the P-Tree can be updated
quickly to capture a new concept. Once a new concept is
emerging, the previous concept is modeled as a set of proto-
types and stored on the concept level of the P-Tree. In the
following, we will first elaborate on how to summarize his-
torical data based on synchronization-inspired constrained
clustering, before we move on to drift detection and the P-
tree.

3.2 Prototype-based Data Representation
In the context of an evolving data stream, it is infea-

sible to keep track of the entire history of the data. To
support effective and efficient online data maintenance, we
first introduce a data summarization technique by adapting
synchronization-inspired clustering [14], [3]. The key philos-
ophy of synchronization-based clustering approaches (e.g.,
Sync [3] or pSync [14]) is to regard each example as a phase
oscillator and simulate the dynamical behavior of the exam-
ples over time. Based on the non-linear local interactions
among examples, similar examples will finally synchronize
together and end up in the same common phase. The syn-
chronized common phase represents the set of similar exam-
ples, and thus provides an intuitive way to summarize the
data.
Typically, a synchronization-based clustering algorithm

needs three definitions to simulate a dynamic clustering pro-
cess. In the following, we give a short summary of all nec-
essary definitions.

Definition 1 (ϵ-Range Neighborhood)

Given a ϵ ∈ R and x ∈ D, the ϵ-range neighborhood of an
example x, denoted by Nϵ(x), is defined as:

Nϵ(x) = {y ∈ D|dist(y, x) ≤ ϵ}, (1)

where dist(y, x) is a metric distance function, and the Eu-
clidean distance is used in this study.

Definition 2 (Interaction Model)

Let x ∈ Rd be an example in the data set D and xi

be the i-th dimension of the example x, respectively. Each
example x is viewed as a phase oscillator. With an ϵ-range
neighborhood interaction, the dynamics of each dimension
xi of the example x is defined by:

xi(t+ 1) = xi(t) +
1

|Nϵ(x(t))|
·

∑
y∈Nϵ(x(t))

sin(yi(t)− xi(t)), (2)

where sin(·) is the coupling function. xi(t+1) describes the
renewal phase value of the i-th dimension of example x at
t = (0, . . . , T) during the dynamic clustering.
To characterize the level of synchronization between os-

cillators during the synchronization process, a cluster order
parameter Rc is defined to measure the coherence of the
local oscillator population.

Definition 3 (Cluster Order Parameter)

The cluster order parameter Rc is used to terminate the
dynamic clustering by investigating the degree of local syn-
chronization, which is defined as:

P1

(a)%Constrained%clustering%by

synchronization%

(b)%Final%data%synchronization%

(Prototype9based%representation)

Figure 2: Illustration of synchronization-inspired
constrained clustering.

Rc =
1

N

N∑
i=1

1

|Nϵ(x)|
∑

y∈Nϵ(x)

e−||y−x||. (3)

The dynamic clustering terminates when Rc(t) converges,
which indicates local phase coherence. At this moment, clus-
ter examples have the same phase (common location in the
feature vector space).

One of the most salient features of synchronization-based
clustering is its dynamic property. During the process of
clustering, each object moves in a non-linear way driven by
the local data structure, and finally a set of examples with
similar local structure will group together. The synchro-
nized phase thus provides a natural way to summarize the
local data. In contrast to computing the center of cluster
examples or other summarized statistics, the synchronized
phases represent the original data without losing the local
structure of the data.

However, for data stream classification, clustering-based
data summarization needs to be conducted in a supervised
manner, i.e. it needs to take into account class informa-
tion. Therefore, the interaction model needs to be extended
to make sure the examples in a cluster solely belong to the
same class. To achieve this goal, there are two strategies:
active or passive. The active strategy is to exert the oppo-
site interaction on two examples with different class labels.
Although this strategy can push the examples with different
class labels away from each other, the local structure cannot
be maintained. The passive strategy is to impose a cannot-
link constraint [15], where two examples with different class
labels cannot interact with each other. Without interaction,
the examples with distinct class labels cannot synchronize
together. Thereby, we reformulate the interaction model us-
ing the cannot-link constraint as follows.

Definition 4 (Interaction Model with Constraint)

Let x ∈ Rd be an example in the data set D and xi be
the i-th dimension of the example x, respectively. lx ∈ L
is the class label of example x. With an ϵ-range neighbor-
hood interaction, the dynamics of each dimension xi of the
example x is defined by:

xi(t+ 1) = xi(t) +
1

|Nϵ(x(t))|
· (4)

∑
y∈Nϵ(x(t)),eq(lx,ly)

sin(yi(t)− xi(t)),

where lx and ly indicate the class labels of examples x and
y, respectively. eq(·, ·) is the function to check whether two
class labels are equal.

414

Based on the extended interaction model, Fig. 2 displays
two snapshots of the simulated dynamical example move-
ment for data synchronization. Specifically, there are two
classes of examples with different shapes. Given an inter-
action range (Fig. 2 (a)), examples of the same class will
interact together, while examples of different classes will not
(e.g., example P1). Finally, due to the non-linear interac-
tion driven by local structure, similar examples of the same
label synchronize together (Fig. 2 (b)). In this paper, we
define the synchronized phases as prototypes. Due to the
benefits of synchronization-based constrained clustering, we
obtain two desirable properties of a prototype-based data
representation:

• Data Structure Preservation. Since a prototype
is defined as a synchronized phase, it provides an in-
tuitive way to summarize the set of synchronized ex-
amples and further envelops the local cluster structure
(both data structure and class distribution are repre-
sented).

• Multi-scale Representation. As a prototype can
be viewed as a regular example, it supports a multi-
scale representation, which means a set of prototypes
can be further summarized by clustering.

In Section 3.4, we will demonstrate that the two properties
are useful for online data maintenance.

3.3 Concept Drift Detection
After the prototype-based data representation, we intro-

duce two heuristic strategies to identify abruptly drifting
concepts, so that the classification model allows quickly learn-
ing and adapting to emerging new concepts. Instead of only
investigating the change of the data distribution (for de-
tails, see the review paper by Gama et al. [6]), we exactly
examine the change of the target concepts (i.e., the class
distributions).
Formally, let Dt and Dt+1 be two given sequential data

chunks in a data stream D, and L = {l1, l2, · · · , l|L|} be
the set of labels. The objective is to analyze whether or
not the statistical properties of each target concept (class
distribution) between Dt and Dt+1 have changed over time.

3.3.1 Principal Component Analysis (PCA)
To identify concept drift, the first proposal is to analyze

the change of each class distribution using principal compo-
nent analysis (PCA):

• For each class label l ∈ L, the examples associated
with class label l in two data sets (Dt and Dt+1) are
collected, respectively, denoted as Dl

t and Dl
t+1 (e.g.,

D1
t and D1

t+1 in Fig. 3), if existing.

• PCA is used to decompose the covariance matrix Σ
of examples of each individual collected data chunk,
which is denoted by Σ = V EV T . The orthogonal ma-
trix V is called eigenvector matrix and the diagonal
matrix E is eigenvalue matrix. The eigenvectors rep-
resent the principal directions of the data set, and the
eigenvalues represent the variance along these direc-
tions. We sort the eigenvectors according to the cor-
responding eigenvalues in descending order. Finally,
the major direction of the data set is obtained (e.g.,
V 1
Dt

(1) is the major direction of D1
t for class 1).

V
Dt

1(2)
VDt+1

1(2)

Dt+1
1

VDt
1(1)

V 1(1)

VDt
1(1)

 1

Dt
1

VDt+1
1(1)

VDt
2(1)

VDt+1
1(1)

VDt
2(1)

max(1, 2)

Data%Chunk%Dt Data%Chunk%Dt+1

VDt+1
2(1)

 2

VDt+1
2(1)

Figure 3: PCA-based concept drift analysis.

• We analyze the concept drift between two data sets (Dt

and Dt+1) by investigating the variances of all class
distributions. Specifically, let V l

Dt
(1) and V l

Dt+1
(1) be

the major eigenvectors for class label l on the data set
Dt and Dt+1, respectively, the degree of concept drift
is finally defined as:

Angle(Dt, Dt+1) = max
l∈L

acos(V l
Dt

(1) · V l
Dt+1

(1)), (5)

where · denotes the inner product. For illustration,
Fig. 3 describes the procedure of PCA-based concept
drift analysis.

3.3.2 Statistical Analysis
The second strategy for concept drift detection is based

on statistical analysis. The basic idea is to compute a suit-
able statistic, which is sensitive to class distribution changes
between two sets of examples. The degree of concept drift
is measured by the resulting p-value. Although statistical
analysis is a straightforward solution to concept drift de-
tection, computing statistics on multivariate data is usually
complicated and time consuming. Here, we extend Brunner
and Munzel’s generalized Wilcoxon test statistic [4], [11] to
compare the differences of class distributions of two data
sets. In contrast to most existing statistics (e.g., Welch
test, Mann-Whitney U test), this non-parametric statisti-
cal test allows for relaxation of the assumption of equality
of variance and normal distributions simultaneously. More
importantly, it allows an efficient computation. Formally,
Brunner and Munzel’s generalized Wilcoxon test statistic is
calculated as follows.

Given each data pair (Dl
t andDl

t+1), we investigate whether
the sets of examples corresponding to class label l in the
data sets Dt and Dt+1 are significantly different. For this
purpose, we define the intra- and inter-rank on both data
sets as follows. Let Γl = Dl

t

∪
Dl

t+1, R
ij

Dl
t
, Rij

Dl
t+1

and Rij

Γl

are defined as the rank of examples x ∈ Dl
t, y ∈ Dl

t+1 and
z ∈ Γl on the jth dimension, respectively. In addition, we

further calculate Rj

Dl
t
and Rj

Dl
t+1

, which are the jth dimen-

sional mean ranks of examples from Dl
t and Dl

t+1 in the data
set Γl. Formally, we compute the estimated variance σ2

BF

as follows:

σ2
BF =

(|Dl
t|+ |Dl

t+1|)ν2
Dl

t

|Dt+1|
+

(|Dl
t|+ |Dl

t+1|)ν2
Dl

t+1

|Dl
t|

, (6)

where

ν2
Dl

t
=

1

|Dl
t| − 1

d∑
j=1

|Dl
t|∑

i=1

(Rij

Γl −Rij

Dl
t
−Rj

Dl
t
+

|Dl
t|+ 1

2
)2, (7)

415

ν2
Dl

t+1
=

1

|Dl
t+1| − 1

d∑
j=1

|Dl
t+1|∑

i=1

(Rij

Γl−Rij

Dl
t+1

−Rj

Dl
t+1

+
|Dl

t+1|+ 1

2
)2.

(8)
Finally, the adapted Brunner and Munzel’s generalized

Wilcoxon test statistic, W l
BF , is defined as:

W l
BF =

√
|Dl

t||Dl
t+1|

|Dl
t|+ |Dl

t+1|
·

∑d
j=1(R

j

Dl
t
−Rj

Dl
t+1

)

σBF
(9)

If both numbers of examples are large enough (>20), then
the statistic W l

BF is asymptotically standard normal. The
test statistic is compared with a normal distribution of zero
mean and unit standard deviation to obtain a p-value. The
minimal value of all resulting p-values on the data pairs is
used to measure the degree of concept drift between the two
data chunks Dt and Dt+1.

3.4 Online Data Maintenance
In this section we will first demonstrate how to learn the

representativeness of prototypes over time. Subsequently, a
hierarchical tree structure, called P-Tree, is proposed to dy-
namically maintain the set of prototypes and evolving con-
cepts building upon the prototype-based data representation
and concept drift detection as introduced above.

3.4.1 Error-driven representativeness learning
In an evolving data stream, either short-term or long-term

historical examples may be important for prediction. Tradi-
tional single model learning or ensemble learning approaches
usually capture the current data concept by operating on a
sliding window of data or a set of data chunks. However,
how to decide the size of a window or horizon of the training
data is a non-trivial task. In addition, for both traditional
single model learning or ensemble learning, usually, not all
examples in the window or in a data chunk are relevant
for classification. Therefore, in this paper, we propose an
error-driven approach to automatically learn the represen-
tativeness of data and dynamically identify the short-term
or long-term prototypical examples to capture the data con-
cepts.
The basic idea is to leverage the prediction performance

of incoming examples to infer the representativeness of ex-
amples in the training data. Formally, given a new example
x, let C be the current training data set (a set of proto-
types), and y ∈ C the one prototype nearest to x. xl and xpl

are the true label and the predicted label of x by y, respec-
tively. The representativeness of the prototype y is updated
as follows:

Rep(y) := Rep(y) + Sign(xpl, xl), (10)

where the initial value of Rep(y) is one and Sign(x, y) is
the sign function, and 1 if x equals y, -1 otherwise.

3.4.2 P-Tree
To support efficient and effective online data maintenance,

we propose a tree structure called the P-Tree. The P-Tree is
a hierarchical tree structure consisting of two levels, where
the first level stores a set of time-changing prototypes cap-
turing the current concept, and the second level stores drift-
ing concepts over time (see Fig. 4). Except for the inclusion
of new, incoming examples continuously, the P-Tree is also

Concept Level

…1 2 maxCmaxC-1

Prototype Level

…
1 2 3 4 maxP

Figure 4: An illustration of the P-Tree structure.

required to be updated when the following two scenarios
occur: (a) maximum boundary, or (b) concept drift.

Maximum boundary limits the number of prototypes and
the number of concepts that can be stored in the P-Tree.
This restriction allows us to perform data stream classifi-
cation on any computer at hand in an any-space memory
framework. The updating procedure is as follows: For each
incoming example, if the size of the prototypes in the P-Tree
does not exceed the maximum boundary (i.e., maxP), it is
directly inserted into the entry on the first level of the P-
Tree, and meanwhile the representativeness of existing pro-
totypes in the P-Tree is computed based on error-driven
learning (cf. Section 3.4.1). Once the size exceeds maxP ,
prototypes with different representativeness are handled sep-
arately. (a) Prototypes with low representativeness (e.g., a
negative value) in the P-Tree are directly removed. (b) Pro-
totypes with high representativeness (e.g., a positive value)
in the P-Tree are kept, which indicates these prototypes
can capture the current concept well. (c) Prototypes with
unchanged representativeness are further summarized by a
new and smaller set of prototypes based on synchronization-
inspired constrained clustering (cf. Section 3.2). Due to the
two desirable properties of prototype-based data representa-
tion (cf. Section 3.2), the newly generated prototypes pre-
serve the original data structure well and can be summarized
further on a higher level of abstraction. Moreover, to main-
tain the time-changing concepts on the second level, once
the number of concepts is greater than maxC, the oldest
concept is removed.

The second scenario occurs when a new concept is emerg-
ing, which can be detected by PCA or statistical analysis
(cf. Section 3.3). In this case, we draw sample data from
all prototypes representing a previous concept, and perform
synchronization-inspired constrained clustering on it. The
resulting set of new prototypes is inserted into one entry
of the concept level of the P-Tree. Meanwhile, all proto-
types representing the previous concept are removed from
the first level of the P-Tree. Moreover, if there is no signifi-
cant concept change over time (i.e., gradual concept drift or
no concept drift), we also extract the concept based on the
prototypes in the P-Tree by clustering after a specified time
T ; yet the prototypes are not removed. This strategy helps
to give a summarization of data over time on the concept
level.

3.5 SyncStream Algorithm
Building upon the proposed online data maintenance, fi-

nally instance-based learning in the form of the nearest neigh-
bor classifier is used for data stream classification. In con-
trast to eager learning approaches, SyncStream only needs

416

Algorithm 1 SyncStream

Input: D, Dinit, maxP , maxC, chunkSize, type, T

P-Tree.insert(Dinit); //P-Tree initialization
while NoError do

for each new example x ∈ D do
//error-driven representativeness learning
y := NN(P-Tree, x); x.prelabel := y.label;
if x.prelabel == x.label then

y.Rep++;
else

y.Rep−−;
end if
measure := computAccuracy(x.prelabel);
P-Tree.insert(x);

//maximum boundary in prototype level
if P-Tree.prototypeSize == maxP then

Sn := P-Tree.getNegativePrototypes();
P-Tree.remove(Sn);
Su := P-Tree.getUnchangedPrototypes();
P := ConstrainedSync(Su);
P-Tree.remove(Su); P-Tree.insert(P);

end if

//maximum boundary in concept level
if P-Tree.conceptSize == maxC then

P-Tree.removeOldestConcept();
end if

//concept drift detection
if numObj==chunkSize then

if type == PCA then
θ := angle(curChunk, preChunk);

else
p := p-value(curChunk, preChunk);

end if
if θ ≥ 60◦ or p ≤ 0.01 or numInstance ≥ T then

Ps := Sample(P-Tree.prototypes);
Cs := ConstrainedSync(Ps);
P-Tree.addConcept(Cs);
if θ ≥ 60◦ or p ≤ 0.01 then

P-Tree.prototypes.clear();
end if

end if
end if

end for
end while

Output: P-Tree, measure;

to maintain the online training data (represented by a small
set of time-changing prototypes) in the P-Tree. Finally, the
pseudocode of SyncStream is shown in Algorithm 1.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed algorithm Sync-

Stream on both synthetic and real-world data streams.

4.1 Experiment Setup
Data sets. We evaluate the proposed method on synthetic
data and four different types of real-world data: Spam, Elec-
tricity, Covtype, and Sensor. Table 1 lists statistics of the
four real-world data streams.

Synthetic Data was generated based on a moving hyper-
plane [16]. The hyperplane in 2-dimensional space was used
to simulate different time-changing concepts by altering its
orientation and position in a smooth or sudden manner. In

this study, two synthetic data consisting of one million ex-
amples each were created to characterize the data stream
with gradual and sudden concept drift, respectively (Fig. 5
and Fig. 6).

Spam Filtering Data is a collection of 9324 email mes-
sages derived from the Spam Assassin collection1. Each
email is represented by 500 attributes using the Boolean
bag-of-words approach.

Electricity Data contains 45,312 instances, which was col-
lected from the Australian New SouthWales Electricity Mar-
ket for every five minutes. In this market, prices are not fixed
and affected by demand and supply on the market.

Covtype Data containing 581,012 instances describes seven
forest cover types on a 30×30 meter grid with 54 different
geographic measurements.

Sensor Data collects information (temperature, humid-
ity, light, and sensor voltage) from 54 sensors deployed in
the Intel Berkeley Research Lab over a two months period
(one reading per 1-3 minutes). It totally contains 2,219,803
instances belonging to 54 classes.

Evaluation Metrics. To quantitatively evaluate Sync-
Stream, we consider the following performance metrics:

• Prediction performance. We evaluate the performance
of SyncStream in terms of Accuracy, Precision, Recall
and F1-Measure.

• Efficiency. We evaluate the computation time as effi-
ciency metric.

• Sensitivity. We test how classification performance is
sensitive against parameter variation.

Selection of comparison methods. To extensively eval-
uate the proposed algorithm SyncStream, we compare its
performance to several representatives of data stream clas-
sification paradigms.

Adaptive Hoeffding Tree [9]: is an incremental, anytime
decision tree induction algorithm capable of learning from
massive evolving data streams, using ADWIN to monitor
the performance of branches in the tree and to replace them
by new branches if they turn out to be more accurate.

IBLStreams [13]: an instance-based learning algorithm
for classification on data streams. A prediction for a new ex-
ample is achieved by combining the outputs of the neighbors
of this example in the training data.

Weighted Ensemble [16]: a general framework for min-
ing concept-drifting data streams using weighted ensemble
classifiers.

OzaBagAdwin [2]: is an online bagging method by Oza
and Russell with the addition of the ADWIN algorithm as
a change detector and an estimator for the weights of the
boosting method. When a change is detected, the worst
classifier of the ensemble of classifiers is removed and a new
classifier is added to the ensemble.

PASC [8]: is a pool and accuracy based strategy to
exploit the existence of recurring concepts in the learning
process and improve the classification of data streams.

We have implemented SyncStream in Java. The source
code of PASC was obtained from the authors, and the IBL-
Streams algorithm is available at: http://www.uni-marburg.
de/fb12/kebi/research/software/iblstreams. Adaptive
Hoeffding Tree, Weighted Ensemble and OzaBagAdwin have

1http://spamassassin.apache.org/

417

0
50

100
0

0.5

1

0

0.2

0.4

0.6

0.8

Time Units

Dim 1

D
im

 2

(a) T5 (b) T10 (c) T20 (d) T100 (e) Data Dynamics
Concept:1 Concept:2

Concept:3 Concept:4

(f) P-Tree (T5) (g) P-Tree (T10) (h) P-Tree (T20) (i) P-Tree (T100) (j) P-Tree (Concepts)

Figure 5: Performance of SyncStream algorithm on synthetic data stream with gradual concept drift.

0 20 40 60 80 100
0

0.5

1

0.2

0.3

0.4

0.5

0.6

0.7

Time Units

Dim 1

D
im

 2

(a) T25 (b) T26 (c) T51 (d) T76 (e) Data Dynamics
Concept:1 Concept:2

Concept:3 Concept:4

(f) P-Tree (T25) (g) P-Tree (T26) (h) P-Tree (T51) (i) P-Tree (T76) (j) P-Tree (Concepts)

Figure 6: Performance of SyncStream algorithm on synthetic data stream with sudden concept drift.

been implemented in the MOA framework available at http:
//moa.cms.waikato.ac.nz/. All experiments have been per-
formed on a workstation with 3.0 GHz CPU and 32 GB
RAM.

4.2 Proof of Concept
We start the evaluation with two-dimensional synthetic

data streams to facilitate presentation and demonstrate some
properties of SyncStream.

Concept Modeling: We first evaluate whether or not
SyncStream can capture the data concept with the proposed
P-Tree. Fig. 5 (a) - (d) and Fig. 6 (a) - (d) show two syn-
thetic data streams consisting of one million examples with
gradual and sudden concept drift, respectively. The evolv-
ing mean values of the data for each class are plotted in Fig.
5 (e) and Fig. 6 (e), where each time unit (T) is composed
of one thousand examples. It is interesting to note that the
derived prototypes in the P-Tree at any time interval en-
able to capture the changing data concept regardless of the
type of data stream (Fig. 5 (f) - (i) and Fig. 6 (f) - (i)).
Instead of learning a recent window of historical data or
learning a set of base classifiers as a black box, SyncStream
well captures the trend of time-changing data concepts by
maintaining a set of short-term or long-term prototypes dy-

namically. Fig. 6 (j) displays the four changing concepts,
which are preserved in the concept level of the P-Tree. For
the data stream with gradual concept drift, the concepts
are also learned after a specified time window (e.g., 25,000
examples in this experiment) and inserted into the concept
level of the P-Tree (see Fig. 5 (j)).

Concept Drift Detection: To investigate the perfor-
mance of sudden concept drift detection, Fig. 7 shows the
results based on the PCA and statistical analysis, respec-
tively. For the data stream with gradual concept drift, we
can observe that the PCA-resulting angles over time are
relatively stable and lower than 10◦, and similarly, the de-
rived p-values are high and no significant concept drift is
detected (see Fig. 7 (a) and (c)). In contrast, for the sud-
den concept-drifting data stream, both the PCA and the
statistical approach are capable of identifying the abruptly
changing concept effectively (Fig. 7 (b) and (d)).

Prototype-based Data Representation: Based on the
synchronization-inspired constrained clustering, important
examples are further summarized as a set of prototypes.
From Fig. 5 and Fig. 6, it is interesting to observe that
the derived prototypes stored in the P-Tree preserve the
data structure as well as the class distribution. Moreover,

418

0 20 40 60 80 100
0

10

20

30

40

Time Units

A
n
g

le

0 20 40 60 80 100
0

20

40

60

80

Time Units

P
−

V
a
lu

e

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0.01

Sig. L.

Time Units

P
−

V
a

lu
e

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

0.01

Sig. L.

Time Units

P
−

V
a
lu

e

(a) PCA (G) (b) PCA (S) (c) Statistical Test (G) (d) Statistical Test (S)

Figure 7: Results of two strategies for concept drift detection, where “G”and“S” indicate gradual and sudden
concept drift, respectively.

inappropriate examples can be handled even in the presence
of noise by error-driven representativeness learning (Fig. 8).
The proposed prototype-based data representation provides
an effective and efficient strategy to handle a large amount
of online training data.

(a) Data stream with noise (b) Prototypes in P-Tree

Figure 8: Effective prototype-based data represen-
tation in a data stream with noise.

35"

SyncStream(PCA) IBLStream HoeffdingAdaTree

25

30"

o
r

y () g

WeightedEnsemble OzaBagAdwin PASC

20"

25"

ti
o
n
AE
rr
o

10

15"

C
la
ss
if
ic
a

5"

10"C

0"

1000 2000 3000 4000 5000 6000 7000 8000 9000 All

I t P dInstancesAProcessed

Figure 9: Performance of different data stream clas-
sification algorithms on spam data.

40

SyncStream(PCA) IBLStream HoeffdingAdaTree

WeightedEnsemble OzaBagAdwin PASC

25

30%

35%

40%

n
AE
rr
o
r

g g

15%

20%

25%

si
fi
ca
ti
o
n

0%

5%

10%

C
la
ss

5K 10K 15K 20K 25K 30K 35K 40K 45K All

InstancesAProcessed

Figure 10: Performance of different data stream
classification algorithms on electricity data.

35" SyncStream(PCA) IBLStream HoeffdingAdaTree

25"

30"

n
8E
rr
o
r WeightedEnsemble OzaBagAdwin PASC

15"

20"

if
ic
a
ti
o
n

0

5"

10"

C
la
ss
i

0"

50K 100K 150K 200K 250K 300K 350K 400K 450K 500K 550K All

Instances8Processed

Figure 11: Performance of different data stream
classification algorithms on covtype data.

100

SyncStream(PCA) IBLStream HoeffdingAdaTree

W i ht dE bl O B Ad i PASC

80

90$

100$ WeightedEnsemble OzaBagAdwin PASC

60

70$

80$
E
rr
o
r

40$

50$

60$

si
fi
ca
ti
o
n
A

20$

30$C
la
ss

0$

10$

200K 400K 600K 800K 1000K 1200K 1400K 1600K 1800K 2000K 2200K All

InstancesAProcessed

Figure 12: Performance of different data stream
classification algorithms on sensor data.

4.3 Prediction Performance Analysis
In this section, we compare the performance of different

stream classification algorithms on the mentioned four real
data streams. For SyncStream, unless specified otherwise,
the parameters were set to maxP = 1000, maxC = 10 and
chunkSize = 1000. For all other algorithms, the default
parameters suggested by the authors were used.

Fig. 9 - Fig. 12 plot the prediction performance against
the number of processed instances. Generally, with an in-
creasing number of processed examples, the prediction error
of SyncStream is quite small and relatively stable. This is
the result of modeling concepts by sets of dynamically ad-
justed prototypes. Instead of focusing on recent data or a
set of data chunks, SyncStream can select the prototypes to
capture the data concept on the instance level. Although
IBLStream is similar to SyncStream in capturing local data
characteristics by instance-based learning, it cannot adapt
well to evolving concepts, and thus prediction performance
fluctuates over time. HoeffdingAdaTree is a typical single
model learner: due to the insufficient handling of time-
changing concepts, it achieves the worst prediction perfor-
mance in most cases. Although the ensemble learning ap-

419

Table 1: Performance of different data stream classification algorithms on real-world data sets.

Data #Obj #Dim #Class Methods Acc. Prec. Rec. F1 Time (ms)

Spam 9324 500 2

SyncStream (PCA) 0.9719 0.9590 0.9665 0.9627 60410

SyncStream (Stat.) 0.9719 0.9590 0.9665 0.9627 29780

IBLStream 0.9370 0.9070 0.372 0.9218 702632

HoeffdingAdaTree 0.9071 0.8717 0.8935 0.8824 2252

WeightedEnsemble 0.8629 0.8139 0.8176 0.8158 13000

OzaBagAdwin 0.9108 0.8765 0.8973 0.8868 10848

PASC 0.8931 0.9178 0.9415 0.9295 2142

Electricity 45,312 8 2

SyncStream (PCA) 0.8457 0.8423 0.8420 0.8421 3118

SyncStream (Stat.) 0.8459 0.8425 0.8419 0.8422 3280

IBLStream 0.7688 0.7648 0.7584 0.7616 7512

HoeffdingAdaTree 0.8398 0.8409 0.8296 0.8352 750

WeightedEnsemble 0.7092 0.7024 0.7022 0.7023 3920

OzaBagAdwin 0.8397 0.8399 0.8302 0.8350 3810

PASC 0.8170 0.8316 0.8552 0.8432 1327

Covtype 581,012 54 7

SyncStream (PCA) 0.9438 0.8915 0.8980 0.8947 207176

SyncStream (Stat.) 0.9438 0.8915 0.8980 0.8947 226331

IBLStream 0.9197 0.8620 0.8573 0.8597 3005412

HoeffdingAdaTree 0.8087 0.7085 0.7173 0.7129 31692

WeightedEnsemble 0.8033 0.7476 0.6690 0.7061 365582

OzaBagAdwin 0.8383 0.7848 0.7722 0.7784 176000

PASC 0.7972 0.8291 0.8348 0.8319 125387

Sensor 2,219,803 5 54

SyncStream (PCA) 0.8453 0.8508 0.8460 0.8484 244110

SyncStream (Stat.) 0.8453 0.8508 0.8460 0.8484 246492

IBLStream 0.1173 0.1805 0.1397 0.1575 345930

HoeffdingAdaTree 0.6121 0.6269 0.6282 0.6276 166600

WeightedEnsemble 0.6752 0.7918 0.6805 0.7319 2105133

OzaBagAdwin 0.8563 0.8660 0.8639 0.8649 1343065

PASC 0.7968 0.8420 0.8150 0.8283 264161

proaches, Weighted Ensemble, OzaBagAdwin and PASC, al-
low adapting to changing concepts quickly according to pre-
vious studies, the classification accuracies are not promising,
which may caused by the two limitations stated in Section
1. Table 1 further summarizes the performance of the algo-
rithms in terms of different evaluation measures. Regarding
the computation time, HoeffdingAdaTree is the fastest al-
gorithm due to the Hoeffding bound, yet the classification
accuracy suffers. SyncStream, Weighted Ensemble, OzaBa-
gAdwin and PASC are comparable, while IBLStream is the
most time-consuming algorithm. From the experiments, we
can see that SyncStream not only allows making accurate
classifications, but also working efficiently in terms of com-
putation time (Table 1).

4.4 Sensitivity Analysis
In this section, we perform a sensitivity analysis of Sync-

Stream on the cover type data.

Maximum Boundary: As stated in Section 3.4.2, the
maximum number of prototypes maxP needs to be speci-
fied to indicate how many prototypes can be dynamically
maintained in the P-Tree according to the available com-
putational resources. The higher the value of maxP , the

100

80

90

c
y

70

80

c
u
ra
c

60

70

A
c
c

50

60

50

500 1000 1500 2000 2500 3000

PmaxP

300

350

250

300

e
c.
)

150

200

e
)(
S
e

100

150

T
im

0

50

0

500 1000 1500 2000 2500 3000

PmaxP

Figure 13: The sensitivity analysis with maxP .

more prototypes can be managed to model the concepts. In
this experiment, we varied maxP from 500 to 3000. Fig. 13
(a) plots the classification accuracies dependent on the num-
bers of prototypes, the corresponding computation time is
shown in Fig. 13 (b). We observe that the classification per-
formance is quite stable, while the computation time is grad-
ually growing due to the increased effort needed for nearest
neighbor search.

Chunk Size: The chunk size determines how many ex-
amples have been used to examine whether the concept has
changed across two consecutive data chunks. Fig. 14 (a)
shows the classification performance with respect to differ-
ent chunk sizes ranging from 500 to 3000. Similarly, the cor-

420

responding number of time-changing concepts is reported in
Fig. 14 (b). With increasing chunk size, the number of de-
tected concepts is gradually decreasing, as more data make
the transition from one concept to another appear smoother.
However, thanks to error-driven representativeness learning,
the set of dynamical prototypes in the P-Tree has already
learned the evolving concepts implicitly. By combining rep-
resentativeness learning and concept drift detection, Sync-
Stream allows adapting to both gradual and sudden concept
drift quickly, which results in high classification accuracies
in the experiments (Fig. 14 (a)).

95

93

94

cy

92

93

cu
ra
c

91

92

A
c

90

91

90

500 1000 1500 2000 2500 3000

Ch kSiChunkSize

35

40

p
ts

25

30

o
n
ce
p

20

25

o
f-
C
o

10

15

m
b
e
r-

0

5

N
u
m

0

500 1000 1500 2000 2500 3000

Ch kSiChunkSize

Figure 14: Sensitivity analysis with chunkSize.

5. DISCUSSION AND CONCLUSION
In this paper, we introduce a new prototype-based classi-

fication algorithm, SyncStream, to learn from evolving data
streams. While existing approaches focus on learning a
single model on a window of recent data or a set of base
classifiers on recent data chunks, time-changing concepts
may not be learned well in this way due to two factors:
the difficulty of selecting a suitable horizon of the train-
ing data and the loss of relevant historical data. In the
light of these problems, this paper proposes error-driven
representativeness learning to determine the importance of
training examples. Only representative examples, allowing
to model the current concept, are kept and further sum-
marized as a smaller set of prototypes by synchronization-
inspired constrained clustering. With this strategy, Sync-
Stream allows dynamically learning a set of prototypes to
capture evolving concepts implicitly on the level of instances.
Moreover, in order to adapt to abrupt concept drift quickly,
two heuristic concept drift detection approaches are intro-
duced. Equipped with both implicit and explicit concept
drift handling, SyncStream allows modeling time-changing
concepts (either gradual or sudden) effectively. One other
attractive property of SyncStream is its any-memory prop-
erty. Owing to the prototype-based data representation, a
multi-scale representation of the data (a set of prototypes) is
possible. Although SyncStream is an instance-based learn-
ing scheme, it largely differs from traditional instance-based
learning such as IBLStreams. One main difference is that
IBLStreams keeps track of recent instances, while Sync-
Stream dynamically learns a set of prototypes and supports
efficient data maintenance. In comprehensive experiments,
we have shown that SyncStream outperforms several other
state-of-the-art data stream classification methods.

6. REFERENCES
[1] A. Bifet and R. Gavalda. Learning from time-changing

data with adaptive windowing. In Proceedings of the
11th SIAM International Conference on Data Mining,
pages 443–448, 2007.

[2] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and
R. Gavaldà. New ensemble methods for evolving data
streams. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 139–148, 2009.

[3] C. Böhm, C. Plant, J. Shao, and Q. Yang. Clustering
by synchronization. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 583–592, 2010.

[4] E. Brunner and U. Munzel. The nonparametric
Behrens-Fisher problem: Asymptotic theory and a
small-sample approximation. Biometrical Journal,
42(1):17–25, 2000.

[5] A. Dries and U. Rückert. Adaptive concept drift
detection. Statistical Analysis and Data Mining,
2(5-6):311–327, 2009.

[6] J. Gama, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation.
ACM Computing Surveys, (5-6):1–35, 2013.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. Lecture notes in
computer science, pages 286–295, 2004.

[8] M. J. Hosseini, Z. Ahmadi, and H. Beigy. Using a
classifier pool in accuracy based tracking of recurring
concepts in data stream classification. Evolving
Systems, 4(1):43–60, 2013.

[9] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Proceedings of the 7th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 97–106, 2001.

[10] L. I. Kuncheva and J. S. Sánchez. Nearest neighbour
classifiers for streaming data with delayed labelling. In
IEEE 8th International Conference on Data Mining,
pages 869–874, 2008.

[11] M. Neuhäuser and G. D. Ruxton. Distribution-free
two-sample comparisons in the case of heterogeneous
variances. Behavioral Ecology and Sociobiology,
63(4):617–623, 2009.

[12] S. Papadimitriou, A. Brockwell, and C. Faloutsos.
Adaptive, hands-off stream mining. In Proceedings of
the 29th international conference on Very large data
bases-Volume 29, pages 560–571, 2003.

[13] A. Shaker and E. Hüllermeier. IBLStreams: a system
for instance-based classification and regression on data
streams. Evolving Systems, 3(4):235–249, 2012.

[14] J. Shao, X. He, C. Böhm, Q. Yang, and C. Plant.
Synchronization-inspired partitioning and hierarchical
clustering. IEEE Transaction on Knwoledge and Data
Engineering, 25(4):893–905, 2013.

[15] K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. In Proceedings of the 7th
International Conference on Machine Learning, pages
1103–1110, 2000.

[16] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble
classifiers. In Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 226–235, 2003.

[17] P. Zhang, B. J. Gao, X. Zhu, and L. Guo. Enabling
fast lazy learning for data streams. In IEEE 11th
International Conference on Data Mining, pages
932–941, 2011.

421

