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ABSTRACT

Early classification of time series is prevalent in many time-sensitive
applications such as, but not limited to, early warning of disease
outcome and early warning of crisis in stock market. For exam-
ple, early diagnosis allows physicians to design appropriate ther-
apeutic strategies at early stages of diseases. However, practical
adaptation of early classification of time series requires an easy to
understand explanation (interpretability) and a measure of confi-
dence of the prediction results (uncertainty estimates). These two
aspects were not jointly addressed in previous time series early
classification studies, such that a difficult choice of selecting one
of these aspects is required. In this study, we propose a simple
and yet effective method to provide uncertainty estimates for an in-
terpretable early classification method. The question we address
here is "how to provide estimates of uncertainty in regard to inter-
pretable early prediction." In our extensive evaluation on twenty
time series datasets we showed that the proposed method has sev-
eral advantages over the state-of-the-art method that provides re-
liability estimates in early classification. Namely, the proposed
method is more effective than the state-of-the-art method, is sim-
ple to implement, and provides interpretable results.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data min-
ing; 1.5.2 [Pattern Recognition]: Design Methodology—Classi-
fier design and evaluation
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1. INTRODUCTION

Time series early classification models aim to predict the label of
the entire time series by observing the phenomenon for very short
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time and as soon as enough data is available. If the available data
is insufficient to make an accurate classification, more data, which
might be expensive, is required.

The framework of time series early classification is illustrated
in Figure 1. The model looks into a portion of ! observations of
the time series 7" of length L (where [ < L) and determines the
label of the entire time series without observing the rest of the time
series. If the method can not classify the time series at time [/, the
observation segment is enlarged and the process is repeated with
the aim of predicting the class label of the entire time series.
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Figure 1: Framework of Early Classification (EC) of time series.

Classify the time series T'

Early classification of time series is important in many applica-
tions. For example, early diagnosis could save patients’ lives by
allowing administration of treatment before the diseases are fully
manifested [6, 3]. In such applications it is highly desirable to have
easily interpretable results, as physicians aim to understand why a
prediction is made. Moreover, in order to decide whether the avail-
able data is sufficient for the model to make an accurate prediction,
uncertainty estimates of the predictions would be provided by the
model. For example, in medical applications, providing uncertainty
estimates would assist physicians in optimizing therapy. We illus-
trate the importance of providing uncertainty estimates using the
following example.

Example 1. Time series from the red and blue classes from a
medical dataset (ECG dataset) are shown in Figure 2a. The time
series are very similar to each other such that it is hard to dis-
tinguish between the classes using human eyes. Using only the
principle of early classification without the notion of uncertainty,
the blue time series in Figure 2b could be incorrectly classified as
the red class at time point 12 (this is done using the interpretable
early classification method described later in Section 2). Since the
method does not provide uncertainty estimates, there is no clue in-
dicating how accurate the classification is. However, if the method
provides high uncertainty estimates with that classification deci-
sion, then additional data would be required in order to provide a
more confident decision.
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Figure 2: (a) Time series from the blue and red classes. (b) A
blue time series is early incorrectly classified as a member of the
red class. Additional time and data is needed to provide a more
confident decision.
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Table 1: Three properties are used to categorize time series clas-
sification methods: interpretability (I), earliness (E), and uncer-
tainty estimate (U).

LDS/SVM HMM  Shapelet ECTS EDSC PR QDA
(1] [10] [16] (14] [(15] [(12] (1]
I X X v X v X X
E X X X v v v v
U X X X X X v v

Therefore, the early classification method is needed to provide
uncertainty estimates with the classification decision such that con-
fident results are obtained as early as possible. Although earli-
ness, interpretability, and uncertainty estimates are highly desir-
able properties in many time series classification applications, to
the best of our knowledge, existing methods are limited to address-
ing at most two of these aspects. Table 1 summarizes properties
of several methods (discussed later in Section 2) that successfully
addressed some of these aspects. There is not yet a time series clas-
sification method that simultaneously provides these three aspects.

In this study, we propose a simple but effective method that sat-
isfies all three properties. This is achieved by extending a recently
proposed interpretable early classification method, called early dis-
tinctive shapelet classification (EDSC), to estimate the temporal
uncertainty associated with the prediction.

In Section 2, existing methods for time series classification that
address some of the three aspects shown in Table 1 are reviewed.
The EDSC method is summarized in Section 3 followed by a de-
scription of our proposed temporal uncertainty estimation method
provided in Section 4. Extensive evaluation results on benchmark
datasets (twenty time series datasets) are presented in Section 5.
Finally, the conclusions and future work is given in Section 6.

2. RELATED WORK

In this section we discuss the existing time series classification
methods that address some aspects of earliness, interpretability, and
uncertainty estimates.

2.1 Adapting time series classification meth-
ods for early classification

Several time series classification methods are adapted for early
classification by applying the method at each time point. Such
methods are inflexible, as for methods trained on time series of
length ¢, the prediction is always done at the ¢ time point, which
limits the applicability of the model, e.g. in medical applications,
patients may develop diseases at different times, which this type of
methods can not handle appropriately.

Examples of methods in this category are [1] and [10]. In [1] a
linear dynamical system and support vector machines are used to
model time series for gene expression while in [10], a method that
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utilizes hidden Markov models with less states than the time points
is proposed. These methods are evaluated at each time point and the
best results were obtained when using the entire time series. These
results provide evidence that there is a need for methods designed
specifically for early classification.

Shapelets, which are subsequences of time series, have been used
as features representing the characteristics of time series [16]. A
perfect shapelet of a class is the one representing all time series in
that class but not covering any time series in other classes. These
shapelets are used for interpretable time series classification where
they are able to handle challenges such as drifts and changes, which
often occur in medical domain [8] and which are usually addressed
by boosting algorithms [S5]. Although the shapelet method provides
interpretability, it provides neither uncertainty estimate nor early
classification.

2.2 Early classification

The problem of early classification of time series is formulated
recently [13, 14]. A novel concept of minimum prediction length is
introduced in the early classification of time series (ECTS) method
[13, 14]. ECTS makes early predictions and retains accuracy com-
parable with that of the 1-nearest neighbor classifier using the en-
tire time series. However, ECTS does not extract patterns from the
training data; thus, users may not be able to gain insights from the
classification results.

The drawback of ECTS has been resolved in a method called
early distinctive shapelet classification (EDSC) [15]. The EDSC
method extracts local shapelets which distinctly manifest the target
class locally, and are effective for early classification. However, the
EDSC method does not provide uncertainty estimates.

2.3 Early classification with uncertainty esti-
mate

A method is proposed to represent the patient risk (PR) as a
time series and estimates the uncertainty as the distance between
the evolving approximate daily risk of a patient and the hyperplane
learned by SVM [12]. The PR model requires labels for each time
point in the time series, not just a label for the entire time series, and
therefore can not be compared to our method. The state-of-the-art
method for early classification of signals using a quadratic discrim-
inant analysis (QDA) classifier was developed recently [11]. QDA
provides a reliability bound on the classifier’s decision for every
time point. The disadvantage of these methods is that they are not
interpretable and can be used only as “black box” classifiers.

3. BACKGROUND: EDSC

In this section we briefly describe the early distinctive shapelet
classification (EDSC) method for interpretable early classification
and the details of EDSC are described in the subsequent subsec-
tions !. EDSC extracts discriminative shapelets for early classifi-
cation. In this approach shapelets, which are subsequences of time
series and thus are highly interpretable, have been used as features
representing the characteristics of the time series [16].

Example 2. Suppose we have a dataset of time series for 3 un-
healthy subjects (red) and 3 healthy subjects (blue) as illustrated
in Figure 3. The extracted shapelet is the time series segment that
represents the characteristics of the class (drawn as solid lines).

Given a time series dataset D where each time series is associ-
ated with a label, the task is to classify the time series as early as
possible. The EDSC method addresses this problem in 4 steps:

"For more details about EDSC, the reader is referred to [15]
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Figure 3: Three subjects from the red (blue) class are shown in
the left (right) panel, respectively. The discriminative shapelet
is represented as solid line. Clearly, the shapelet represents the
characteristics of its class.

1. extracts all shapelets of different lengths, where for each shapelet

a distance threshold is learned such that the shapelet discrim-
inates between classes,

. ranks the shapelets using a utility function that incorporates
earliness and accuracy of the shapelet,

3. prunes the shapelets by selecting the top shapelets that cover
the entire dataset,

. classifies unknown time series based on the closest matching
shapelet.

3.1 Extracting all shapelets

The shapelet is defined as S = (s, , 8, ¢) where s is a time series
subsequence of length [, c is the class label of the shapelet which
is called the target class. The other classes (¢) are called the non-
target classes. ¢ is a distance threshold which needs to be learned.
To compute the distance threshold, we compute the distances be-
tween the subsequence s and all time series in the dataset.

To compute the distance between a subsequence s of length [
and a time series 7" of length L (where [ < L), we slide a win-
dow of length [ over the time series 7" to extract all subsequences
{hi,h2,...hp_i+1} of length [ (Figure 4a). Then, the distance is
computed as

dist(s,T) = min dist(s, h;). (1)
vie{1,2,...,L—1+1}
120
100 Shapelet s Best distance thresholds
80 Best Matching Distance i
e ‘ & d ds dydy
401 Time Series T
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Figure 4: (a) Best matching distance dist(s,T) between the
shapelet s and the time series T. (b) The distance between the
shapelet and each blue/red time series is represented as a blue/red
point on the order line, respectively. The distance threshold ¢
is computed such that the shapelet discriminates between the
classes.

The distance between the shapelet S and each time series is rep-
resented as a point on the order line (Figure 4b). Then, the distance
threshold ¢ is computed such that the shapelet discriminates be-
tween the classes’.

Then, the EDSC method iterates over all time series in D to ex-
tract all subsequences of length [, where [ is the length of the po-

The details of the distance threshold computation are explained in
[15].
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tential shapelets. The EDSC method varies [ between minL and
max L which are user parameters.

3.2 Ranking the shapelets

The EDSC method extracts all possible shapelets and computes
the distance threshold for each shapelet. The number of the ex-
tracted shapelets from the dataset is large. Therefore, to find the
discriminative shapelets, EDSC assigns a score to each shapelet
that incorporates both the earliness and the accuracy.

The earliness defines how early, on average, the shapelet matches
the target time series (the shapelet S matches the time series T' if
dist(s,T) < 0). Technically, the earliness between the shapelet
S = (s,1, 4, c) and the time series T" of length L is defined as

EML(S,T) = }dist(s, hi) <6, (2)

min
vie{1,2,...,L—1+1

where h; are all subsequences of the time series 7' of length [.
Then, using the earliness, the weighted recall of the shapelet is
computed as

W Recall(S) = H jlln >

TeD

1
/EML(S,T)’

where « is a user defined parameter that determines the importance
of the earliness, and ||7%|| is the number of non-target time series.
Finally, the utility score of the shapelet is defined as

2 x Precision(S) x W Recall(s)
Precision(S) + W Recall(S) ’

©))

Utility(S) = )

where Precision is the fraction of the matched time series that are

relevant (target time series) and is computed as

_ I{di <5 A\ Class(Ti) = c}|
[{d: < &}l ’

where d; = dist(s, T;) and Class(T;) is the class of the 5*" time
series T5.

Precision(S)

®)

3.3 Pruning the shapelets

The EDSC method sorts the shapelets descending based on their
utility scores (Equation 4). It starts with the highest ranked shapelet
and removes all time series from the dataset that are covered by the
shapelet. The shapelet S = (s, 1,0, c) covers the time series T if
the shapelet matches the time series (dist(s,T") < d) and has the
same class as the shapelet. Then, EDSC stores the shapelets and the
next highest shapelet is considered. If the shapelet covers any of the
remaining time series, the shapelet will be added to the list and all
covered time series will be removed. The method iteratively does
so until all time series in the dataset are covered. In this manner,
the EDSC method ends up with a small list of shapelets that is used
in the classification phase.

3.4 Classification phase

The EDSC method initially reads a portion of length minL from
the test time series (Where minL is the length of the shortest ex-
tracted shapelet). The highest-ranked shapelet is considered. If the
shapelet matches the current segment of the time series then the
time series is classified as the class of the shapelet and the predic-
tion is made. Otherwise, the next shapelet from the ranked list is
considered and the process of checking each shapelet is repeated.
If none of the shapelets match the current portion of the test time
series then the method reads one more time stamp and continues
classifying the time series (Figure 1). If the method reaches the end
of the time series and none of the shapelets match it, then EDSC
marks the time series as a not-classified example.



4. THE PROPOSED METHOD FOR UNCER-

TAINTY ESTIMATION

4.1 Motivating example

We start by proposing a method to provide an uncertainty es-
timate to the interpretable EDSC method. Assume that we have
a shapelet S = (s,1,0,c) and a time series 7. If the distance
dist(s,T) between T and S is less than or equal to J, then T is
classified as class c. In this scenario, we did not measure how con-
fident the classification is.

Imagine that the shapelet S is represented as a point as in Fig-
ure S5a. The radius of the black colored circle around the shapelet
represents the shapelet’s distance threshold §. Assume that we have
two time series T and T%. If the distance between S and each time
series 771 and 7> is less than § then 7% and 7% are represented as
points inside the circle and both are then classified as the shapelet’s
class. However, the distance between 77 and S is less than the dis-
tance between 75> and S which reflects the fact that the shapelet is
more certain about the classification of 77 than the classification of
T.

Distribution for
modelling confidence

(a)

(b)

Figure 5: (a) The shapelet is represented as a point and the radius
of the circle around S represents the shapelet’s distance thresh-
old 6. Ty and T are two time series that are less than -distant
apart from the shapelet. (b) The confidence of the shapelet: the
shapelet is more certain about closer time series than time series
that are $-distant apart.

In Figure 5a, different red dotted circles represent different levels
of confidence. Intuitively, the shapelet is more certain about the
time series in the most inner red circle than the time series in the
bigger red circles. Therefore, the uncertainty reaches the highest
level when the time series lies on the boundary of the black circle.

4.2 Uncertainty estimation

Instead of modeling the uncertainty directly, we model the con-
fidence C'(c) of classifying a time series as class c¢. The uncertainty
U (c) of classifying a time series as class ¢ can be computed as

U(c) =1-C(c). Q)

4.2.1 Confidence of a single shapelet

We assume that we have a shapelet S = (s,1,0,c¢) and a time
series 7. We also assume that the distance dist(s,T) between T'
and S is less than or equal to J, so we say that S matches 7" and
then 7' is classified as class c.

Due to imperfections in sensors architecture, observed time se-
ries are often affected by measurement noise. Therefore, distance
between time series 7" and shapelet S contains uncertainty in itself.
To account for uncertainty in measurements, we define distance be-
tween 7" and S as a random variable d

d = dist(s,T) + ¢, @)

where € is some random variable with mean equal to 0 and standard
deviation equal to o.
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Knowing that shapelet S matches time series 7', confidence C's (c)
of classifying T as class c based on a shapelet S has two compo-
nents: 1) confidence in the fact that d is less than a threshold ¢ and
2) confidence in the ability of shapelet .S to accurately classify time
series T'. To take these two components into account, we define
Cs(c) as

Cs(c) =Cs(d < 9, class(T) = c|S matches T')
=C5s(d < 6|S matches T')Cs(class(T') = ¢|.S matches T'),
®)
where the assumption of independence is considered. To calculate
the first component C's (d < 4|S matches T") we use Equation 7

Cs(d < 6|S matches T') =P(d < ¢|dist(s,T) < 6)
=P(dist(s,T) + € < d|dist(s,T) < 9)
=P(e < § — dist(s,T)|dist(s,T) < 9).
©))
If we assume that e follows some distribution with 0 mean and
o standard deviation (we do not assume any parametric form of the
distribution), then we can calculate a lower bound for confidence
using Cantelli’s inequality (sharpened version of Chebyshev’s in-
equality which is commonly used in medical domain [7])

Cs(d < 6|S matches T') =P(e < 6 — dist(s, T)|dist(s, T) < )
=1—P(e > 6 — dist(s,T))

2
g

02+ (6 — dist(s,T))?
(6 —dist(s,T))?
T 02+ (6 —dist(s,T))2’

10)
The closer dist(s,T) is to § the lower the confidence is. Also,
larger o means lower confidence. Figure 5b demonstrates graphi-
cally this concept.
We calculate the second component of Equation 8 as

Cs(class(T) = ¢|S matches T')
=P(class(T) = c|dist(s,T) < 6)

_ P(class(T) = c,dist(s,T) < 0)
- P(dist(s,T) < 9)

an

= Precision(S),

where we used Precision from Equation 5. Then, the lower bound
for confidence is calculated as

(5 — dist(s, T))?
Cs(e) 2 — + (6 — dist(s, T))?

* Precision(S). (12)
Since both terms in this product take value between 0 and 1, the
highest value of the C's(c) is 1. Equation 12 incorporates two mea-
sures: how far is the time series from the shapelet and the perfor-
mance of the shapelet in the training data.

Note that each shapelet has its own threshold and hence its own
confidence distribution. Therefore, for any time series, we compute
the distance dist(s,T) between the time series and the shapelet.
If the distance is less than or equal to the threshold, then the con-
fidence Cs(c) is computed using Equation 12. If the distance is
greater than the threshold, the confidence is not computed because
the time series lies outside the region (circle) of the shapelet. Hence,
the confidence is computed only when the shapelet matches the time
series.

4.2.2 Aggregated class confidence

If there is only one shapelet from the class c that matches the time
series, then the confidence estimate for predicting the time series



as class c is the same as the shapelet’s confidence and is computed
using Equation 12.

Now, we consider the case of computing the class confidence
when multiple shapelets match the time series. Let us start with a
simple case.

Simple Case.

Assume we have two shapelets .S1 and Sz from class c that match
the time series, then the class confidence C'(c) of classifying the
time series as c is computed as

Cs,us, (C)
Cs, (C) +Cs, (C) — Csyns, (C)
Cs,(c) + Cs,(c) = Cs, (c) * s, (c),

C(c)

13)

where the assumption of the shapelets’ independence is considered.
The value of the class confidence C(c) is greater than the confi-
dence of any of the individual shapelets S; and S2, which does
make sense because our confidence for classifying the time series
as class c is increased by having two matched shapelets.

General Case.

Assume that S¢ = {S1,52,...,Sn} is the set of all shapelets
from class c that match the current time series. Then the classifica-
tion confidence of the time series for class c is computed as

C(C) = Csc(c)
= Cslusgu.“usN(C)
N
= Y DM ST Csi(e), (14)
k=1 1c{1,2,...,N}
|I|=k
where the last sum runs over all subsets I of the indices {1, ..., N}

which contain exactly k elements, and St = N;e7.S;. The value of
the class confidence C/(c) is greater than the confidence of any of
the individual shapelet S;;¢ = {1,2,..., N} because the confi-
dence for classifying the time series as class c is increased by hav-
ing multiple matched shapelets.

Now, the class confidence C'(c) satisfies all properties of the con-
fidence measure, i.e. takes values on the range [0, 1] and has value
higher than any individual shapelet.

Moreover, the uncertainty estimate for classifying a time series
should decrease as time evolves and more information about the
time series becomes available. The uncertainty measure defined in
Equation 6 satisfies this property. Assume that at time ¢ there are
k shapelets that match the time series and at time ¢ 4+ 1 two more
shapelets match the time series. Since the k shapelets (at time ¢) are
a subset of the k + 2 shapelets (at time ¢ + 1) then the confidence
of the k + 2 shapelets has to be greater than the confidence of the k
shapelets (as in Equations 14), which means that the confidence at
time ¢ + 1 is greater than the confidence at time ¢. In other words,
the uncertainty propagates over time and decreases as time evolves.

4.3 Modified EDSC with Uncertainty estimates
(MEDSC-U)

Typically, the uncertainty generated by having only one matched
shapelet is higher than the uncertainty generated by having multi-
ple matched equal-performance shapelets. Therefore, in order to
better capture a reliable uncertainty estimate, we modify the EDSC
method to obtain more discriminative shapelets. In particular, the
pruning and classification phases of EDSC are modified. We call
our method MEDSC-U.

406

4.3.1 Pruning phase

The MEDSC-U method sorts the shapelets descending based
on their utility scores and starts with the highest ranked shapelet
S. The method removes all time series from the dataset that are
covered by the shapelet and stores the shapelet S and all other
shapelets that have the same utility score (Equation 4) as S, we
call these shapelets as equal-performance shapelets.

Then, the next ranked shapelet is considered. If the shapelet
covers any of the remaining time series, the shapelet and all other
equal-performance shapelets are added to the extracted list and all
covered time series are removed. The method iteratively does so
until all time series in the dataset are covered. In this manner, the
MEDSC-U method ends up with a longer list of equal-performance
shapelets that is used for classification purposes. The list of the
shapelets extracted from the MEDSC-U method is longer than the
extracted list from the EDSC method. However, the longer list does
not contain shapelet with lower utility score (Equation 4) than the
shorter list. The intuition is that with the richer model, the uncer-
tainty would be better estimated.

4.3.2  Classification phase

To better use the uncertainty estimates generated by MEDSC-U,
we change the classification process. When we have a time se-
ries with an unknown label, we compute the distance between the
current stream of the time series and all discriminative shapelets
extracted by MEDSC-U (we do not start with the highest one until
a match is found as EDSC). Then we compute the uncertainty for
each class based on all matched shapelets from that class. If we
do not have any matched shapelet for a class then we do not have
uncertainty associated with that class.

At each time point we compute the uncertainty for each class.
The time series is classified based on the class that has minimum
uncertainty. If the produced uncertainty is not satisfactory for the
user, the method continues classifying the time series until a prede-
fined level of uncertainty is obtained.

Note that if a shapelet matches the time series at time ¢, then,
just by chance, there is a high probability that the same shapelet
matches the time series at time ¢+ 1 and at consecutive time points.
That will increase the confidence estimation while it happens just
by chance. To prevent that, MEDSC-U does not allow the same
shapelet to match the time series at consecutive time points. In
other words, if the shapelet S has length [ and matches the time
series at time ¢, then MEDSC-U does allow S to match the time
series at time points t + 1 up to ¢ + /2.

4.3.3 Recommending an uncertainty threshold

At each time point MEDSC-U classifies the time series as the
class that has the minimum uncertainty at that time point. MEDSC-
U continues classifying the time series as long as the produced un-
certainty is not satisfactory for the user. However, the domain ex-
pert might have no clue about what the recommended uncertainty
threshold would be. In addition, the uncertainty threshold may be
different not only from one dataset to another but even from one
class to another. Therefore, we provide a simple way to find a good
uncertainty threshold to be used for each class in order to get con-
fident results.

We apply the MEDSC-U method on a validation dataset which is
different from the training dataset. Then, we compute the precision
of each class at different values of uncertainty thresholds. Based on
a desired value of precision, the user can choose the corresponding
uncertainty threshold (we illustrate this on a case study in Section
5.2.1).



S. EXPERIMENTAL RESULTS

We evaluated our method on 20 time series datasets (Table 2)
from the UCR time series archive [9]. To compare the proposed
method to the original EDSC method, we use the same set of pa-
rameters as recommended in [15] (&« = 3, minL = 5, maxl =
L/2, and Chebyshev’s inequality for computing distance thresh-
old). The code and all details about our experiments can be found
at our website®.

Table 2: Datasets description. The 20 datasets are sorted desced-
ing by the number of classes and time series length.

Dataset Training Test Time Series No. of

Size Size Length Classes
SwedishLeaf 500 625 128 15
FacesUCR 200 2050 131 14
FaceAll 560 1690 131 14
Medicallmages 381 760 99 10
Fish 175 175 463 7
Lightning7 70 73 319 7
OSULeaf 200 242 427 6
SynCon 300 300 60 6
OliveOil 30 30 570 4
DiatomSizeReduction 16 306 345 4
TwoPatterns 1000 4000 128 4
CBF 30 900 128 3
GunPoint 50 150 150 2
ECGFiveDays 23 861 136 2
ECG200 100 100 96 2
MoteStrain 20 1252 84 2
TwoLeadECG 23 1139 82 2
SonyAIBORobotSurface 20 601 70 2
SonyAIBORobotSurfacell 27 953 65 2
ItalyPowerDemand 67 1029 24 2

We used 4 evaluation measures:

1. Coverage: the percentage of time series out of the test time
series dataset that are classified. For example, if 8 out of 10
time series are classified then the coverage is 80%.

2. Relative Accuracy: the average between sensitivity and speci-
ficity relative to the covered time series. For example, if the
coverage is 80% and all covered time series are classified
correctly then the relative accuracy is 100%.

3. Accuracy: the average between sensitivity and specificity
relative to the total number of test time series. if one method
has better accuracy and less coverage and the second method
has better coverage and less accuracy, so it is not clear which
one is better. Therefore, in order to obtain a fair comparison,
the method classifies the not-covered examples according to
the majority class and then the accuracy is computed.

4. Earliness: the fraction of the time points used for classifica-
tion.

3http://www.dabi.temple.edu/~mohamed/uncertainty/.

5.1 MEDSC-U versus EDSC

MEDSC-U allows more equal-performance shapelets to be in-
cluded in the final list in order to have reliable uncertainty esti-
mates. We first evaluate the effect of including more shapelets on
the accuracy and earliness performance of the MEDSC-U method
without using the advantages of uncertainty estimates. Therefore,
the MEDSC-U method classifies the test time series based on the
closest matching shapelet even with high uncertainty estimates 1.

The accuracy (blue circles) and earliness (red squares) of both
the MEDSC-U and EDSC methods on each dataset are shown in
Figure 6. In the area under the diagonal, the EDSC method is better
than the MEDSC-U method, while in the area above the diagonal
the MEDSC-U method is better than the EDSC method. We plot
100-earliness instead of earliness to preserve “the higher the better”
property.

As shown in Figure 6, most of the circles lie very close to the
diagonal line which means that MEDSC-U method has compara-
ble accuracy with the EDSC method. Therefore, including equal-
performance shapelets into the model does not negatively affect the
accuracy of the model. The reason for this is that: since the ad-
ditionally included shapelets have the same accuracy performance
on the training data, it would be better to include them to allow for
variability among time series’ patterns and that would slightly im-
prove the earliness of the classification decision, as evident in the
right panel of Figure 6.
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Figure 6: Comparison between MEDSC-U and ESDC with re-
spect to the accuracy (left) and the earliness (right). The left
(right) panel has 20 circles (squares) for the 20 datasets where
each circle (square) represents the accuracy (100-earliness) of
the two methods on exactly one dataset, respectively. The EDSC
method is better on the lower triangle while the MEDSC-U
method is better on the upper triangle. Points (datasets) on
the diagonal indicate that the two methods have similar accu-
racy/earliness performance. For more details (per each dataset)
about these experiments check the website.

5.2 Case studies

We show the effectiveness of our uncertainty method on real ex-
amples from different datasets. In particular, we show how the
method provides more confident class prediction by either having
a shapelet that confidently matches the time series (Section 5.2.1)
or having multiple shapelets match the time series (Section 5.2.2)
as in Equation 14. In addition, we explain how to appropriately
choose an uncertainty threshold using CBF dataset as a case study.

5.2.1 Classification based on a confident shapelet:
CBF case study

The CBF dataset has three classes, as shown in the first column
of Figure 7. The EDSC method has extracted one shapelet from
each class and has achieved 88% accuracy. However, the EDSC
method incorrectly classified the cylinder (red) example shown in
Figure 7d as funnel (black) example. The same case happened if we
just used the MEDSC-U with uncertainty 1 as shown in panel (e).


http://www.dabi.temple.edu/~mohamed/uncertainty/

This is because the shapelets extracted by EDSC or MEDSC-U
from the funnel and the cylinder classes are similar to each other.
Therefore, it might happen, as shown in the figure, that a cylinder
example is classified incorrectly as funnel example or vice versa.
To overcome this problem we need to measure the uncertainty for
the classification decision, especially from these two classes, and
therefore we use lower value of uncertainty in order to obtain more
confident classification by the MEDSC-U method.
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Figure 7: (a,b,c) Time series from the CBF datasets from the bell,
Jfunnel, and cylinder classes, respectively. (d,e) A cylinder time
series which is incorrectly classified by the EDSC method (d) and
the MEDSC-U method with uncertainty 1 (e), respectively. (f)
The cylinder time series is correctly classified by MEDSC-U with
lower uncertainty 0.13.

The uncertainty associated with the classification using the black
shapelet at time point 27 is 0.49. If this value is not satisfactory (be-
cause we know that these two classes are similar to each other and
as we show later that this uncertainty is not enough to classify a
time series as black), we might wait and not provide classification
at this point in the hope that the uncertainty reduces under a certain
threshold. At time point 30 a cylinder shapelet matches the time
series with uncertainty 0.13, so the method is more confident to
‘correctly’ classify the time series as a cylinder class than to clas-
sify it as a funnel class.

Therefore, the user can decide if he/she is satisfied about the clas-
sification results using the uncertainty estimates provided by the
method. That uncertainty threshold could be varied from one class
to another class. For example, since we know that the shapelets
from the funnel and cylinder classes are similar, then if the test
time series is classified as one of these classes, the user may lower
the value of the uncertainty threshold and delays the decision in or-
der to obtain accurate results. On the other hand, if the test time
series is classified as the bell class (completely different from the
other two classes), then higher value of uncertainty threshold might
be sufficient in order not to delay the results.

Recommending an uncertainty threshold.

As we just mentioned, the uncertainty threshold may be different
from one class to another class. The domain expert might have no
notion about the recommended threshold for each class. To find
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the recommended uncertainty threshold, MEDSC-U is applied on
a validation dataset and the precision of each class is computed for
each uncertainty threshold as shown in Figure 8.
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Figure 8: The precision of the MEDSC-U method on the CBF
dataset for the three classes at different values of uncertainty
threshold. The blue class (the blue curve along with the upper
x-axis) is easy to classify by MEDSC-U even with high uncer-
tainty, while the red and black classes are similar to each other
which requires lower uncertainty threshold for each of them.

As shown in Figure 8, the blue class has 100% precision at each
level of uncertainty and then the precision drops at high value of
uncertainty (very close to uncertainty estimate 1), while the preci-
sion of the other two classes drop earlier. This illustrates that the
blue class is dissimilar to the other classes and can be recognized
by our method even with high value of uncertainty such as 0.9 (or
even higher). However, the precision for the red (Cylinder) and
black (Funnel) classes dropped at approximately 0.6 and 0.4, re-
spectively. Therefore, 0.6 (0.4) would be a good estimate for the
uncertainty thresholds for the red (black) class, respectively. Also,
if the domain expert has a desired value of precision, say for ex-
ample 0.9, then we draw a horizontal line at the precision 0.9 in
Figure 8 and find the uncertainty thresholds corresponding to the
intersection of that line and the three (classes) precision curves.

This is very consistent with the results reported in Figure 7.
Since the test time series is classified initially as black class with
uncertainty 0.49 and we know from Figure 8 that the recommended
threshold for the black class is 0.4, we wait and do not classify the
time series at that time point. The next matched shapelet classifies
the time series as red class with uncertainty 0.13 and the recom-
mended threshold for the red class is 0.6, therefore the classifica-
tion is done at that time point which is the correct class.

To simplify the presentation of the paper, the remaining results
are shown using a single threshold for all classes instead of showing
results using class-specific and dataset-specific threshold.

Uncertainty versus performance measures.

This begs the question “How does the uncertainty threshold af-
fect the accuracy and earliness performance?”. We have shown
that if we reduce the uncertainty threshold from 0.49 to 0.13 we get
more accurate results, but it delays the decision for 3 time points.
The results for varying different threshold versus the accuracy is
shown in Figure 9a. Note that we use the same uncertainty thresh-
old for all classes. 1t is clear from the figure that the accuracy in-
creases when lowering the value of the uncertainty threshold. How-
ever, as shown in Figure 9b, the classification decisions is delayed
as expected. For example, using the uncertainty threshold 0.9 de-
lays the results until, on average, 40% of the time series length (at
time point ~ 51) while the accuracy would be ~ 95% (the original
EDSC method has achieved accuracy 88% and earliness 35%).

Now we have conveyed the message that if the uncertainty as-
sociated with the classification decision is high, then we wait until
another shapelet with lower uncertainty to match the time series in
order to provide more accurate results. However, this is not the only
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Figure 9: The accuracy (a) and the earliness (b) of MEDSC-U for
different uncertainty thresholds on CBF datasset. Lower value of
uncertainty threshold gives more accurate results but delays the
decision.

way to obtain more confident results. More confident results may
be achieved when multiple shapelets from the same class match the
time series. We illustrate this using the ECGFiveDays dataset in
the next section.

5.2.2  Classification based on multiple shapelets: ECG-

FiveDays case study

The ECGFiveDays dataset has two classes (the red and the blue
classes). A time series from the blue class is shown in Figure 10.
The time series matches the first (red) shapelet at time 50 with un-
certainty 0.98 which means that the uncertainty associated for the
red class is 0.98 and no uncertainty associated for the blue class
because no blue shapelet matches the time series up to that point.
Then, at time 79, the time series matches a blue shapelet with un-
certainty 0.97. Therefore, at that point the method classifies the
time series as a red class with uncertainty 0.98 and as a blue class
with uncertainty 0.97. These uncertainties propagate until time 83,
where a new (blue) shapelet matches the time series. The uncer-
tainties from the two matched blue shapelets are aggregated using
Equation 14 to give total uncertainty 0.52 for the blue class, which
reveals the fact that the method is now more certain to classify the
time series as a blue class (correct classification). In other words,
more confident results are obtained by having multiple shapelets
matching the time series.

(1) Red shapelet
attime 50 T

A,--a-—-#a‘a}

Uncertainty = 0.98
Uncertainty = 0.97 /
Uncertainty = 0.52
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time
Figure 10: A time series from the blue class of the ECGFive-
Days dataset is classified at the time point 83 with uncertainty
0.52. The yellow region denotes the region where the model is

uncertain about the clasification. The green region represents
the region where the model is confident about the classification.

Therefore, the uncertainty of the classification decision is re-
duced by having multiple events (such as multiple shapelets ap-
pearing in the portion of the time series seen so far), and that un-
certainty decreases overtime. The average uncertainty over all time
series at each time point is shown in Figure 11. As shown in the
figure, the uncertainty decreases over time, which emphasizes that
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the model becomes more and more certain about the classification
as time evolves.
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Figure 11: The average uncertainty over all patients at each time
point for the ECGFiveDays dataset. The method starts with high
uncertainty and then becomes certain about the classification as
time evolves.

For Figure 11, it has to be pointed out that the average uncer-
tainty increases sometimes and then decreases (for example, at time
48 is 0.17 and at time 49 is 0.29 and then it decreases over time).
The reason behind the increase in the average of uncertainties is
that the model covered more examples at time 49 than at time 48,
therefore, the uncertainties of the new covered examples increase
the value of the average uncertainty from time 48 to time 49. How-
ever, the uncertainty for each time series example does not increase
over time.

In Figure 12a, we show the uncertainties for each time series
over time. The MEDSC-U method classifies many time series us-
ing only the first 60-80 time points but with high uncertainty (yel-
low bars). These uncertainties decrease over time (yellow-to-green
bars). For instance, in Figure 12b, some of the time series are
shown where it is clear that the method becomes more certain about
the classification between time 82 - 86.
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Figure 12: The values of uncertainty over time for each time se-
ries from the ECG2FiveDays dataset. The white bar indicates that
there is no classification at that point and hence there is no un-
certainty.The MEDSC-U method provides more certain results as
time evolves. The temporal uncertainty for each time series never
increases.

(b)

Now we have shown that the proposed interpretable early clas-
sification MEDSC-U method that provides uncertainty estimates
gives more accurate results over time than the EDSC method but
that affects the earliness of the decision. Therefore, the uncertainty
threshold controls the trade off between the accuracy and the earli-
ness of the method. Moreover, that uncertainty threshold may differ
from one dataset to another, and even from one class to another as
we explained previously in Section 5.2.1.

In order to make the flow of the paper easy to follow and due to
the lack of the page space, we have shown these aspects on two
datasets: CBF and ECGFiveDays. However, the results for the



other datasets are very consistent with what we have shown and
therefore the remaining results are presented in the appendix. In
addition, all details of these results are on our website. In the next
section we compare our method to other methods that provide un-
certainty estimates.

5.3 Comparison to localQDA

Two existing methods we have mentioned in the related work
section that provide uncertainty for time series classification that
could be used in the context of early classification. The PR method
represents the patient risk as a time series and estimates the un-
certainty as the distance between the evolving approximate daily
risk of a patient and the hyperplane learned by SVM [12]. So, the
uncertainty is measured as the distance between the measurement
(value of the time series at a particular time point) and the hyper-
plane. The proposed uncertainty estimates could be used for the
early classification context, i.e. the model proceeds over the time
series until a confident results (furthest to the hyperplane) obtained.
However, the PR model requires labels for each time point in the
time series, not just a label for the entire time series, and therefore
we can not compare MEDSC-U to the PR method.

The state-of-the-art method for early classification of signals us-
ing a quadratic discriminant analysis (localQDA) classifier was de-
veloped [11]. The localQDA method does not provide uncertainty
but instead it provides a reliability bound on the classifier’s deci-
sion for every time point. As noted by [11], “With probability at
least T (reliability), will the classification decision from incomplete
data be the same as that which would be made from the complete
data?” The reliability 7 measures the probability that the early
classification will be the same as the classification at the end of the
time series. The uncertainty measure provided by our method is
not directly comparable to the reliability measure provided by lo-
calQDA method, but they are correlated. Thereby, we assume that
the Uncertainty =1 — 7.

For fair comparison between MEDSC-U and localQDA, we use
the same set of parameters as they had recommended in [11]. We
show the comparison between the two methods on the ECG200
datasets as a case study in Table 3. The remaining comparisons are
in the appendix.

Table 3: Comparison of our proposed MEDSC-U method to the
state-of-the-art localQDA method on the ECG200 dataset at dif-
ferent values of uncertainty (1 — 7). localQDA is accurate than
MEDSC-U but MEDSC-U prvides classification decisions much
ealier than localQDA.

p 0.1 025 05 075 09

Uncertainty| 0.9 0.75 05 0.25 0.1

Accuracy 10CAIQDA | 89 89 88 88 87
YAY MEDSC-U| 82 81 81 8 82

localQDA |60.19 62.18 64.02 66.27 68.34

Earliness \/ogc U |23.24 24.23 28.14 29.45 35.14

As shown in Table 3, local QDA is more accurate than MEDSC-U
but the classification decision is provided much later than the de-
cision from the MEDSC-U method. We also compute Fj3 score
for different values of 8 = {0.1,1,2}. Fj score is the weighted
average of the accuracy and 100—earliness where S = 2 weights
earliness higher than accuracy, § = 0.1 puts more emphasis on
accuracy than earliness, and 5 = 1 is the balanced harmonic mean.

As shown in Figure 13, our method has comparable Fy.1 score
with the state-of-the-art localQDA method, which weights accu-
racy more than earliness. For the other two measures F1 and Fb,
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MEDSC-U clearly outperforms localQDA at every level of uncer-
tainty.

ECG200
1 —o—MEDSCF,
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?0.6 2
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Uncertainty
Figure 13: Comparison between the MEDSC-U method and lo-
calQDA on the ECG200 dataset for different values of uncer-
tainty (I-tau).
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To make a conclusion from all comparisons between MEDSC-U
and localQDA, we plot the number of datasets where MEDSC-U
has higher F score than the localQDA method (or vice versa) at
each uncertainty threshold. The results are shown in Figure 14.
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Figure 14: Number of datasest where MEDSC-U (blue bar) has
better Iz score than the localQDA (red bar), or vice versa, at
each uncertainty threshold. Clearly, MESDC-U ourperforms lo-
calQDA in most cases especially in F and F’ settings where the
earliness is important.

As shown in Figure 14, for Fp.1, MEDSC-U outperformed the
localQDA method in 13 (or little bit more) datasets at each uncer-
tainty estimate. For F and F5 scores, MEDSC-U clearly outper-
formed localQDA in most of the datasets at each level of uncer-
tainty. These results show that our proposed MEDSC-U method
is comparable to or even better than the state-of-the-art localQDA
method in every F' score, as shown by our experiments. In addition
to that, MEDSC-U is very simple to implement and provides inter-
pretable results (shapelets) convincing to the practitioners, which
are not addressed by the state-of-the-art localQDA method.

6. CONCLUSION AND FUTURE WORK

Providing classification of time series as early as possible is vital
in many domains including the medical domain, where early diag-
nosis can save patients’ lives by providing early treatment. How-
ever, applications often require the method to be interpretable and
have uncertainty estimates. We extended the interpretable early
classification method (EDSC) and proposed the MEDSC-U method
to measure the temporal uncertainty with the classification. The
proposed uncertainty estimates meets the requirements of uncer-
tainty where it has range [0, 1] and propagates over time. The



MEDSC-U method is very simple to implement and provides in-
terpretability for the classification results. In addition, it is more
effective than the state-of-the-art method, as shown in our experi-
ments on twenty datasets. The temporal uncertainty estimates pro-
vided by MEDSC-U can be extended to the multivariate case [2, 4]
where uncertainties from shapelets from different variables could
be integrated as in Equation 14.
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APPENDIX
A. REMAINING RESULTS

The accuracy, earliness, and coverage performance for some of
the datasets are shown in Figure 15, and the results for comparing
the proposed MEDSC-U method with the localQDA method are
shown in Figure 16, while, for the lack of page space, the remaining
results are on our website.
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Figure 15: Uncertainty (x-axis) versus relative accuracy (blue),
earliness (black), and coverage(red) for 5 datasets.
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Figure 16: Comparison between MEDSC-U and localQDA for
different values of uncertainty. X-axis is the uncertainty thresh-
old (1 — 1) and y-axis is the F3 score.
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