
Learning Time-Series Shapelets

Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-Thieme
Information Systems and Machine Learning Lab

University of Hildesheim
Samelsonplatz 22, Hildesheim 31141, Germany

{ josif, schilling, wistuba, schmidt-thieme }@ismll.uni-hildesheim.de

ABSTRACT

Shapelets are discriminative sub-sequences of time series that best
predict the target variable. For this reason, shapelet discovery has
recently attracted considerable interest within the time-series re-
search community. Currently shapelets are found by evaluating the
prediction qualities of numerous candidates extracted from the se-
ries segments. In contrast to the state-of-the-art, this paper pro-
poses a novel perspective in terms of learning shapelets. A new
mathematical formalization of the task via a classification objec-
tive function is proposed and a tailored stochastic gradient learning
algorithm is applied. The proposed method enables learning near-
to-optimal shapelets directly without the need to try out lots of can-
didates. Furthermore, our method can learn true top-K shapelets
by capturing their interaction. Extensive experimentation demon-
strates statistically significant improvement in terms of wins and
ranks against 13 baselines over 28 time-series datasets.

1. INTRODUCTION
Time-series research has attracted significant interest within the

data mining community, due to the fact that series data are present
in a wide range of real-life domains. Time-series data often exhibit
inter-class differences in terms of small sub-sequencies rather than
the full series structure [17]. A recently introduced concept, named
shapelet, represents a maximally discriminative sub-sequence of
time series data. Stated more directly, shapelets identify short dis-
criminative series segments [17, 11]. Apart from their high predic-
tion accuracy, shapelets also offer interpretable features to domain
experts. Moreover, discovering shapelets has been a hot topic in
the time-series domain during the last five years [17, 11, 10, 19, 8,
12, 9].

State-of-the-art methods discover shapelets by trying a pool of
candidate sub-sequences from all possible series segments [17, 10]
and then sorting the top performing segments according to their
target prediction qualities. Distances between series and shapelets
represent shapelet-transformed [10] classification features for a se-
ries of segregation metrics, such as information gain [17, 11], F-
Stat [8] or Kruskall-Wallis [9]. The brute-force candidates search
approach, based on an exhaustive search of candidates, suffers from
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a high runtime complexity, therefore several speed-up techniques
have aimed at reducing the discovery time of shapelets [11, 12, 1].
In terms of classification performance, the shapelet-transformation
method constructs qualitative predictors for standard classifiers and
has recently shown improvements with respect to prediction accu-
racy [10, 8].

This paper proposes an entirely new perspective on time-series
shapelets. For the first time, we propose a mathematical formu-
lation of the shapelet learning task as an optimization of a classi-
fication objective function. Furthermore, we propose a learning
method that learns (not searches for) the shapelets which opti-
mize the objective function. Concretely, we learn shapelets whose
distances to series can linearly separate the time series instances
by their targets, as shown in Figure 1. In comparison to existing
approaches, our method can learn near-to-optimal shapelets and
true top-K shapelet interactions. In a large pool of 28 datasets
we demonstrate that the proposed method yields a large and statis-
tically significant improvement over 13 baselines.

2. RELATED WORK
Shapelets were first proposed by [17] as time-series segments

that maximally predict the target variable. All possible segments
were considered as potential candidates, while the minimum dis-
tances of a candidate to all training series were used as a predictor
feature for ranking the information gain accuracy of that candidate
on the target variable. Other quality metrics have been proposed
for evaluating the prediction accuracy of a shapelet candidate such
as F-Stats [10], Kruskall-Wallis or Mood’s median [8]. In addition,
the minimum distance of a set of shapelets to time series can be
perceived as a data transformation [10], while standard classifiers
have achieved high accuracy over the shapelet-transformed repre-
sentation [8].

Due to the high number of candidates, the runtime of brute-force
shapelet discovery is not feasible. Therefore, a series of speed-up
techniques such as early abandoning of distance computations and
entropy pruning of the information gain metric have been proposed
[17]. Other speed-ups rely on the reuse of computations and prun-
ing of the search space [11], as well as exploiting projections on the
SAX representation [12]. Alternatively, the training time has been
reduced by elaborating the usage of infrequent shapelet candidates
[7]. Moreover, hardware-based optimization have assisted the dis-
covery of shapelets using GPUs [1]. Shapelets have been applied
in a series of real-life applications. Unsupervised shapelets have
also been utilized for clustering time series [19]. Shapelets have
been found useful for identifying humans through their gait data
[13]. Gesture recognition is another application domain that has
benefited from the discovery of shapelets [5, 6]. In the domain of
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Figure 1: An illustration of two shapelets S1, S2 (leftmost plots) learned on the Coffee dataset. Series’ distances to shapelets can optimally
project the series into a 2-dimensional space, called the shapelet-transformed representation [10] (rightmost plot). The middle plots show the
closest matches of the shapelets on series of two classes having light-blue and black colors.

medical and health informatics, interpretable shapelets have been
used to enable efficient early classification of time-series [16, 15].

In comparison to the state-or-the-art methods, we propose a novel
method that learns near-to-optimal shapelets directly, without the
need to search exhaustively among a pool of candidates extracted
from time-series segments.

3. PROPOSED METHOD

3.1 Definitions and Notations

3.1.1 Time-Series Dataset

A time-series dataset is composed of I training instances and
for notation ease we assume that each series contains Q-many or-
dered values, even though our method can operate on variable se-
ries lengths. The dataset is defined as T I×Q, while the series target
is a nominal variable Y ∈ {1, . . . , C}I having C categories.

3.1.2 Sliding Window Segment

A sliding window segment of lengthL is an ordered sub-sequence
of a series. Concretely, the segment starting at time j inside the
i-th series is defined as (Ti,j , . . . , Ti,j+L−1). There are totally
J := Q − L + 1 segments in a time series provided the starting
index of the sliding window is incremented by one.

3.1.3 Shapelets

A shapelet of length L is simply an ordered sequence of val-
ues from a data structure perspective. Nevertheless, shapelets se-
mantically represent intelligence on how to discriminate the target
variable of a series dataset. The K-most informative shapelets are
denoted as S ∈ R

K×L.

3.1.4 Distances Between Shapelets and Series

The distance between the i-th series Ti and the k-th shapelet Sk
is defined as the minimum distance Mi,k (shown in Equation 1)
among the distances between the shapelet Sk and each segment j
of Ti [17, 18]. Informally speaking, it is the distance of a shapelet
to the most similar series segment, as shown in Figure 1.

Mi,k = min
j=1,...,J

1

L

L
∑

l=1

(Ti,j+l−1 − Sk,l)
2

(1)

3.1.5 Shapelet Transformation

Minimum distances to shapelets can be characterized as a trans-
formation of the time-series data T ∈ R

I×Q into a new represen-
tation M ∈ R

I×K [10]. Such a transformation reduces the di-
mensionality of the original time-series, because typically K < Q.

General purpose classifiers (e.g.: SVMs, Bayesian Network, . . . )
have been recently shown to achieve high prediction accuracy over
the new representation M [8].

3.1.6 Logistic Sigmoid Function

The logistic sigmoid function is an S shaped instance of the lo-

gistic function and is defined as σ(Y ) =
(

1 + e−Y
)−1

. We are
going to use the sigmoid function for the prediction of target vari-
ables via a logistic regression loss.

3.2 A Novel Principle
In this paper we propose a novel principle in learning time-series

shapelets. Instead of searching among possible shapelet candidates
from the series segments [17, 10], we propose a formal method
that can directly learn optimal shapelets without needing to explore
all possible candidates. Our principle can be summarized in two
steps: (i) Start with rough initial guesses for the shapelets, (ii) Iter-
atively learn/optimize the shapelets by minimizing a classification
loss function. In order to conduct the shapelet optimization, we de-
fine a novel classification model that is differentiable with respect
to shapelets. Therefore, shapelets can be updated in a stochastic
gradient descent optimization fashion, by taking steps towards the
minimum of the classification loss function (i.e. towards maximal
prediction accuracy).

3.3 Objective Function
For the sake of simplicity, the model introduced in this Section

will be focused only on binary targets Y ∈ {0, 1}I and a fixed
shapelet length L. A general version of the model, with extended
properties, is described Section 5.

3.3.1 Learning Model

Since the minimum distances M are the new predictors in the
transformed shapelets space, a linear learning model can predict
approximate target values Ŷ ∈ R

I×K via the predictors M and
linear weights W ∈ R

K (plus bias W0 ∈ R), as shown in Equa-
tion 2.

Ŷi = W0 +

K
∑

k=1

Mi,kWk, ∀i ∈ {1, . . . , I} (2)

3.3.2 Loss Function

In this paper we are going to exploit the logistic regression classi-
fication model, because it provides an option to interpret predicted
binary targets as probabilistic confidences. Such a probabilistic in-
terpretation will ensure extending our approach to the multi-class
case in Section 5. The logistic regression operates by minimizing
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the logistic loss, defined in Equation 3, between true targets Y and
estimated ones Ŷ .

L(Y, Ŷ ) = −Y lnσ(Ŷ )− (1− Y ) ln
(

1− σ(Ŷ )
)

(3)

3.3.3 Regularized Objective Function

The logistic loss function together with regularization terms rep-
resent the regularized objective function, denoted as F in Equa-
tion 4. The idea of this paper is to jointly learn the optimal shapelets

S and the optimal linear hyper-plane W that minimize the clas-

sification objective F .

argmin
S,W

F(S,W ) = argmin
S,W

I
∑

i=1

L(Yi, Ŷi) + λW ||W ||
2

(4)

3.4 Differentiable Soft-Minimum Function
In order to compute the derivative of the objective function, all

the involved functions of the model need to be differentiable. Un-
fortunately, the minimum function of Equation 1 is not differen-
tiable and the partial derivative ∂M

∂S
is not defined. A differentiable

approximation to the minimum function is introduced in this sec-
tion.

For the sake of organizational clarity we will introduce the dis-
tance between the j-th segment of series i and the k-th shapelet as
Di,k,j and define it in Equation 5.

Di,k,j :=
1

L

L
∑

l=1

(Ti,j+l−1 − Sk,l)
2

(5)

A differentiable approximation of the minimum function is the
popular Soft Minimum function that is depicted in Equation 6. A
parameter α controls the precision of the function and the soft min-
imum approaches the true minimum for α→ −∞.

Mi,k ≈ M̂i,k =

∑J

j=1
Di,k,j e

αDi,k,j

∑J

j′=1
eαDi,k,j′

(6)

Please note that the soft minimum has the shapelets as the only
varying input, which appear embedded inside the distance defini-
tion D. We would like to explain the operating principle of the soft
minimum with the aid of Figure 2.

A series from the FaceFour dataset and a shapelet are depicted
in the upper plot of Figure 2. The shapelet is a slightly distorted
variant of the series segment starting at time index 51. If we slide
the shapelet over all the series segments and record the distance
of shapelets to segments (i.e. Equation 5), then the Euclidean dis-
tances’ plot in blue is achieved. Two plots in red (bottommost) il-
lustrate the operation of the soft minimum function. Each point j of

the soft minimum plots correspond to
Di,k,j e

α Di,k,j

∑

J

j′=1
e

α D
i,k,j′

, while the

area under the soft-minimum plots sums up to the true minimum
distance between the shapelet and the series (i.e. Equation 1). It is
important to realize in the third plot (α = −20) that the amount by
which a segment distance impacts the overall minimum is directly
related to how small is that segment’s distance compared to other
segment distances. As can be seen in the bottom plot, if α = −100,
then only the true minimum segment distance is allowed to con-
tribute to the grand total minimum. We found out that α = −100
is small enough to make the soft minumum yield exactly the same
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Figure 2: Illustration of the soft minimum between a shapelet
(green) and all the segments of a series (black) from the FaceFour
dataset

results as the true minimum. Therefore, we kept this value fixed
throughout all our experiments.

3.5 Per-Instance Objective
The optimization we will adopt in this paper is a stochastic gra-

dient descent approach that remedies the classification error caused
by one instance at a time. The Equation 7 demonstrates the de-
composed objective function Fi, which corresponds to a division
of the objective of Equation 4 into per-instance losses for each time
series.

Fi = L(Yi, Ŷi) +
λW

I

K
∑

k=1

Wk
2

(7)

3.6 Gradients for Shapelets
The learning algorithm requires the definition of the gradients of

the objective function with respect to the shapelets. The gradient
of point l in shapelet k with respect to the objective of the i-th time
series is defined in Equation 8 and is derived through the chain rule
of derivation.

∂Fi
∂Sk,l

=
∂L(Yi, Ŷi)

∂Ŷi

∂Ŷi

∂M̂i,k

J
∑

j=1

∂M̂i,k

∂Di,k,j

∂Di,k,j

∂Sk,l
(8)

Furthermore, the gradient of the loss with respect to the predicted
target is defined in Equation 9, while the gradient of the minimum
distances with respect to the estimated target is shown in Equa-
tion 10.

∂L(Yi, Ŷi)

∂Ŷi
= −

(

Yi − σ
(

Ŷi
))

(9)

∂Ŷi

∂M̂i,k

= Wk (10)

In addition, the gradient of the overall minimum distance with
respect to a segment distance is presented in Equation 11 and the
gradient of a segment distance with respect to a shapelet point is
derived in Equation 12.
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Algorithm 1 Learning Time-Series Shapelets

Require: T ∈ R
I×Q, Number of Shapelets K, Length of a

shapelet L, Regularization λW , Learning Rate η, Number of
iterations: maxIter

Ensure: Shapelets S ∈ R
K×L, Classification weights W ∈ R

K ,
Bias W0 ∈ R

1: for iteration=NmaxIter
1 do

2: for i = 1, . . . , I do

3: for k = 1, . . . ,K do

4: Wk ←Wk − η
∂Fi

∂Wk

5: for L = 1, . . . , L do

6: Sk,l ← Sk,l − η
∂Fi

∂Sk,l

7: end for

8: end for

9: W0 ←W0 − η
∂Fi

∂W0

10: end for

11: end for

12: return S,W,W0

∂M̂i,k

∂Di,k,j
=

eαDi,k,j(1+α(Di,k,j −M̂i,k))
∑J

j′=1
eαDi,k,j′

(11)

∂Di,k,j

∂Sk,l
=

2

L
(Sk,l − Ti,j+l−1) (12)

3.7 Gradients for Classification Weights
The hyper-plane weights W can also be learned to minimize the

classification objective via stochastic gradient descent. Equation 13
shows the partial gradient of updating each weight Wk and Equa-
tion 14 presents the bias term W0.

∂Fi
∂Wk

= −
(

Yi − σ
(

Ŷi
))

M̂i,k +
2λW
I

Wk (13)

∂Fi
∂W0

= −
(

Yi − σ
(

Ŷi
))

(14)

3.8 Learning Algorithm
After having derived the gradients of the shapelets and the weights,

we can introduce the overall learning algorithm. Our approach it-
erates in a series of epochs and updates the values of the shapelets
and weights in the negative direction of the derivative with respect
to the classification objective of each training instance.

The steps of the learning process are shown in Algorithm 1. The
pseudo-code iterates over all training instances I and updates allK
shapelets S and the weights W,W0 by a learning rate η.

3.9 Convergence
The convergence of Algorithm 1 depends on two parameters, the

learning rate η and the maximum number of iterations. High values
for the learning rate can minimize the objective in less iterations,
but pose the risk of divergence, while small learning rates require
more iterations. Subsequently, the learning rate and the number of
iterations should be learned via cross-validation from the training
data.

For instance Figure 3 illustrates the convergence of the learning
algorithm on the Coffee dataset for 57 shapelets. Both the training
and the testing loss converge very smoothly for η = 0.01. As
a consequence of optimizing the training loss, the train and test
errors also decrease simultaneously. In addition, the regularization
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Figure 3: Convergence of the Coffee dataset, Parameters: K = 57,
L = 143, η = 0.01, λW = 0.001, α = −100

weight λW = 0.001 ensures that the train and test loss have small
differences, which can be interpreted as a generalization quality
without any over-fitting effect.

3.10 Model Initialization
Equation 4 is a non-convex function in terms of S and W be-

cause both are variables that need to be learned. Gradient descent
techniques do not theoretically guarantee the discovery of global
optima in non-linear functions. Unfortunately, non-convex opti-
mization techniques are very slow for data mining problems, there-
fore gradient based approaches are often selected as a compromise
between feasibility and optimality [14].

Gradient descent optimization requires a good initialization of
the parameters when applied to non-convex functions. In other
words, if the initialization starts the learning around a region where
the global optimum is located, then the gradient can update the pa-
rameters to the exact location of the optimum.

Initialization can influence a gradient based technique signifi-
cantly. We are going to illustrate the sensitivity of shapelets ini-
tialization through an experiment shown in Figure 4. For the sake
of two-dimensional illustration, we initialized one shapelet (S) in
the Gun-Point dataset using two values. The first 15 points of a 30
points long shapelet (S1:15) were given a fixed initial value, while
the other half points of the shapelet S16:30 were initialized with an-
other fixed value. Figure 4 demonstrate that different initial values
of the shapelet can result in different loss values and error rates over
the training instances.
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Figure 4: Sensitivity of Shapelet Initialization, Gun-Point dataset,
Parameters: L = 30, η = 0.01, λW = 0.01, Iterations= 3000,
α = −100

In order to robustify the initialization guesses we use the K-
Means centroids of all segments as initial values for the shapelets.
Since centroids represent typical patterns of the data, they offer
a good variety of shapes for initializing shapelets and help our
method achieve high prediction accuracy. The initialization is con-
ducted before Algorithm 1 starts, while W is also initialized ran-
domly around 0.
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3.11 Illustrating The Mechanism
An illustration of the learning algorithm is depicted in Figure 5.

Two shapelets of length 40 are learned from the Gun-Point dataset.
Sub-figure a) demonstrates the initialization values of the shapelets
and the arrangement of the minimum values of the time series to
shapelets. As can be seen, a linear hyper-plane W cannot eas-
ily separate the two classes. After 400 iterations of our method,
the shapelets are updated as shown in sub-figure b). In addition,
the shapelet transformed data representation M becomes almost
linearly separable with few exceptions. Finally, the algorithm ap-
proaches convergence in sub-figure c) after 800 iterations. The lin-
ear hyper-plane W separates the shapelet-transformed instances of
the binary dataset with just a single error (in red).

4. ANALYSIS OF OUR METHOD

4.1 Algorithmic Complexity
The baseline method which exhaustively tries candidates from

series segments [17, 10] requires O(I2Q3) running time for dis-
covering the best shapelet of a particular length Q. On the other
hand, our method requires O(IQ2 × maxIter), therefore our al-
gorithm finds the best shapelet in a faster time, given that usually
maxIter << IQ.

4.2 Comparison to State of the Art

4.2.1 Learning Near-To-Optimal Shapelets

The optimal solution of Equation 4 gives the optimal shapelets,
while a gradient descent approach can find a near-to-optimal mini-
mum given an appropriate initialization.

The baseline approaches, on the other hand, provide no guaran-
tee of optimal solutions for two primary reasons. First of all, the
baselines are bound to shapelet candidates from the pool of series
segments and cannot explore candidates which do not appear liter-
ally as segments. Secondly, minimizing the classification objective
through candidate guesses has no guarantee of optimality, while
a gradient-based optimization guarantees at least near-to-optimal
minima.

4.2.2 Capturing Interactions Among Shapelets

The baselines find the score of each shapelet independently and
then sort the individual quality of each shapelet, in order to select
the top performers. However, such an approach does not take into
account interactions among patterns. In other words, two shapelets
can be individually sub-optimal, but when combined together they
can improve the results. In fact, this problem is well known in data
mining and referred to as variable subset selection [2].
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Figure 6: Interactions among Shapelets Enable Individually Unsuc-
cessful Shapelets (left plots) to Excel in Cooperation (right plot)

For instance, Figure 6 demonstrates an example on how interac-
tions among shapelets can become a game changing factor. On
the left plots, we show the minimum distances of series to two
shapelets. As can be observed, the individual discriminative quality
of the shapelets is poor. On the other hand, a simple 2-dimensional
interaction of exactly the same distances M1,M2 can yield drasti-
cally improved results, as shown on the right plot. When combined
together, the distances to those shapelets can create a linearly sep-
arable discrimination, i.e. a perfect classification accuracy.

If the baseline’s exhaustive discovery approach would attempt to
select the true top-K interaction of shapelets out of I(Q− L+ 1)
candidates, then it will need to check the interaction of:
(

I(Q− L+ 1)
K

)

= (I(Q−L+1))!
K!(I(Q−L+1)−K)!

many combinations of

candidates. For instance finding the true top 100 shapelets of length
30 from the Adiac dataset with I = 390 and Q = 176 requires
checking 3.42 × 10317 combination trials using the baseline’s ap-
proach. Clearly, the exhaustive search baseline cannot find true

top-K shapelet interactions within a feasible time-frame. On the
contrary, our method can find the interactions at a simple linear
scale K, due to the property of jointly learning the shapelets and
their interactions.

4.2.3 Weaker Aspects of Our Paper

Our method relies on more hyper-parameters than the baselines,
such as the learning rate η, the number of iterations, the regulariza-
tion parameter λW and the soft-min precision α. However, given
the high prediction accuracy that will be demonstrated in Section 6,
we argue that the very high accuracy by far out-weights the model’s
learning efforts.

The time needed for the baselines to compute the top-K shapelets
is not significantly large with respect to the time needed to find a
single shapelet. Such a behavior comes from the fact that the qual-
ity of each candidate is known and ready in the end of the discov-
ery. On the other hand, our method needsK-many time units forK
shapelets, w.r.t. learning one shapelet. However, such a disadvan-
tage in time for large K is well spent in terms of accuracy, because
our method can learn true top-K shapelet interactions and signif-
icantly improve the classification accuracy. Moreover, we believe
that our method may yield to further improvements in efficiency by
exploiting "early abandoning" and caching of partial results (as in
[7]). For brevity we ignore such issues here and focus on forcefully
demonstrating the improvements in accuracy.

5. LEARNING GENERAL SHAPELETS
The model presented in Section 3.3 can be generalized to multi-

class labels and multi-size shapelets. Basically the model is ex-
tended to classify multi-class targets and capture interactions among
shapelets of various sizes.

5.1 Decomposition of the Multi-Class Problem
Into One-vs-all Subproblems

In order to learn from multi-class targets Y ∈ {1, . . . , C}I with
C categories, we will convert the problem into C-many one-vs-
all sub-problems. Each sub-problem will discriminate one class
against all the others. The one-vs-all binary targets Y b ∈ {0, 1}I×C

are defined in Equation 15.

Y
b
i,c =

{

1 Yi = c

0 Yi 6= c
, ∀i ∈ {1, . . . , N}, ∀c ∈ {1, . . . , C} (15)
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Figure 5: Learning Two Shapelets on the Gun-Point Dataset: Parameters L = 40, η = 0.01, λW = 0.01, α = −100

In fact, the conversion to one-vs-all sub-problems will be useful
for the operation of the logistic regression classifier. The output of
the logistic regression for a binary problem can be perceived as a
confidence probability. Therefore, the index of the most confident
among the C-many classifiers is selected as the predicted categori-
cal value of a test instance.

5.2 Interactions among Shapelets having Var-
ious Lengths

Capturing interactions among shapelets having various lengths
is another aspect of the extended method. Our generalized model
learns R different scales of shapelet lengths starting at a minimum
Lmin as {Lmin, 2Lmin, . . . , RLmin}. The shapelets therefore will be

defined as S ∈ R
R×K×∗, where S ∈

⋃R

r=1
R
K×rLmin

, and repre-
sent K-many shapelets for each scale R, i.e. totally KR shapelets.
The length of a shapelet at scale r ∈ {1, . . . , R} is r · Lmin.
Consequently, the number of segments in a time series depends
on the scale of the shapelet’s length to be matched against and is
J(r) = Q− r · Lmin + 1.

5.3 Generalized Objective Function
The objective function of the generalized model is presented in

Equation 16, which is a regularized logistic regression loss between
the true targets and the predicted ones shown in Equation 17. The
notation Mr,i,k identifies the minimum distance of the i-th series

to the k-th shapelet of scale r, i.e. to Sr,k ∈ R
r·Lmin

. In addition,
the weight Wc,r,k identifies the class c classifier and the weight of
the k-th shapelet at scale r.

argmin
S,W

F =

I
∑

i=1

C
∑

c=1

L(Y bi,c, Ŷ
b
i,c) + λW ||W ||

2
(16)

Ŷ
b
i,c = Wc,0 +

R
∑

r=1

K
∑

k=1

Mr,i,kWc,r,k (17)

5.4 Classification of Test Instances
Once the model is learned, a test instance indexed t is classified

as the one-vs-all classifier which yields maximum confidence, as
presented in Equation 18. The algorithmic complexity of classify-
ing a test instance is O(CRKJ(·)), but since C,R,K are asymp-

totically smaller values than J(·), the big-O notation complexity is
O(J(·)).

Ŷt ← argmax
c∈{1,...,C}

σ
(

Ŷ
b

t,c

)

, ∀t ∈ {1, . . . , ITest} (18)

5.5 Generalized Soft-Minimum
The soft minimum function can be trivially generalized to in-

clude the notation for the scales r as shown in Equation 19. The
distance between the k-th shapelet at scale r and the j-th segment
of time series i is denoted as Dr,i,k,j in Equation 20.

Mr,i,k ≈ M̂r,i,k =

∑J(r)

j=1
Dr,i,k,j e

αDr,i,k,j

∑J(r)

j′=1
eαDr,i,k,j′

(19)

Dr,i,k,j =
1

r · Lmin

r·Lmin
∑

l=1

(Ti,j+l−1 − Sr,k,l)
2

(20)

5.6 Gradients of Generalized Objective Func-
tion

The objective function can be split per each instance i and the
loss of each one-vs-all classifier c and denoted in Equation 21 as
Fi,c.

Fi,c = L(Y bi,c, Ŷ
b
i,c) +

λW

IC

R
∑

r=1

K
∑

k=1

Wc,r,k
2

(21)

5.6.1 Shapelet Gradients

The derivative of the per-cell objective Fi,c with respect to each
shapelet Sr,k,l is shown in Equation 22.

∂Fi,c
∂Sr,k,l

= −
(

Y
b
i,c − σ

(

Ŷ
b
i,c

)) ∂M̂r,i,k

∂Sr,k,l
Wc,r,k (22)

Moreover, the derivative of the minimum distances with respect
to the generalized shapelets is defined in Equations 23-24.
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∂M̂r,i,k

∂Dr,i,k,j
=

eαDr,i,k,j
(

1 + α
(

Dr,i,k,j − M̂r,i,k

))

∑J(r)

j′=1
eαDr,i,k,j′

(23)

∂Dr,i,k,j

∂Sr,k,l
=

2 (Sr,k,l − Ti,j+l−1)

r · Lmin
(24)

5.6.2 Classification Weights’ Gradients

The gradients of the per-cell objective with respect to the gener-
alized weights and the bias terms are presented in Equations 25-26.

∂Fi,c
∂Wc,r,k

= −
(

Y
b
i,c − σ

(

Ŷ
b
i,c

))

M̂r,i,k +
λWWc,r,k

IC
(25)

∂Fi,c
∂Wc,0

= −
(

Y
b
i,c − σ

(

Ŷ
b
i,c

))

(26)

5.6.3 Optimized Learning Algorithm

Algorithm 2 summarizes all the steps of the learning process.
The first section of the procedure pre-computes terms which are
used frequently in the gradients of the shapelets, such as ξ,D, ψ, ϑ.
The pre-computations boost the learning time and avoid computing
the same terms repeatedly. The second part of the algorithm up-
dates the weights and the shapelets using the defined gradients and
the precomputed terms.

6. EXPERIMENTAL RESULTS

6.1 Setup And Reproducibility

6.1.1 Datasets

For the sake of equivalent comparison, we selected exactly the
same set of datasets as the closest baselines [10, 8]. A large pool of
28 datasets consisting of time-series datasets having various num-
bers of instances, lengths and number of classes is selected and
details are shown in Table 1. In order to ensure a fair comparison
with the baselines, we used the default train and test data splits,
same as the baselines [10, 8]. The datasets are available through
the UCR1 and UEA2 websites.

6.1.2 Reproducibility and Hyper-parameter Search

Our method (hereafter denoted as LTS, for Learning Time-Series
Shapelets) requires the tuning of a series of hyper-parameters, which
were found through a grid search approach using cross-validation
over the training data. The number of shapelets was searched in a
range of K ∈ {0.05, 0.15, 0.3}, which is a fraction of the series
length, e.g. K = 0.3 means 30% of Q. Similarly, Lmin ∈ {0.025,
0.075, 0.125, 0.175, 0.2} × 100% of Q, while three scales of
shapelet lengths were searched from R ∈ {1, 2, 3}. The regular-
ization parameter was one of λW ∈ {0.01, 0.1, 1} . The learning
rate was kept fixed at a small value of η = 0.01, while the number
of iterations is selected from maxIter∈ {2000, 5000, 10000}. All
our method’ parameters for all datasets are shown in Table 1. The

authors are devoted to promote reproducibility, therefore the

source code, datasets and instructions are made publicly avail-

able3.

1http://www.cs.ucr.edu/~eamonn/time_series_
data/
2http://www.uea.ac.uk/computing/
machine-learning/shapelets/shapelet-data
3http://fs.ismll.de/publicspace/
LearningShapelets/

Algorithm 2 Generalized Shapelets Learning

Require: Time series T ∈ R
I×Q, Binary labels Y b ∈ R

I×C ,
Number of shapelets K, Learn Rate η, Regularization λW ,
Scales of shapelet lengths R ∈ N, Minimum Shapelet Length
Lmin, Number of Iterations: maxIter

Ensure: Shapelets S ∈ R
R×K×∗, Classification weights W ∈

R
R×C×K ,W0 ∈ R

C

1: Initialize S,W,W0

2: for iteration={1, . . . ,maxIter} do

3: for i = {1, . . . , I} do

4: {Pre-compute Terms}
5: for r = {1, . . . , R}, k = {1, . . . ,K} do

6: for j = {1, . . . , J(r)} do

7: Dr,i,k,j := 1
r·Lmin

∑r·Lmin

l=1
(Ti,j+l−1 − Sr,k,l)

2

8: ξr,i,k,j := eαDr,i,k,j

9: end for

10: ψr,i,k :=
∑J(r)

j=1
ξr,i,k,j

11: M̂r,i,k := 1
ψr,i,k

∑J(r)

j=1
Dr,i,k,j ξr,i,k,j

12: end for

13: for c = {1, . . . , C} do

14: σ(Ŷ bi,c) :=

(

1 + e
−

∑

R

r=1

∑

K

k=1
M̂r,i,kWc,r,k

)−1

15: ϑi,c := Y bi,c − σ(Ŷ bi,c)
16: end for

17: {Learn Shapelets and Classification Weights}
18: for c = {1, . . . , C} do

19: for r = {1, . . . , R}, k = {1, . . . ,K} do

20: Wc,r,k + = η
(

ϑi,cM̂r,i,k −
2λW

IC
Wc,r,k

)

21: for j = {1, . . . , J(r)} do

22: φr,i,k,j :=
2ξr,i,k,j(1+α(Dr,i,k,j −M̂r,i,k))

r·Lminψr,i,k

23: for l = {1, . . . , r · Lmin} do

24: Sr,k,l + = η ϑi,c φr,i,k,j×
(Sr,k,l − Ti,j+l−1)Wc,r,k

25: end for

26: end for

27: end for

28: Wc,0 + = η ϑi,c
29: end for

30: end for

31: end for

32: return S,W,W0

6.1.3 Baselines

Thirteen different baselines were compared against, which are
grouped into the following four clusters.

• Shapelet Tree Methods, constructed from shapelets whose
qualities are measured using: i) Information gain quality cri-
terion (IG) [17, 11], ii) Kruskall-Wallis quality criterion (KW)
[8], iii) F-Stats quality criterion (FST) [10] and iv) the Mood’s
Median Criterion (MM) [8].

• Basic Classifiers [10], learned over shapelet-transformed data,
such as: Nearest Neighbors (1NN), Naive Bayes (NB) and
C4.5 tree (C4.5).

• More Complex Classifiers [8], learned over shapelet trans-
formed data, such as: Bayesian Networks (BN), Random
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Table 1: Dataset Information, Parameter Search Results and Running Time for The Best Shapelet [8]

Dataset Information Parameter Values (LTS) Run-Time (Best Shap.)

Dataset Train/Test Length Cls. K Lmin R λW maxIter F-Stat (Sec) LTS (Sec)

Adiac 390/391 176 37 0.3 0.2 3 0.01 10000 4509.91 3017.23

Beef 30/30 470 5 0.15 0.125 3 0.01 10000 1251.21 293.68

Beetle/Fly 20/20 512 2 0.15 0.125 1 0.01 5000 21496.51 131.015

Bird/Chicken 20/20 512 2 0.3 0.075 1 0.1 10000 20465.63 81.405

Chlorine. 467/3840 166 3 0.3 0.2 3 0.01 10000 15681.39 558.51

Coffee 28/28 286 2 0.05 0.075 2 0.01 5000 258.15 90.96

Diatom. 16/306 345 4 0.3 0.175 2 0.01 10000 53.91 173.1

DP_Little 400/645 250 3 0.15 0.175 1 1 5000 78005.7 1525.595

DP_Middle 400/645 250 3 0.3 0.025 3 1 10000 91208.52 910.33

DP_Thumb 400/645 250 3 0.05 0.175 3 0.1 5000 123766.49 963.765

ECGFiveDays 23/861 136 2 0.05 0.125 2 0.01 5000 149.1 29.365

FaceFour 24/88 350 4 0.3 0.175 3 1 5000 4556.41 386.45

GunPoint 50/150 150 2 0.15 0.2 3 0.1 10000 569.42 46.69

ItalyPower. 67/1029 24 2 0.3 0.2 3 0.01 5000 1.75 10.285

Lighting7 70/73 319 7 0.05 0.075 3 1 5000 14912.74 394.44

MedicalImages 381/760 99 10 0.3 0.2 2 1 10000 7742.97 406.725

MoteStrain 20/1252 84 2 0.3 0.2 3 1 10000 10.76 16.875

MP_Little 400/645 250 3 0.3 0.2 3 0.01 5000 88071.5 965.27

MP_Middle 400/645 250 3 0.05 0.2 2 0.01 5000 134731.54 940.555

Otoliths 64/64 512 2 0.15 0.125 3 0.01 2000 55874.19 407.835

PP_Little 400/645 250 3 0.15 0.125 3 1 10000 79993.31 890.925

PP_Middle 400/645 250 3 0.15 0.175 2 0.01 10000 57815.02 1574.805

PP_Thumb 400/645 250 3 0.3 0.175 2 0.1 10000 91401.49 1449.36

SonyAIBO. 20/601 70 2 0.3 0.125 2 0.01 10000 6.73 11.415

Symbols 25/995 398 6 0.05 0.175 1 0.1 5000 8901.28 308.99

SyntheticControl 300/300 60 6 0.15 0.125 3 0.01 5000 984.36 219.97

Trace 100/100 275 4 0.15 0.125 2 0.1 10000 54128.53 275.375

TwoLeadECG 23/1139 82 2 0.3 0.075 1 0.1 10000 3.12 15.415

Forest (RAF), Rotation Forest (ROF) and Support Vector Ma-
chines (SVM).

• Other Related Methods: The Fast Shapelets (FSH) [12] ex-
ploits a fast random projection technique on the SAX repre-
sentation, while the Dynamic Time Warping (DTW) clas-
sifier on the raw time-series data is also selected due to its
reputation as a strong similarity metric [4].

6.2 Very High Prediction Accuracy
We compared our method of learning shapelets (denoted as LTS)

against the selected baselines in terms of classification accuracy
ratio (fraction of correct classifications) as shown in Table 2. The
best method per dataset is highlighted in bold.

Our method LTS has a very large superiority in terms of Absolute
Wins (17.28 absolute wins in 28 datasets against 13 baselines) and
1-to-1 wins, as indicated by the respected rows in the end of the
table. Each dataset awards one point, which is split into fractions in
case of draws. In addition, we compared the ranks of the classifiers
and found out that LTS has a significantly better rank of 1.946 ±
0.536 against the closest baseline’s (SVM) rank 4.554± 1.180. In
order to bullet-proof our claim, we ran the well-known Wilcoxon
signed ranks test [3] against all baselines and found out that all
results are statistically significant at p < 0.05, as can be deduced
by the p-values of the most bottom row.

6.3 Competitive Running Time
Since the idea of this paper is entirely novel, our first priority is

to evaluate its prediction accuracy rather than elaborating on speed-
up techniques, as in the fast shapelets approach [12]. Neverthe-
less, we would like to show that our method is indeed feasible and
competitive in terms of running time and faster than the exhaustive
candidate search approach [10, 8]. We compared the time needed
to find the best shapelet of each dataset against the F-Stat metric,
which is the fastest quality metric [10, 8]. The best shapelet run-
time comparison is advocated by our baseline [8], in order to ensure
that methods can process the same number of candidates. As can be
seen from Table 1, our method can learn the shapelet within a faster
time (57 times faster in average) compared to the baseline, which
is an indication that our method is practically feasible in terms of
running time. Each execution of our method searched over five dif-
ferent shapelet sizes {0.025, 0.075, 0.125, 0.175, 0.2} × Q and
the other parameters were set to η = 0.01, maxIter= 3000 and
λW = 0.001.

7. CONCLUSION
In this study we introduced a novel perspective into learning

time-series shapelets. In contrast to related work which searches for
top shapelets from a pool of candidates, we propose a novel math-
ematical formulation of the task via a classification objective func-
tion. In addition, we introduced a learning algorithm which learns

near-to-optimal shapelets by exploring shapelet interactions. An
extensive experimentation on 28 time-series datasets and 13 base-
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lines is conducted. Our method outperforms all the baselines with
statistically significant margins in terms of both wins and ranks.
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