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ABSTRACT
Discovering temporal dependence structure from multivari-
ate time series has established its importance in many appli-
cations. We observe that when we look in reversed order of
time, the temporal dependence structure of the time series
is usually preserved after switching the roles of cause and
effect. Inspired by this observation, we create a new time
series by reversing the time stamps of original time series
and combine both time series to improve the performance of
temporal dependence recovery. We also provide theoretical
justification for the proposed algorithm for several existing
time series models. We test our approach on both synthetic
and real world datasets. The experimental results confirm
that this surprisingly simple approach is indeed effective un-
der various circumstances.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time Series Analysis

Keywords
Time Series Analysis; Generalized Linear Model

1. INTRODUCTION
Discovering temporal dependence structures from multi-

variate time series is one of the central tasks in time series
analysis. It easily finds applications in many domains. For
example, in social networks, accurate identification of influ-
ence networks from users’ time series activity records is of
significant importance for advertising, marketing, and psy-
chological studies. In biology, the gene regulatory networks
recovered from time series microarray data reveals key in-
formation on gene functions.

Inferring dependency network structures from time se-
ries data has been extensively studied in the past. The
Granger causality framework, which establishes temporal
dependence structures based on regression techniques, has
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become popular due to its simplicity, robustness, and ex-
tendability [23, 7, 16, 3, 22]. Nowadays, as more and more
large-scale time series data become available, traditional ap-
proaches for identifying Granger causality are confronted
with a series of challenges, such as inconsistency, high com-
putational complexity, and so on. To address these prob-
lems, penalized regression techniques (e.g. lasso or lasso-
type regressions) have been applied, leading to major im-
provement for applications with sparse temporal dependence
structures [29, 2, 27]. However, the overall performance of
existing Granger causality techniques still leaves room for
improvement. In this paper, we aim to explore a new direc-
tion by considering the procedure of reversing the time in
time series data.

The inspiration for our work comes from classical mechan-
ics where it is well-known that the basic equations of the
classical physics remains valid when we look in reversed or-
der of time, i.e., replacing time stamp t with −t. In a simple
world, if time flows in the opposite direction, objects interact
with each other under the same physical laws, and we will
not notice the difference. Instead of explaining all phenom-
ena from the underlying physical law, we usually apply sim-
plified mathematical models to real world events. Since the
underlying physics mechanism is time reversible, we would
expect our model applies when the time is reversed. The
question remains whether we can consolidate and enhance
our estimation accuracy by utilizing the information from
both directions.1

To fully utilize such an idea, we need to examine the effect
of reversing the time on the temporal dependence structures.
One important assumption of Granger causality is that the
cause occurs before the effect. If an event A at time t causes
an event B to happen at time t+k, we will see a correlation
between events A and B with time lag k. By reversing time,
the correlation between events A and B still exists, with the
difference that B occurs before A. Granger causality-based
algorithms should suggest that A causes B with time lag k
from the original time series. Similarly, we expect that the
same algorithm would also indicate that B causes A with
time lag k from the reversed time series. Note that our
argument is not limited to Granger causality, it also applies
to other algorithms that rely on the correlation with time
lags between time series, e.g., transfer entropy [26].

1 It should be noted that, for a closed complex system, the
trend of entropy eliminates the ambiguity on the time di-
rection, as suggested by the second law of thermodynamics.
But since the model only addresses a particular aspect of
the system, the restriction usually does not apply.
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The link between the original time series and the reversed
time series raises the possibility of combining these two di-
rections for enhanced temporal dependence inference. This
motivates us to propose a novel but simple approach, namely
forward backward (FB) Granger causality, to infer the tem-
poral dependence structures for multivariate time series. Firstly,
we apply Granger causality-based algorithm on both the
original time series and the time-reversed time series, then
we combine the results by simple averaging. Note that sim-
ilar approach has been applied in Natural Language Pro-
cessing [21], where they estimate the transition kernel of the
Markov chain from both directions. Performance improve-
ment has been observed when the size of data is limited.
We provide both theoretical analysis and empirical studies
on the effectiveness of the proposed approach. The rest of
the paper is organized as follows: we first review the pre-
liminary and related works in Section 2. In Section 3, we
describe our FB Granger causality algorithm and provide
theoretical analysis on several existing models. Finally, we
show experimental results in Section 4 and conclusion in
Section 5.

2. PRELIMINARIES AND RELATED WORK

Notation.
We define the forward time series as the original multivari-

ate time series {y(t)}, t = . . . , 0, 1, . . . , and the backward

time series {z(t)} is defined as z(t) := y(−t). {y(t)} and

{z(t)} both contain N time series; univariate time series are

denoted by {y(t)i } and {z(t)i } for i = 1, . . . , N . Both y(t) and

z(t) are vectors of the values for each time series at time t,
respectively. If the ith time series at time t is caused by the
jth time series at time t−k, we say that i is caused by j with
lag k. Moreover, we represent this temporal dependence re-
lation by the ordered temporal dependence triplet (i, j, k).
And the inverse of temporal dependence triplet (i, j, k) is
defined as (j, i, k). In addition, Cy denotes the set of all

temporal dependence triplets for time series {y(t)}.

Related Work.
Causal inference has consistently been an important task

for researchers in various fields of science. There are two
main tasks in causal inference: (1) How to cancel the con-
founding bias, e.g., [24] and (2) How to discover the causal
structures among the given variables when a set of assump-
tions are satisfied [28]. In this paper, the second task is
our concern and we intend to improve the existing causal
discovery algorithms.

The causal discovery task is challenging and may require
many assumptions with weak guarantees of finding the true
causal structure, see for example the theoretical discussions
in [25]. Granger causality is one of the most popular ap-
proaches to quantify temporal dependence structures for
time series observations. It is based on two major prin-
ciples: (i) The cause happens prior to the effect and (ii)
The cause makes unique changes in the effect [14, 15]. In
practice, Granger causality tests are carried out by fitting a
Vector Auto-regression (VAR) model. Up to now, two ma-
jor approaches based on VAR model have been developed
to uncover Granger causality for multivariate time series.
One approach is the significance test [20, ch. 3.6.1]: given

multiple time series {y(t)}, we run a VAR model as follows,

y(t) =

P∑
`=1

A>` y(t−`) + ε(t), (1)

where P is the maximal time lag. We can determine that

time series {y(t)j } Granger causes {y(t)i } if at least one value
in the coefficient vector {A`}ij for ` = 1, . . . , P is nonzero
by statistical significant tests. The second approach is the
Lasso-Granger approach [29, 2, 27], which applies a lasso-
type VAR model to obtain a sparse and robust estimate of
the coefficient vectors for Granger causality tests. Specif-
ically, the regression task in Eq. (1) can be achieved by
solving the following optimization problem:

min
A`

T∑
t=L+1

∥∥∥∥∥y(t) −
P∑

`=1

A>` y(t−`)

∥∥∥∥∥
2

2

+ λ

P∑
`=1

‖A`‖1 , (2)

where λ is the penalty parameter, which determines the
sparsity of the coefficients A`.

Several approaches have been proposed for identification
of Granger causality for nonlinear time series; among the
notable ones, kernelized regression [22], nonparametric tech-
niques such as [16, 23, 26], non-Gaussian structural VAR
[17], generalized linear autoregressive models [19, 5], and
the Copula Granger [4].

The proposed method in this paper is similar to boot-
strap aggregating (bagging) techniques [6] in the sense that
it averages over the results from multiple datasets. But the
fundamental difference between the two techniques stems
from the way that the algorithms generate datasets: the
bagging techniques sample the original dataset and create
subsamples of the dataset and then average over the results
of the algorithm on each new datasets. Here we do not sub-
sample the original dataset; instead we create a new dataset
by reversing time. Randomization techniques [12] consti-
tute another wide class of dataset manipulation techniques.
However, note that the our proposed method is purely de-
terministic.

3. MODEL ANALYSIS
In this section, we first describe our algorithms for exploit-

ing the information in the backward time series, and then
elaborate theoretical bases for the gain achieved by these
algorithms.

3.1 Forward Backward Granger Causality
Given a specific temporal dependence inference algorithm,

if it indicates the existence of the temporal dependence triplet
(i, j, k) based on the forward time series {y(t)}, as argued
in Section 1, intuitively we would expect the algorithm to
find the triplet (j, i, k) based on the backward time series

{z(t)}. This motivates our core design principle for utilizing
this property: we can achieve more robust temporal depen-
dence inference by appropriately combining the results from
both the forward time series and the backward time series
produced by the same temporal dependence inference algo-
rithm.

The validity of such an approach depends on both the
original temporal dependence inference algorithm and how
we combine the results. We mainly focus on the Granger
causality-based algorithms in this paper.
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Algorithm 1 Naive Forward Backward Lasso Granger
Causality

Input: Time series {y(t)}, lag P , penalty parameter λ.
Output: Coefficients AFB

` , ` = 1, 2, . . . , P .
Define the backward time series {z(t)} by z(t) = y(−t).

Get forward coefficients A` via Lasso-Granger with {y(t)},
P , and λ.
Get backward coefficients B` via Lasso-Granger with
{z(t)}, P , and λ.
Return AFB

` = 1
2
(A` + B>` ), ` = 1, 2, . . . , P .

Algorithm 2 Naive Forward Backward Copula Lasso
Granger Causality

Input: Time series {y(t)}, lag P , penalty parameter λ.
Output: Coefficients AFB

` , ` = 1, 2, . . . , P .
for each i = 1, 2, . . . , N do

Transform y
(t)
i → w

(t)
i by equation 3.

end for
Get coefficients AFB

` by calling algorithm 1 with {w(t)},
P , and λ.
Return AFB

` , ` = 1, 2, . . . , P .

In general, suppose that the assumptions for correctness of
Granger causality are satisfied such that the coefficients es-
timated by Granger causality indicate the existence of tem-
poral dependence relationships; such assumptions have been
studied in [13, 4]. The simplest way to combine the results
is to add the coefficients for (i, j, k) in the forward time se-
ries and (j, i, k) in the backward time series, which yields
the Naive Forward Backward Lasso Granger Causality Al-
gorithm, shown in Algorithm 1. It is important to note
that since we only flipped the temporal order of the original
dataset, the results from forward and backward time series
are expected to be correlated. But the coefficients are not
fully correlated for time series with finite length, which is
supported by our experimental results.

However, Granger causality is designed for linear time se-
ries, which is not always the case for the data of interest.
Given a time series {x(t)}, we can map the data using the
empirical marginal distribution of time series to the Gaus-
sian distribution by

y
(t)
i = siΦ

−1(F̂ (x
(t)
i )), for i = 1, . . . , N, (3)

where F̂ is the empirical cumulative distribution function
(CDF) of the ith time series, Φ is the CDF for standard
Gaussian distribution and si is the standard derivative of
the ith time series, which helps to retain original informa-
tion. {y(t)} will be treated as a linear representation for the
original time series, to which we can apply Granger causality
based algorithms, e.g., the Copula Lasso Granger Causality
[4], and similarly, Naive Forward Backward Copula Lasso
Granger Causality as described in algorithm 2.

3.2 Analysis of Continuous Time Series
In this section2, we show that for the time series gener-

ated from Vector Autoregressive Model (VAR), the backward
time series is also a VAR under some conditions. To do so,

2Note that by continuous or discrete time series, we refer to
whether the variables take on continuous or discrete values.

we assume ε(t) ∼ N (0, γI), where γ is a constant which gov-
erns the level of noise, and N (µ, σ2) denotes the Gaussian
(normal) distribution. The VAR model with the Gaussian
noise uniquely defines a multivariate Gaussian distribution
on (y(t),y(t−1), . . . ). This provides the foundation for us
to derive the conditional distribution of the same form as
equation (1) for backward time series {z(t)|z(t) ≡ y(−t)}.
We show that the backward time series is also a VAR model
only with different set of coefficients Bi and noise. How-
ever, for arbitrary VAR, the causation defined on the for-
ward time series y(t) is not the same as the inverse of the
causation defined on the backward time series {z(t)}, i.e.,
the set of causation triplets of the backward time series
Cz 6= {(j, i, k)|(i, j, k) ∈ Cy} where Cy = {(i, j, k)} is the
set of causation triplets of the forward time series. In the
following theorem, we show that the temporal dependence
triplets on the backward time series {z(t)} is closely related

to the inverse of the triplets on {y(t)}.

Theorem 3.1. If the forward time series {y(t)} is stable
and there exists δ > 0 and a matrix norm |||·|||, e.g., the
Frobenius norm, so that |||Ai||| < δ, ∀i = 1, 2, . . . , P . Then

the backward time series {z(t)} is also a VAR, defined by

z(t) =

P∑
i=1

Biz
(t−i) + ωt,

where ωt ∼ N (0, γ[I + Θ(δ)]) and Bi = A>i + o(δ), ∀ i.

Proof. By the definition of {y(t)}, we have

y(t)|y(t−1), . . . ,y(t−P ) ∼ N (

P∑
i=1

Aiy
(t−i), γI).

Because time series {y(t)} is stable, so it is also strictly sta-
tionary [20, Ch. 2.1.3] and the marginal distribution of the
P consecutive time stamps has the following representation:

Y(t) = (y(t+1)>,y(t+2)>, . . . ,y(t+P )>)> ∼ N(0, γ{Λij}−1),

where the Y(t) is an NP × 1 vector, and the {Λij} is the
precision matrix (represented in blocks), each block Λij is an
N ×N matrix. Given the stationarity of the time series, we
can set t = 0 without the loss of generality. The probability
density function (PDF) of the marginal distribution of the
P + 1 consecutive time stamps are proportional to

exp[−
1

2γ
(

P∑
i,j=1

y(i)>Λijy
(j)

+ (y(P+1) −
P∑

i=1

Aiy
(i))>(y(P+1) −

P∑
i=1

Aiy
(i)))]

= exp[−
1

2γ
(

P+1∑
i,j=1

y>i (Λij + A>i Aj)yj)],

where AP+1 = −I, ΛP+1,i = Λj,P+1 = 0. The PDF of
the conditional distribution of y(1) given y(2), . . . ,y(P+1) is
proportional to

exp[− 1

2γ
(y(1)>(Λ11+A>1 A1)y(1)−2

P+1∑
i=2

y(i)>(Λi1+A>i A1)y(1))

∼ N ((Λ11+A>1 A1)−1(−
P+1∑
i=2

(Λ1i+A>1 Ai)y
(i)), γ(Λ11+A>1 A1)−1).
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To study the structure of the covariance matrix {Λij}−1,
we recall that the Moving Average representation of VAR
model, which is

Y(t) ∼
+∞∑
i=1

AiU(t−i),

where U(t) = (0>, 0>, . . . , ε(t)
>

)
>

, and

A =


0 I 0 0

0 0 I
...

0 0
. . . I

AP AP−1 . . . A1

 .
So we have that

γ{Λij}−1 = γ

+∞∑
i=1

AiΣt−i(A
i)T ,

where the lower right block of Σt−i is I, otherwise is 0.
By some derivations, we can show that

{Λij}−1 = I + Θ(δ),

where the diagonal blocks are I+Θ(δ) by setting all Ai = 0.
And the first row of blocks are (I+Θ(δ),A>P +o(δ), . . . ,A>2 +
o(δ)), which can be derived by studying the first P +1 terms
in the series. So by inversion, we have that

Λ1i = −AT
P+2−i + o(δ),∀i = {2, . . . P},

Λ11 = I + o(1).

Together with AT
1 Ai = o(δ),∀i = 1, 2, . . . , P , we have

−(Λ1i + AT
1 Ai) = AT

P+2−i + o(δ),

(Λ11 + AT
1 A1) = I + o(1) = I + Θ(δ).

By replacing y(t) with z(−t), we have

z(t) =

P∑
i=1

Biz
(t−i) + ωt =

P∑
i=1

[A>i + o(δ)]z(t−i) + ωt,

where ωt ∼ N (0, γ[I + Θ(δ)]).

The assumption in Theorem 3.1 implies that the strength
of the influence in time series {y(t)} has an upper bound,
which is sufficient but not necessary. It can be relaxed,
since the proof only requires that the higher order prod-
uct between Ai is negligible comparing with Ai itself. This
assumption can be easily satisfied when the temporal depen-
dence structure is sparse, which is usually true in real world
applications.

Theorem 3.1 shows that the first order components of the
influence on the backward VAR is exactly the inverse of the
forward VAR, i.e., not only (i, j, k) ∈ Cy ⇔ (j, i, k) ∈ Cz, but
they also share the same strength {Ak}ij , which indicates a
much stronger link between the forward time series and the
backward time series. The link also results in a simple form,
which justifies our approach of combining the results from
both directions, i.e., averaging on the corresponding coeffi-
cients. Moreover, Granger causality provides an unbiased
estimation for both directions, and the results in [27] indi-
cate that they have the same variance. Therefore the aver-
age of both directions is also unbiased with smaller variance,

when the correlation of two estimations are strictly less than
1. Additionally, when we have sufficiently long time series,
i.e., T � N , we would expect that the forward backward ap-
proach provides an estimation similar to the original Lasso
Granger causality, since both forward and backward should
provide accurate coefficients estimation, as suggested by the
consistency of the penalized maximal likelihood estimation.
This phenomenon has been observed in our experiments on
synthetic datasets.

For nonlinear time series, we apply the copula transfor-
mation before Granger causality. In order to show similar
theoretical results for this approach, we need the data to
be generated from the Granger Non-paranormal (G-NPN)
model as follows:

Definition.
Granger Non-paranormal (G-NPN) model We say a

time series x(t) = (x
(t)
1 , . . . , x

(t)
N ) has Granger-Nonparanormal

distribution G−NPN(x,A, F ) if there exist monotonically

increasing functions {Fi}Ni=1 such that Fi(x
(t)
i ) for i = 1, . . . , N

are jointly Gaussian and can be factorized according to the
VAR model with coefficients A = {Ak}Pk=1. More specifi-
cally, the joint distribution for the transformed random vari-

ables y
(t)
i , Fi(x

(t)
i ) can be factorized as follows

py(t)(y
(t)) = N (y(1:P ))

N∏
i=1

T∏
t=P+1

pN (y
(t)
j |

P∑
k=1

Aky(t−k), σj),

where pN (y|µ, σ) is the Gaussian density function with mean
µ and variance σ2.

Proposition 3.1. Using the copula transformation on the
data generated from G-NPN model, the forward and back-
ward relationships in Theorem 3.1 hold for the transformed
random processes.

Proof. Our proof is mainly to show that the copula trans-
formation recovers the original vector auto-regressive pro-
cess. The key step to prove this result is to show that if
X ∼ N (0, 1) and Y = F (X), where F (·) is a monotonically
increasing function, then Φ−1(FY (Y )) ∼ N (0, 1). Further-
more, the independence relationships will be preserved a the
copula mapping, as the transformation Φ−1(FY (·)) is a de-
terministic transformation. This is because X ⊥⊥ Y if and
only if g(X) ⊥⊥ h(Y ) for any arbitrary random variables
X and Y and deterministic one-to-one transformation func-
tions g(·) and h(·).

After applying the above result to each variable x
(t)
i , we

can show [4] that by using the copula transformation we

obtain y
(t)
i which are multivariate Gaussian as defined in

the definition of G-NPN.

The definition of the Granger Non-paranormal (G-NPN)
model indicates that the underlying mechanism of time se-
ries {x(t)} is a linear time series, which subsumes numerous

circumstances. When {x(t)} is an observation of {y(t)} with
deterministic bias, the copula transformation helps to re-
store the original information as stated in Proposition 3.1.
And then we can apply our argument for the VAR model.

3.3 Analysis of Discrete Time Series
Nowadays, social media provides a rich source for time

series analysis because the interactions among individuals
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are naturally reflected in the time series of action logs. One
way to analyze the social influence among users is to create
time series of user activity by assigning 1 to a user at a
particular time interval if she has at least one activity in that
time interval and 0 otherwise [1]. For example, tweeting (i.e.,
posting on Twitter) activity naturally defines a time series,

where y
(t)
i = 1 if user i posts at time interval t, and y

(t)
i = 0

otherwise. We can also recover influence relationship among
users based on retweeting. For example, if user i retweets
user j, we say that i has been influenced by j. Such social
network time series pose a unique challenge for the temporal
dependence inference algorithms.

In this section, we first define a general type of binary time
series, which includes many existing models. Then, with
additional Assumption 3.2, we prove that applying Granger
causality to binary time series provides consistent temporal
dependence structure recovery. Furthermore, by Assump-
tion 3.2 and Lemma 3.4, we build the connection between
the forward times series and the backward time series, which
leads to the consistency results on temporal dependence
structure recovery for the backward time series. By con-
sistency we refer to that with appropriate thresholding on
the estimated coefficients, we can correctly recover all tem-
poral dependence triplets from the time series. Note that
we are applying Granger causality on a misspecified model
(i.e., the binary time series is not generated from VAR), the
consistency results also justify our approach which applies
Granger causality on certain non-VAR time series.

Given a binary multivariate time series {y(t)}, we say the

ith series is activated at time t if and only if y
(t)
i = 1. In

addition to the previous notations, we denote y(t−1:t−P ) =
(y(t−1),y(t−2), . . . ,y(t−P )). Ωy(t−1:t−P ) is the set of acti-

vated variables in y(t−1:t−P ). We have the following as-
sumptions:

Assumption 3.1.
Markov Assumption

The probability of activation for any variable at time t
only depends on the states of the most recent P times (t −
1, t− 2, . . . , t− P ), which is

P (y
(t)
i = 1|y(t−1),y(t−2), . . . ) = P (y

(t)
i = 1|y(t−1:t−P ))

= P (y
(t)
i = 1|Ωy(t−1:t−P )).

The last equality is because of variables only take binary
value, so the status of y(t−1:t−P ) is uniquely defined by Ωy(t−1:t−P ) .
Activation Rate Monotonicity

y
(t−k)
j /∈ Ωy(t−1:t−P ) implies

P (y
(t)
i = 1|{y(t−k)

j }∪Ωy(t−1:t−P )) ≥ P (y
(t)
i = 1|Ωy(t−1:t−P )),

which means that there is no negative influence on the acti-
vation rate if more variables from the histories become acti-
vated.
Influcence Significance

If there exist a set Ωy(t−1:t−P ) , such that y
(t−k)
j /∈ Ωy(t−1:t−P )

and P (y
(t)
i = 1|Ωy(t−1:t−P )∪{y(t−k)

j }) > P (y
(t)
i = 1|Ωy(t−1:t−P )),

then there exist δijk > 0, for any Ωy(t−1:t−P ) , y
(t−k)
j /∈

Ωy(t−1:t−P ) implies

P (y
(t)
i = 1|Ωy(t−1:t−P )∪{y(t−k)

j }) > P (y
(t)
i = 1|Ωy(t−1:t−P ))+δijk.

And we say j is a cause for i with lag k

The last term in Assumption 3.1 actually implies that the
causation is significant under any circumstances, i.e. the
activation of time series j at time t − k will increase the
activation rate of time series i at time t by at least δijk,

regardless of other variables in y(t−1:t−P ), or the status of

y
(t)
i does not depends on the status of y

(t−k)
j at all. We

stress that Assumption 3.1 can be easily satisfied in practical
applications and many existing models fall in this category.

Example 3.1. Independent Cascade[18] (IC) model is
originally proposed for modeling the diffusion process in so-
cial networks. We modify it to model the activity on net-
works over time. IC model defined on a weighted directed
graph {V, E}, with each vertex represents an individual in
the network. If vertex v is activated at time t, it attempts to
activate its neighbor s with probability pv→s at time t+1 in-
dependently. If any neighbor of s activates s successfully, s
will be marked as activated at time t+1. It can also activate
itself by probability µs. The activation rate has the following
representation

P (s(t+1) = 1) = 1− (1− µs)
∏

v(t)=1
(v→s)∈E

(1− pv→s).

And the IC model satisfies Assumption 3.1.

Note that because we are applying Granger causality as a
misspecified model, we need one more assumption to support
the consistency results on binary time series.

Assumption 3.2. Diminishing Influcence Let a binary

time series {y(t)i }i = 1, 2, . . . , N satisfy Assumption 3.1.

Let’s denote y(t−1:t−P ) − {y(t−k)
j } by Sjk, then we assume

P (Sjk|y(t−k)
j = 1)− P (Sjk|y(t−k)

j = 0)

P (Sjk|y(t−k)
j = 1) + P (Sjk|y(t−k)

j = 0)
= O(

1

N
),

for all possible values of Sjk as N → +∞.
And for any vector βjk of the same size as Sjk, we assume

that ||βjk||∞ = O(1) and

E[βjk · Sjk|y(t−k)
j = 1]− E[βjk · Sjk|y(t−k)

j = 0] = O(
1

N
),

for all possible value of Sjk as N → +∞.

Assumption 3.2 shows that the influence of an individ-
ual on the entire network is diminishing as the size of the
network increases. For example, the difference of joint dis-

tribution of Sjk given y
(t−k)
j = 0 or y

(t−k)
j = 1 represents

the influence of y
(t−k)
j on Sjk, e.g., when there is no differ-

ence, y
(t−k)
j and Sjk are independent. Moreover, note that,

if Assumption 3.2 holds for {y(t)}, then {z(t)} also satisfy

the same assumption, since z(t−1:t−P ) = y(1−t:P−t).

Assumption 3.3. Given a binary time series {y(t)i }, i =
1, 2, . . . , N , we have

P (y
(t)
i |y

(t−k)
j = 1)− P (y

(t)
i |y

(t−k)
j = 0) ≥ Θ(δijk) > 0,

if j is a cause for i with lag k. Otherwise,

P (y
(t)
i |y

(t−k)
j = 1)− P (y

(t)
i |y

(t−k)
j = 0) = O(

1

N
),

as N → +∞.
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Assumption 3.3 helps us to establish the connection be-
tween the forward time series and the backward time series,
and it is important for the consistency result in Theorem
3.3. Furthermore, we have an important lemma connecting
the Assumption 3.3 with 3.1 and 3.2.

Lemma 3.2. Given a binary time series {y(t)i }, i = 1, 2, . . . , N
satisfy Assumption 3.1 and 3.2, then it satisfies Assumption
3.3.

Proof. Given the binary time series {y(t)i }, i = 1, 2, . . . , N ,

we denote y(t−1:t−P ) − {y(t−k)
j } by Sjk, and we have

P (y
(t)
i |y

(t−k)
j ) =

∑
Sjk

P (y
(t)
i |y

(t−1:t−P ))P (Sjk|y(t−k)
j ).

By Assumption 3.1 and 3.2, if j is a cause for i with lag k,
we have

P (y
(t)
i |y

(t−k)
j = 1)−P (y

(t)
i |y

(t−k)
j = 0)

≥
∑
Sjk

(Θ(δijk) +O(1/N))P (Sjk|y(t−k)
j = 0)

=Θ(δijk).

Otherwise, we have

P (y
(t)
i |y

(t−k)
j = 1)−P (y

(t)
i |y

(t−k)
j = 0)

=
∑
Sjk

O(1/N)P (Sjk|y(t−k)
j = 0)

=O(1/N),

as N → +∞.

We now state our main theorem in this section, which
suggests the consistency of Granger causality on binary time
series with appropriate thresholding.

Theorem 3.3. Let a binary time series {y(t)i }, i = 1, 2, . . . , N
satisfy Assumption 3.2 and 3.3. We denote the coefficients
by Ak, k = 1, 2, . . . , P as in VAR model, which are estimated
by applying Granger causality on time series {y(t)}, we have

{Ak}ij ≥ Θ(δijk) > 0,

if j is a cause for i with lag k. Otherwise,

{Ak}ij = O(
1

N
),

as N → +∞.

Proof. As T → +∞, we have the objective function of the
regression as follows:

∑
y(t−1:t−k)

∑
i

∑
y
(t)
i

P (y
(t)
i ,y(t−1:t−k))(y

(t)
i −bi−

P∑
k=1

Aky(t−k))2.

Note that we do not sum over t, since we weight the loss
term by its own marginal distribution. Without loss of gen-
erality, we study the coefficient {Ak}ij (denoted by βijk),

which connecting y
(t)
i and y

(t−k)
j . Let us denote y(t−1:t−P )−

{y(t−1:t−P )
j } by Sjk and the associated coefficients by βjk.

By absorbing the constant into b, we can shift the value of

y
(t−k)
j from {0, 1} to {−0.5, 0.5}. The related objective is as

follows:∑
Sjk

y(t−1:t−k)

P (y
(t)
i ,y(t−1:t−k))(y

(t)
i −bi−y

(t−k)
j βijk−Sjk ·βjk)2.

By taking the derivative w.r.t. βijk, we have

P (y
(t)
i = 1|y(t−k)

j = −0.5)− P (y
(t)
i = 1|y(t−k)

j = 0.5) + βijk

+E[Sjk · βjk|y(t−k)
j = 0.5]− E[Sjk · βjk|y(t−k)

j = −0.5] = 0.

Recall that {y(t)} satisfy Assumption 3.2, which indicates
that

βijk ≥ Θ(δijk) > 0,

if j is a cause for i with lag k. Otherwise,

βijk = O(
1

N
),

as N → +∞. This proves the theorem.

Theorem 3.3 indicates that by setting an appropriate thresh-
old (on the order of min{i,j,k}{δijk}) on the coefficients, we
can reconstruct the correct temporal dependence structure.
We now explain the connection between the forward time
series {y(t)} and the backward time series {z(t)}.

Lemma 3.4. Given a binary time series {y(t)i }i = 1, 2, . . . , N
satisfy Assumption 3.3, we have

P (y
(t−k)
j |y(t)i = 1)− P (y

(t−k)
j |y(t)i = 0) ≥ Θ(δijk) > 0,

if j is a cause for i with lag k. Otherwise,

P (y
(t−k)
j |y(t)i = 1)− P (y

(t−k)
j |y(t)i = 0) = O(

1

N
).

as N → +∞, if P (y
(t)
i ) = Θ(1), ∀i, t.

Proof. Let A and B be two binary random variables with
P (A,B) = Θ(1). And for simplicity, we denote P (A =
i, B = j) by pij . We have

P (A = 1|B = 1) > P (A = 1|B = 0) + δ

⇔ p11
p01 + p11

>
p10

p00 + p10
+ δ

⇔p00
p10

>
p01
p11

+ Θ(δ)

⇔p00
p01

>
p10
p11

+ Θ(δ)

⇔ p11
p10 + p11

>
p01

p00 + p01
+ Θ(δ).

⇔P (B = 1|A = 1) > P (B = 1|A = 0) + Θ(δ).

Replace y
(t−k)
j and y

(t)
i by A,B, we proved the Lemma.

Note that y
(t−k)
j and y

(t)
i are switched, compared with As-

sumption 3.3. Simply combining Lemma 3.4 with Theorem
3.3, we have similar consistency results for the backward
time series:

Theorem 3.5. Let a binary time series {y(t)i }, i = 1, 2, . . . , N
satisfy Assumptions 3.1 and 3.2. We define the backward

time series by {z(t)i |z
(t)
i = y

(−t)
i } and denote the coefficients
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by Bk, k = 1, 2, . . . , P as in VAR model, which are esti-
mated by applying Granger causality on time series {z(t)}.
We have

{Bk}ji ≥ Θ(δijk) > 0,

if j is a cause for i with lag k w.r.t. {y(t)i }. Otherwise,

{Bk}ji = O(
1

N
),

as N → +∞, if P (y
(t)
i ) = Θ(1), ∀i, t.

Proof. We prove this theorem based on existing theorems

and lemmas. Forward time series {y(t)i }, i = 1, 2, . . . , N
satisfy Assumption 3.2, so does the backward time series
since Assumption 3.2 is symmetric in time. Forward time

series {y(t)i }, i = 1, 2, . . . , N satisfy Assumption 3.1 and 3.2,
by Lemma 3.2, it also satisfies Assumption 3.3. Then by
Lemma 3.4, the backward time series also satisfy Assump-
tion 3.3. Then by Theorem 3.3, we prove Theorem 3.5.

Theorem 3.5 indicates that applying Granger causality on
the backward time series also provides consistent temporal
dependence inference results. Note that we only assume 3.1
and 3.2 for the forward time series. In fact, the backward
time series might not satisfy Assumption 3.1 at all.

3.4 Summary and Discussion
In Section 3.2 and 3.3, we investigate several well-known

time series models and establish the connection between for-
ward and backward time series in terms of temporal depen-
dence structures. For VAR, the strength {Ak}ij of triplet
(i, j, k) in forward time series is approximately the same as
that for {Bk}ji of triplet (j, i, k) in backward time series.
For binary time series models that satisfy Assumptions 3.1
and 3.2, the strength of triplets (i, j, k) and (j, i, k) for for-
ward and backward time series, respectively, share the same
order of magnitude. These connections justify our approach
to combine the results from the forward and the backward
time series for better temporal dependence inference.

Note that information inferred from the backward time se-
ries is not exactly the same as that inferred from the forward
time series, but they indeed share considerable similarities,
which can be utilized as suggested. Moreover, when applied
to real world data, model misspecification should be consid-
ered, which is absent in our current analysis. In addition,
one should be aware of the data preprocessing procedure, to
make sure it is compatible with our assumptions, especially
when the preprocessing relies on a specific order of time.

4. EXPERIMENT RESULTS
In the experiments, we evaluate the effectiveness of our

proposed approach on several synthetic datasets and two
real world datasets. Next, we describe the data collections,
baseline methods, evaluation metric and experimental re-
sults.

4.1 Datasets
Synthetic Datasets Since we do not have the access to

the true underlying temporal dependence structure in most
applications, we generate synthetic datasets to evaluate the
performance of temporal dependence structure recovery.

For discrete time series, we generate two synthetic datasets:
one is generated from the IC model (as discussed in example

3.1), and the other is an instance of the generalized linear
models (later referred to as LOG model), with a Bernoulli
distribution and the link function σ(·)−1 as a logistic sigmoid

function. Specifically, the distribution of y(t) is a Bernoulli
random vector with parameter

P (y
(t)
i = 1|y(t−1:t−P )) = E[y

(t)
i |y

(t−1:t−P )], i = 1, . . . , N,

defined as follows:

σ−1(E[y(t)|y(t−1:t−P )]) = µ+

P∑
k=1

Aky(t−k).

If Ak are all nonnegative matrices, it satisfies Assumption
3.1.

For continuous time series, we also generate two synthetic
datasets: one is linear time series generated according to
VAR, and the other is nonlinear time series generated from
generalized linear model with polynomial link function and
Gaussian noises (POLY). Specifically, the distribution of y(t)

is a multivariate Gaussian, i.e.,

y(t)|yt−1:t−P ∼ N (f(

P∑
k=1

Aky(t−k)), εI),

where f(·) is defined by f(x) = x+bx3. We vary b to change
the level of nonlinearity.

For each model, we set the lag to 1 and generate a sparse
temporal dependence structure A with 5% nonzero entries.
For the IC, each nonzero entry in A is drawn from a uni-
form distribution Uniform(0, 1). For LOG, µi is drawn from
N (0, 1), and each nonzero entry in A is drawn from N (0, 1).
For VAR and POLY, each nonzero entry in A is drawn from
N (0, 1), and then we normalize A by its Frobenius norm
to ensure the stability of the time series. Moreover, for

each model, we generate time series {y(t)i }, i = 1, . . . , N,
t = 1, . . . , T by setting N and T with two scenarios: (1) N =
30, T = 2000, which corresponds to the low-dimensional
case, and (2) N = 100, T = 150, which mimics the high-
dimensional case.

Twitter Datasets We collect the Haiti dataset[5] with
all the tweets published between Oct 2009 and Jan 2010 on
“Haiti earthquake”. We choose this topic because it was one
of the hot topics during that time period and many tweets
have been generated around the event.

For the Haiti dataset, we collect the tweets by searching
the keyword“Haiti” from Jan. 12, 2010 for 17 days. We then
generate multivariate time series datasets by counting the
number of tweets from the top 1000 users (who tweet most
on the topics) over these 1000 intervals. For accurate model-
ing, we remove the users that are highly correlated with each
other, most of which are operated by the same persons and
tweet exactly the same contents. We also remove robot-like
user-accounts who tweet on very regular intervals. Finally,
we select a set of users with at least one interaction with
another user, which results in a subset of 274 users.

Microarray Dataset Most multicellular organisms rely
on their immune systems to defend against the infection
from a multitude of pathogens. We collect the time series
microarray data on macrophages from human immune cells
from the supporting website of [9, 11]. It consists of 1651
genes with 9 time series observations. We apply the pro-
posed model to this dataset in order to infer the temporal
dependence networks for immune system genes. Due to the
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Figure 1: The performance of temporal dependence
recovery on IC and LOG datasets. Top: N = 30, T =
2000; Down: N = 100, T = 150. Results suggest that
LG benefits from the forward backward approach.

space limit, we only show the results of a subset of 6 genes,
whose interactions have been well studied.

4.2 Baseline Algorithms
We use the following baselines for comparison analysis on

the synthetic datasets:

• Lasso Granger Causality (LG) and Naive Forward Back-
ward Lasso Granger Causality1 (FB LG) as described
in section 3.1.

• Copula Lasso Granger Causality (CLG) and Naive For-
ward Backward Copula Lasso Granger Causality2 (FB
CLG). For nonlinear time series, we apply the copula
transformation for each time series first, and then ap-
ply the Granger causality based algorithms.

For Lasso based algorithm, we choose the penalty param-
eter λ to minimize the prediction error on the validation
dataset.

For the Haiti dataset, we also test the Transfer Entropy
(TE) algorithm [26]. Transfer entropy is another related
technique which identifies the temporal dependence struc-
ture between two time series by measuring the decrease in
uncertainty of one time series in the future, given the past
information of the other time series. Namely, the transfer
entropy is defined as

Tyj→yi = H(y
(t)
i |y

t−1:t−P
i )−H(y

(t)
i |y

t−1:t−P
i ,yt−1:t−P

j ),

whereH(x) is the Shannon entropy of the random variable x.
We also test the Naive Forward Backward Transfer Entropy
(FB TE), where we measure the influence from j to i by
Tyj→yi + Tzi→zj .

4.3 Evaluation Measures
To evaluate the performance of different methods in recov-

ering temporal dependence structures, we choose the Area

Figure 2: The performance of temporal dependence
recovery on VAR dataset with N = 100, T = 150.
Results suggest that LG benefits from the forward
backward approach.

Under the Curve (AUC) measure as it is a good perfor-
mance measure for the ground truth with unbalanced ratio
of positive and negative labels. The value of AUC is the
probability that the algorithm will assign a higher value to
a randomly chosen positive (existing) edge than a randomly
chosen negative (non-existing) edge in the graph [10].

For synthetic datasets, we calculate AUC against the ground
truth, i.e., the temporal dependence structure defined by A.
The reported results are averaged over 20 randomly gener-
ated datasets.

For the Twitter dataset, since we do not have access to
the true underlying influence graph in the social network,
we use the retweet information as indirect evaluation. It
has been argued that the retweet graph in the future time
can reflect the influence in social networks to a certain extent
[8]. We first represent the retweet information by a weighted
graph GRT , where the weight of an edge (s → t) denotes
the number of tweets from user s retweeted by user t. The
retweet graph GRT on Haiti earthquake has 867 edges.

For the microarray dataset, we do not have the complete
ground truth as well. We therefore compare our results with
those reported interactions in the BioGRID database3, a
curated biological database of protein-protein and genetic
interactions.

4.4 Experiment Results
In this section, we present the result of our experiments.

We focus on the difference of performance between the orig-
inal version of algorithm and the forward backward version.

Results on Synthetic Datasets We aim to test whether
the forward and backward approach can improve the perfor-
mance of LG on IC and LOG datasets. We report the AUC
scores of LG and FB LG in Figure 1. We can see that FB
LG consistently outperforms LG, which suggests that FB
LG indeed benefits from combining estimates from forward
and backward time series.

On the VAR dataset, we focus on the performance for lin-
ear continuous time series. We report the AUC scores of LG
and FB LG in Figure 2. For high-dimensional time series,
FB LG outperforms LG significantly, which indicates that
combining two directions helps to improve the performance.

3www.thebiogrid.org
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Figure 3: The performance of temporal dependence recovery on POLY dataset with different b and N =
100, T = 150. Results suggest that both LG and CLG benefit from the forward backward approach.

Figure 4: The performance of temporal dependence
recovery on Haiti dataset. The performance of FB
LG and FB TE outperform the LG and TE, respec-
tively.

On the POLY dataset, we aim to test whether the for-
ward and backward approach can further improve the per-
formance of LG and CLG for nonlinear time series. We re-
port the AUC scores of LG, FB LG, CLG, FB CLG on the
POLY datset in Figure 3. As we can see CLG can improve
LG thanks to the copula transformation. And FB CLG can
further improve CLG for high-dimensional case. For both
VAR and POLY datasets, when N = 30, T = 2000, we find
that the performance of LG and FB LG are similar, as sug-
gested in Section 3.2.

Results on Twitter Dataset We test LG, FB LG, TE,
and FB TE on the Haiti dataset (see Figure 4 for results).
We set the lag P = 15 for all algorithms for fair compari-
son, which corresponds to 6 hours approximately. The AUC
is calculated against the retweet graph GRT , and we vary
the required number of retweets, so that only if the retweets
from j by i passes the required number n, we establish an
edge from i to j. Intuitively, n screens the weak influence be-
tween users. As we can see, all algorithms perform better as
we increase n. In addition, the forward backward approach
improves the performance for both baseline algorithms.

Table 1: Top 20 predictions for gene interaction by
LG and FB LG. Bold terms are ground truth sug-
gested by BioGRID database.

Lasso Granger F/B Lasso Granger

PCNA→CCNA2 CDC2→E2F1
E2F1→CCNA2 RFC4→E2F1
CDKN3→CDC2 CDKN3→CDC2
CDC2→RFC4 PCNA→CCNA2
CCNA2→RFC4 RFC4→CDKN3
CCNA2→CDC2 CCNA2→RFC4
RFC4→CDKN3 CCNA2→CDC2
CDC2→E2F1 RFC4→PCNA
CCNA2→CDKN3 PCNA→E2F1
E2F1→CDC2 E2F1→CCNA2
PCNA→RFC4 PCNA→RFC4
RFC4→PCNA CDC2→RFC4
CDKN3→CCNA2 RFC4→CDC2
CDKN3→RFC4 CCNA2→CDKN3
RFC4→CCNA2 CDKN3→RFC4
RFC4→CDC2 CCNA2→E2F1
CDC2→CDKN3 CDC2→PCNA
E2F1→PCNA CDKN3→E2F1
CCNA2→PCNA E2F1→CDC2
RFC4→E2F1 CDKN3→PCNA

Results on Microarray Dataset We test LG and FB
LG on the time series microarray dataset, and achieve AUCs
of 0.6923 and 0.7308, respectively. Moreover, we list the
top edges identified by both algorithms in Table 1. The bold
ones are the ground truth suggested by BioGRID database.
LG correctly identified 3 interactions while FB LG identified
all 4 known interactions.

5. CONCLUSION AND FUTURE WORK
Inspired by time-reversibility of physical laws and its ef-

fect on temporal dependency structure, we proposed the
forward backward approach to improve the performance of
Granger causality. We developed the forward and backward
Lasso Granger causality algorithm, which combines the co-
efficients estimated from the forward time series and back-
ward time series to provide better performance of temporal
dependency structure recovery. We show that with the cop-
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ula transformation, we can extend our algorithm for non-
linear time series. Theoretical analysis on several existing
times series models including VAR and IC model confirms
our intuition. Our empirical results on both synthetic and
real world datasets demonstrate that the forward backward
approach can improve the performance of temporal depen-
dence inference using forward time series only.

For future work, we will investigate other combination
strategies for forward backward approach, other than simply
averaging the coefficients. the performance. We will also
examine more general types of time series models where the
forward backward approach is applicable.
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