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ABSTRACT

Traditional anomaly detection on social media mostly fo-
cuses on individual point anomalies while anomalous phe-
nomena usually occur in groups. Therefore it is valuable to
study the collective behavior of individuals and detect group
anomalies. Existing group anomaly detection approaches
rely on the assumption that the groups are known, which
can hardly be true in real world social media applications.
In this paper, we take a generative approach by proposing
a hierarchical Bayes model: Group Latent Anomaly Detec-
tion (GLAD) model. GLAD takes both pair-wise and point-
wise data as input, automatically infers the groups and de-
tects group anomalies simultaneously. To account for the
dynamic properties of the social media data, we further gen-
eralize GLAD to its dynamic extension d-GLAD. We con-
duct extensive experiments to evaluate our models on both
synthetic and real world datasets. The empirical results
demonstrate that our approach is effective and robust in
discovering latent groups and detecting group anomalies.

Categories and Subject Descriptors
H.2.8 [Database Applications|: Data mining
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1. INTRODUCTION

Social media provide convenient platforms for people to
share, communicate, and collaborate. While people enjoy
the openness and convenience of social media, many mali-
cious behaviors, such as bullying, terrorist attack planning,
and fraud information dissemination, can happen. There-
fore, it is extremely important that we can detect these
abnormal activities as accurately and early as possible to
prevent disasters and attacks.
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By definition, anomaly detection aims to find “an obser-
vation that deviates so much from other observations as to
arouse suspicion that it was generated by a different mech-
anism” [8]. Several algorithms have been developed specifi-
cally for social media anomaly detection such as power-law
models [2], spectral decomposition [18], scan statistics [15],
and random walk [14} [17]. However, these algorithms only
detect the individual point anomaly. For example, 2| pro-
poses an “OddBall” algorithm to spot anomalous nodes in a
graph. The algorithm extracts features from the egonet of
the node and declares anomaly node whose features deviate
from the power-law pattern.

In reality, anomaly may not only appear as an individual
point, but also as a group. For instance, a group of people
collude to create false product reviews or threat campaign
in social media platforms; in large organizations, malfunc-
tioning teams or insider groups closely coordinate with each
other to achieve a malicious goal. Those appear as examples
for another type of anomaly: group anomaly, which has not
been thoroughly examined in social media analysis. In this
work, we focus on group anomaly detection. We are inter-
ested in finding the groups which exhibit a pattern that does
not conform to the majority of other groups. This problem
has found its applications in galaxy identification [19], high
energy particle physics [13], anomalous image detection and
turbulence vorticity modeling [20].

We identify three major challenges in group anomaly de-
tection: (i) Two forms of data coexist in social media: one
is the point-wise data, which characterize the features of
an individual person. The other is pair-wise relational data,
which describe the properties of social ties. In social science,
a fundamental axiom of social media analysis is the concept
that structure matters. For example, teams with the same
composition of member skills can perform very differently
depending on the patterns of relationships among the mem-
bers [5|. Therefore, it is important to take into account
both point-wise and pair-wise data during anomaly detec-
tion. (ii) Group anomaly is usually more subtle than indi-
vidual anomaly. At the individual level, the activities might
appear to be normal [21]. Therefore, existing anomaly de-
tection algorithms usually fail when the anomaly is related
to a group rather than individuals. (iii) Empirical studies
in social media analysis suggest the dynamic nature of indi-
vidual network positions [12]. People’s activities and com-
munications change constantly over time and we can hardly
know the groups beforehand. Thus developing a method
that can be easily generalized to dynamic setting is critical
to anomaly detection in evolving social media data.



In this paper, we take a graphical model approach to ad-
dress those challenges. We propose a hierarchical model, i.e,
Group Latent Anomaly Detection (GLAD) model, to con-
nect two forms of data. To handle the dynamic characteris-
tics of the social media data, we further develop a dynamic
extension of GLAD: the d-GLAD model. We show that
GLAD outperforms existing approaches in terms of group
anomaly detection accuracy and robustness. When deal-
ing with dynamic social networks, the dynamic extension
of GLAD achieves lower false positive rate and better data
fitting. The major contributions of this paper can be sum-
marized as follows:

1. We formulate the problem of group anomaly detection
in the context of social media analysis for both static
and dynamic settings and articulate the three major
challenges associated with the task.

. We develop a graphical model called GLAD. GLAD
can successfully discover the group structure of social
media and detect group anomalies. We also generalize
GLAD to its dynamic extension and provide tractable
model inference algorithms.

. We conduct thorough experiments on both synthetic
and real world datasets using anomaly injections. We
also construct a meaningful dataset from ACM publi-
cation dataset for rigorous evaluation. The dataset is
accessible at http://www-bcf.usc.edu/"1iu3d2/data.
html.

2. RELATED WORK

We review the related models on group anomaly detection
and illustrate the motivation behind our approach.

The Multinomial Genre Model (MGM) proposed in [19)
first investigates the problem following the paradigm of La-
tent Dirichlet Allocation (LDA) [4]. As a text processing
tool, LDA assumes that each word is associated with a topic
and a document is a mixture of topics. Similarly, MGM
models a group as a mixture of Gaussian distributed topics
with certain mixture rate and assumes there exists “best”
mixture rates, corresponding to the mixture rates of nor-
mal groups. Then it conducts group anomaly detection by
scoring the mixture rate likelihood of each group. One draw-
back of MGM is that the set of candidate mixture rates is
shared globally by groups. It might leads to poor perfor-
mance when groups have different sets of mixture rates. [20]
further extends MGM to Flexible Genre Model (FGM) with
more flexibility in the generation of topics. Specifically, the
model considers the set of topic mixture rates as random
variables rather than model hyper-parameters, which would
adapt to diverse “genres” in groups, each of which is a typical
distribution of topic mixture rates.

Another line of work takes a discriminative approach. [13]
uses the same definition of group anomaly from [19]. It
considers kernel embedding of the probabilistic distributions
and generalizes one-class support vector machine from point
anomaly detection to group anomaly detection. The pro-
posed support measure machine (SMM) algorithm maps the
distributions to a probability measure space with kernel meth-
ods, which can handle the aggregate behavior of data points.

However, existing approaches separate the group anomaly
detection task into two stages: group discovery and anomaly
detection. They require the group information to be given
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before applying the anomaly detection algorithms. For ex-
ample, in [19], the Sloan Digital Sky Survey (SDSS) dataset
needs to be pre-processed before feeding into MGM. The
authors first construct a neighborhood graph and then treat
the connected components in the graph as groups. For the
application on turbulence data, the FGM model |20] consid-
ers the vertices in a local cubic region as a group. In SMM
|13], the authors treat the high energy particles generated
from the same collision event as a group.

The two-stage approaches identify the groups from the
pair-wise data and infer the anomalies based on the point-
wise data. This strategy assumes that the point-wise and
pair-wise data are marginally independent. However, such
independence assumption might underestimate the mutual
influence between the group structure and the feature at-
tributes. The detected group anomalies can hardly reveal
the joint effect of these two forms of data. These motivate
us to build an alla prima that can account for both forms
of data and accomplish the tasks of group discovery and
anomaly detection all at once.

Additionally, existing work can only deal with static net-
work and fixed size groups. This is not feasible for the time-
evolving nature of social media data. For example, in cor-
porate networks, employees may switch teams from one to
the other. The organization structure of a team may also
change. As the dynamic setting needs to take into account
the flexible group size and the changing mixture rates, we
further adapt our model to the dynamic setting and formu-
late the problem as a change point detection task.

Group anomaly detection in social media analysis may
shed light on a wide range of real world problems such as
corporate restructuring, team job-hopping and political in-
clination shift to which our approach can apply. In section
[3l we provide a formal definition of group anomaly in social
media analysis. With the definition, we develop the GLAD
model in section @ and present its learning and inference al-
gorithm. In section [5] we describe the dynamic extension
of the GLAD model: the d-GLAD model, which can handle
the dynamic social networks. Section [f] shows the empirical
evaluation results of GLAD and d-GLAD on synthetic and
real world datasets compared with existing baseline models.

3. DEFINITION OF GROUP ANOMALY

The core of our group anomaly definition lies in the col-
lective behavior of individuals. For example, a document is
a mixture of various topics and a team is a mixture of dif-
ferent roles. Therefore, we model the node features of each
group as a mixture of components. Each component could
be an article topic, a social role or a job title. Specifically,
we can describe a component as either a discrete variable
such as multinomial distribution or a continues variable like
Gaussian distribution, depending on the data type of fea-
tures. Here we use the term role as a general notion for the
component. We assume that there are a fixed number of
roles and each of which denotes a particular distribution of
node features. All groups share the same set of roles but
possibly with different role mixture rates. Normal groups
follow the same pattern with respect to their role mixture
rates, but the anomalous group has a role mixture rate that
deviates from the normal pattern.

For the static GLAD model, we are interested in the distri-
bution of the role mixture rates across the groups. According
to our assumption, the mixture rates of normal groups are
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more likely to appear. For groups with very rare role mix-
ture rates, we treat them as group anomalies. One example
of this type of group anomaly comes from particle physics. It
is widely accepted that the dynamics of known particles are
governed by the Standard Model, which corresponds to the
normal pattern. Unknown particles would contaminate the
distribution of the Standard Model. Detecting those anoma-
lies could potentially lead to the discovery of new physical
phenomenon. In practice, we first identify the normal mix-
ture rates. Then for each learned group, we evaluate the
likelihood of its observations being generated with the nor-
mal mixture rates. The lower the likelihood value is, the
more anomalous the group would be.

For the dynamic d-GLAD model, we emphasize on the
temporal aspect of the data and detect the change of the role
mixture rate within the groups. For instance, in scientific
area, it is valuable to study the evolution of research topics
and detect the bursty time periods. In the dynamic setting,
since the structure of groups change as well as their role mix-
ture rates, detecting groups with rare mixture rate no long
applies. Therefore, we think of the task as a change point
detection problem and aim to detect the groups whose mix-
ture rates change drastically from the previous time stamps.
Compared with GLAD, we not only need to decide whether
a group is anomaly or not, but also need to specify when the
group appears anomalous.

Even though we use slightly different definitions of group
anomaly for the GLAD model and the d-GLAD model, the
key ideas behind our definitions are the same. Both defini-
tions build upon the notion of role mixture rate, which es-
sentially requires a precise inference of both the group mem-
bership and role identity for each individual in the group.

4. THE GLAD MODEL

Suppose that we are given a social network with N nodes.
We observe node activities X = {X1,Xs,..., X~} and their
communications Y = {Y11,Y12, ..., Yn.n}. X, € RV con-
sists of V' entries, denoting a feature vector of V' dimensions.
Y,,q € {0,1} is a binary valued variable, indicating the pair-
wise relationship of nodes. These two forms of data are our
inputs. Our goal is to analyze these data jointly and declare
the group that has irregular role mixture rate as anomaly.
In the following sections, we first describe the motivation for
our hierarchical Bayes model and provide its generative pro-
cess and the plate notation. Then we derive the inference
algorithm using the variational Bayesian approach.

4.1 Model Specification

We model a social network with N individuals. Assum-
ing that each person p is associated with a group identity
Gp and a role identity R,. By groups, we mean the clus-
ters that capture the similarity suggested by the pair-wise
communications. By roles, we refer to the mixture com-
ponents that categorize the point-wise feature values of the
nodes. For simplification, we fix the number of groups as
M and the number of roles as K. Figure [1| shows the plate
notation for the GLAD model. The motivation for us to
assume two identities for an individual comes from the con-
troversial viewpoints of what is the right metric for a com-
munity. In community detection literature |7], some argue
that a community is the one that has dense communications
within clusters while others suggest that people in the same
community should share common activity features. We get
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Figure 1: Plate notation for the Group Latent

Anomaly Detection (GLAD) model. Shaded circles
are observations, blank circles are latent variables
and the variables without a circle are model pa-
rameters. The blue rectangular resembles MMSB.
The red polygon integrates the generating process
of LDA.

around the controversy by recognizing the arguments of both
sides and assume two types of latent structures coexist in the
data.

For each person p, he joins a group according to the mem-
bership probability distribution m,. We impose a Dirichlet
prior on the membership distribution. It is well known that
the Dirichlet distribution is conjugate to the multinomial
distribution. As we will show later, when dealing with la-
tent variables, the Dirichlet prior facilitates the learning and
inference of the model. We assume the pair-wise link Y} 4
between person p and person g depends on the group identi-
ties of both p and ¢ with the parameter B. Furthermore, we
model the dependency between the group and the role us-
ing a multinomial distribution parameterized by a set of role
mixture rate {61.ar}. The role mixture rate characterizes the
constitution of the group: the proportion of the population
that plays the same role in the group. Finally, we model the
activity feature vector of the individual X, as the depen-
dent variable of his role with parameter set {31.x }. Table
summarizes the notations used in our model.

We specify the generative process of the GLAD model in
Algorithm Our model unifies the ideas from both the
Mixture Membership Stochastic Block (MMSB) model [1]
and the Latent Dirichlet Allocation (LDA) model [4]. As
shown in Figure [1} the blue dashed rectangular on the left
side resembles MMSB which models the formation of groups
using link information. The red dashed polygon integrates
the generating process of LDA which is often used for topic
extraction from documents. By assuming mixture of groups
and roles, we allow each person to have multiple roles and
multiple group memberships. Without loss of generality,
we assume that the activity data have discrete values and
choose to model X, with a multinomial distribution. When
the activity data are distributed in other forms, we can easily
adapt GLAD to model other type of X.

4.2 Inference and Learning

Inference requires us to compute the posterior distribu-
tions of the latent variables given the data. The normalizing
term of the posterior distribution involves the calculation of
the marginal likelihood of the data for which we resort to
variational EM algorithms [10].



Table 1: Notations of GLAD

Symbol Description
« Dirichlet prior parameter
Tp membership distribution of person p
Yp.q pair-wise communication between p and ¢
B global block probability among groups
Gp group of p
R, role of p
0.0 role mixture rate for M groups
Xp activity of p
Bi:kx activity distribution for K roles

Algorithm 1 Generative Process of GLAD

for individual p =1 — N do
Draw membership distribution 7, ~ Dir(a)
Draw G, ~ Multinomial(m,)
for individual ¢ =1 — N do
Sample Y, , ~ Bernoulli (G} BG,)
end for
Draw R, ~ Multinomial(R|01:1, Gp)
Draw X, ~ Multinomial(X,|51:x, Rp)
end for

Denote the set of model parameters as © = {«, B, 01.:m, f1:x },

the set of observed variables as v = {X1.n, Y1:n}, and the
set of the hidden variables as h = {m1,n,G1.n,R1:n}. Our
aim is to estimate the posterior distribution p(h, ©|v). We
can first write out the complete joint likelihood of observed
and latent variables as follows:

p(’U, h|®) = Hp(ﬂ-P|a) X Hp(Yp,q GP7anB)
p P,q
X HP(XP‘vaﬁHK)p(RP‘Gpvele)p(Gp|7rp)~
p

Computing the maximizer for the marginal likelihood of
the data p(v|©) = [, p(v, h|©)dh requires the integration
over all the latent variables in the equation above, which is
intractable [1]. Therefore, we apply the variational Bayesian
approach [10| to perform the inference approximately. The
essence of the variational Bayesian approach is to choose a
variational distribution ¢(h) to approximate the actual pos-
terior distribution, so that the Kullback-Leibler divergence
(KL-divergence) between p(h,®|v) and its approximation
q(h) is minimized.

Rewriting the marginal log likelihood and plugging in the
variational distribution, we have

log p(v|®) = Dk r(pllg) + (logp(v, h|O))q — (log g(h))q;

where we use (f), to represent the expectation of the func-
tion f with respect to the distribution p. Since the marginal
likelihood log p(v|©) is invariant to the choice of ¢, minimiz-
ing the KL-divergence Dx (p||q) is equivalent to maximiz-
ing the last two terms (logp(v, h|©))q — (log g(h))q. In prac-
tice, we choose g(h) to be factorized over the latent variables
with free parameters A = {y1.n, u1:~5, A1:~n } as follows:

q(h|A) = H q(mp|vp)a(Bplptp)a(Gp|Ap)-

P

Our goal is to find the optimal set of free parameters that
provides a variational distribution closest to the actual pos-
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terior. Then our problem is to maximize the objective func-
tion formulated as follows subject to probability constraints:

A*

arginaXﬂogp(% h|©))q — (log g(h|A)),

argmax L(v, h, 9, A).
A

The objective function L, by plugging in the joint likeli-
hood and the variational distribution and taking expecta-
tions, is given by

L(v,h,©, A)
= ;aogp(xpmp,ﬁm»q
+ > (logp(Rp|Gp, 01:01))q + _(log p(Gplmp))q
P »
+ p2;<logp(Yp,q|Gp,Gq7 B))q + zp:<logp(7rp\a)>q
- g(log a(mp[p))q
- ;(10gtI(Rp|Mp)>q - ;(bg 2(GplAp))g-

We follow a variational EM procedure in order to maxi-
mize L(v,h,0,A) over A. Basically we iteratively update
the free parameters by taking the derivative of the Lagrange
function of the objective L over one parameter at a time
given the value of others from the last iteration. Since
{Y,,q} is symmetric, the objective function will result in
a quadratic term with respect to \,. Taking the deriva-
tive over the variational parameter would not have a closed
form solution. A simple workaround is by assuming con-
stant probability for the generation of {Y,,}. We omit
the tedious derivations and only present the final update
formulas of each of the free parameters, as shown in Al-
gorithm For convenience, we denote f(Yp.q, Bmn) =
Yp,qlog Brn + (1 — Yp.q) log(1l — Bm,n)-

Algorithm 2 Variational Inference for GLAD
initialize vp,m := 1/M
initialize pp k= 1/K
initialize A\p,m = 1/M
repeat
for p=1- N, m=1—-Mk=1— K do
Tp,m = Qm + Ap,m
Ap,m = exp{zk log Om kpipe + Y (Vpm)
Y, Youn) + 2 g 2on Aan - f (Yp.g, Bmon)}
Hp,k = eXp{Zv IOg Bv,kX vt Zm 10g 0m,k>\p,m}
end for
until convergence

For the parameter estimation, we apply the empirical Bayes
method on the variational likelihood. We maximize the
Lagrange function of L(v,h,©®,A) over model parameters
O = {a, B, 61.m, B1:x }. Due to the compounding of Dirich-
let distribution, there is no close form solution for the max-
imizer w.r.t a. We apply the Newton-Raphson method to
reach a numerical solution. The resulting parameter updat-
ing functions for aw and B are the same as those of MMSB
|1] and the parameters 8 and @ can be estimated as follows:



Zp Xp,olip,k
Zv,p XPv’U/j’Pak

With our definition of group anomaly in section[3] we score
the group anomalousness using — >~ (log p(1,|0))p. The
most anomalous group will have the highest anomaly score.
We approximate the true log likelihood with the variational
log likelihood to get — - (logp(Rp[©))q.

A limitation of GLAD is that it only models the static
network. This might be restrictive if we want to further con-
sider dynamic networks. Besides the anomaly group whose
mixture rate deviates significantly from other groups, we are
also interested to study how the mixture rate evolves over
time. Fortunately, GLAD can be easily extended to account
for this dynamics. This leads to the dynamic extension of
the GLAD model, which will be discussed in the next sec-
tion.

- Zp Hp,kAp,m

Om,k = .
Zk,p Pop,kAp,m

ﬂv,k =

m,k

5. DYNAMIC EXTENSION OF GLAD

We now generalize the GLAD model to take into account
the dynamics in the social media. We refer the dynamic
extension of GLAD as the d-GLAD model. To be consistent
with our description for GLAD in section [4 we start with
the model specification and then provide the model inference
algorithm using both the variational Bayesian method and
the Monte Carlo sampling technique.

5.1 Model Specification

Generalization of GLAD to d-GLAD stems from the tem-
plate models 23], which use the model for a particular time
stamp as a template, duplicate it over time and connect
temporal components sequentially. Similarly, we can adapt
GLAD to the dynamic setting by making a copy of GLAD
for each time point. To simplify the model, we assume that
the latent factors including role Ry, group G, and mixture
rate {61.a} change over time but the membership distribu-
tion {mp} and model parameters are fixed.

We model the temporal evolution of the role mixture rate
for each group with a series of multivariate Gaussian dis-
tributions. At a particular time point, the Gaussian has its
mean as the value of the mixture rate. And the mixture rate
of the next time point is a normalized sample from this Gaus-
sian distribution. Since we require the mixture rate to be the
parameters of a multivariate distribution over features, we
apply a soft-max function to normalize the sample drawn
from the multivariate Gaussian. The soft-max function is

defined as S(0.,) = %4 When the total time length T

equals one, d-GLAD reduces to the GLAD model. Figure [2]
depicts the probabilistic graphical model of d-GLAD and the
meanings of notations used. We summarize the generative
process of d-GLAD in Algorithm

In d-GLAD model, since the mixture rate of next time
stamp is drawn from a multivariate Gaussian centering around
the mixture rate of its previous time stamp, it imposes
smoothness on the mixture rates across time, preventing
the mixture rate from having drastic changes. The soft-max
function maps the samples from the multivariate Gaussian
to the parameters for the multinomial distribution. Similar
idea can be seen from the generalization of LDA to the dy-
namic topic model [3]. While it is true that d-GLAD model
shares the constraints of GLAD on fixed group/role number
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and constant self-loop, it has certain intriguing advantages
over static models. (i) d-GLAD captures the dynamics of
the latent variables G, and R,, thus allows an individual
to switch groups and roles over time.(ii) The smoothness of
the mixture rate over time models the behavior of normal
groups, so detecting groups whose mixture rates an undergo
substantial change becomes easier.

Algorithm 3 Generative Process of DGLAD
t=1—Tdo
for m=1— M do
Draw 9%) ~ Gaussian(@ﬁffl), o)
end for
for individual p =1 — N do
Draw membership distribution 75" ~ Dir(«)
Draw Gét) ~ Multinomial(mr,)®
for individuval g =1 —>p—-1landg=p+1— N

for

do
Sample Y((;’)q) ~ Binomial ((GLQ)TBGE:))
end for
)

Draw RY) ~ Multinomial( RS |8(9g2t)
P

Draw X" ~ Multinomial(X}" 1BLwm)
P
end for
end for

5.2 Inference and Learning

The variational inference of d-GLAD is similar to the
GLAD model except for the longitudinal factor 051]\? We
add a variational distribution p(9}gT|él:T) to approximate
the original posterior where {éle} are variational param-
eters. Then we apply the variational Kalman Filter tech-
nique [3| to infer the sequential latent variables and learn
the model parameters. The transition for the mixture rate
of each group is Gaussian distributed:

0P ~ N(04 Y, %),

‘We can write the variational distribution for the transition
as follows:

00100 ~ A0V, 8%1).

Then we can apply similar variational EM procedure in-
corporating the transitions to infer the variational parame-
ters. Due to the numerical difficulty of variational Kalman
filter method, we also implement a version of the Monte
Carlo sampling for d-GLAD model, which is used in our
empirical evaluations. The algorithm is elaborated in Al-
gorithm [4l The inference of the transitional part {97} is
based on the Particle Filtering method [22|. The anomaly

score of the d-GLAD model is measured by ||6% — 65|

6. EXPERIMENTS

To evaluate the effectiveness of our model, we conduct
thorough experiments on synthetic datasets and real world
datasets. We study the applications of our approach by
analyzing scientific publications and senator voting records.

6.1 Baselines

To our knowledge, all existing algorithms are two-stages
approaches: (i) identify groups, (ii) detect group anomalies.
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Notation Description

2 Dirichlet parameter

Tp membership distribution
Gét) group of p at time ¢

‘HB Y,f,tq) pair-wise communication at time ¢

B global block probability

R;,t) role of p at time ¢
B1:Kx activity mixture rate

Xl(,t) activity of p at time ¢

0o initial Gaussian mean
9?3\4 role mixture rates at time ¢

Figure 2: Plate notation for the d-GLAD model and the meaning of notations. The subscript p denotes each
person in the social network. The superscript ¢ denotes the network snapshot at time stamp t¢.

Algorithm 4 Monte Carlo Sampling of DGLAD
Initialize «, 0o, f1.x, B
Ri% =1/K, Gi% = 1/M , m1.n ~ Dir(a)
repeat
for p=1— N do
for t=1—Tdo

Update R} ~ Mul(S(6",",)))Mul(x}")

P
Update Gff) ~ Mul(r{ =) Mul(S(0"; 2,
P

)

end for
Update 7, ~ Dir(«)
end for
for t=1—Tdo
Update 6 using Particle Filtering
end for
until Convergence

We summarize these algorithms in Table[2] We use following
approaches as baseline methods in comparison to GLAD and
d-GLAD:

1. MMSB-LDA First use the MMSB model to learn
a group membership distribution for each individual
node, then assign the node to the group with the high-
est probability. Finally, for each group, train an LDA
model and infer the role identity.

2. MMSB-MGM: Group is learned using the same method
as MMSB-LDA. For the role inference, train an multi-
modal MGM instead of LDA.

3. Graph-LDA: Run an off-the-shelf graph clustering
algorithm Min-Cut to get group membership and then
train a LDA model for each group.

4. Graph-MGM: Get group membership with the graph
clustering algorithm Min-Cut and then train a MGM
model for each group.

6.2 Synthetic Dataset

We experiment on two type of synthetic datasets. One
is a synthetic dataset with injected group anomalies. The
other is a benchmark dataset generated by a simulator with
individual anomaly labels.
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Table 2: Two stage models in existing work

Algorithm Stage-1 Stage-2
Heard 2010 [9] spectrum Poisson process
Xiong 2011-a [19] | clustering | Mixture Genre Model
Xiong 2011-b [20] | clustering | Flexible Genre Model
Muandet 2013 |13 | simulator One class SMM

6.2.1 Synthetic Data with Anomaly Injection

We generate a network with 500 nodes using GLAD in Al-
gorithm [I] To evaluate the anomaly detection performance,
we set the mixture rates of anomalous groups as [0.9,0.1]
and normal groups as [0.1,0.9]. We vary the number of
groups from 5 to 50 and inject 20% anomalous groups. The
rest 80% groups are normal. Since we know the normal and
anomalous mixture rates, we calculate the anomaly score of
each group by directly computing the differences between
the inferred mixture rate and the ground truth normal mix-
ture rate. During the testing procedure, we rank the groups
with respect to their anomaly score and retrieve top 20%
groups. For all methods, we set the number of groups and
number of roles the same as the ground truth.

We compare the learned groups of three grouping ap-
proaches with the ground truth: GLAD, MMSB and Graph,
for the case of 5 groups. The inferred group memberships
are shown as adjacent matrices in Figure For better visu-
alization, we intentionally put the nodes that belong to the
same group together. Ideally, we should observe dense links
within groups and sparse links between groups. Therefore,
the dark pixels in the plot would aggregate along the prin-
cipal diagonal of the matrix. We use blue color to highlight
the groups learned. The group discovery result of GLAD is
the closest to the ground truth. The high connectivity in
the graph and the lack of point-wise information could be
the reasons for the poor performance of Graph and MMSB.

Figure @ shows the anomaly detection performance with
different number of groups for GLAD and four other base-
lines. GLAD achieves the highest detection accuracy. It is
also more robust over 10 random runs. Note that the differ-
ences for the first stage of baselines are more obvious than
the second stage. This is because the Bernoulli distribution
limits the number of samples in the pair-wise data, making
the first stage more difficult to learn.

We also report the simulation results on group anomaly
detection for d-GLAD. The data is generated according to
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Figure 4: Anomaly detection performance of GLAD and baseline methods on synthetic dataset of 500 samples,

with 20% anomalous groups. @

Detection accuracy error bar plot of five algorithms for detection accuracy

with group number from 2 to 10. @ Mean detection accuracy for different number of groups up to 50,
averaged over 10 random runs. False positive rate over different thresholds for d-GLAD, MMSB-MGM
and GLAD for synthetic data. 10% group anomalies are injected.

(a) Original

(c) MMSB

(d) Graph

Figure 3: The 50 x50 adjacent matrix re-arranged by
the group membership discovered by three grouping
approaches on a subset of synthetic data of 5 groups.
Dark pixels denote links and white pixels denote no
links. Blue block highlights the learned group mem-
bership.

Algorithm [3] with 5 time stamps. We manipulate the mix-
ture rate of 50% of the groups at time point 4 as injected
anomalies. Then we raise alarms if the group’s mixture rate
deviates from the previous time by a certain threshold. In
Figure we display the false positive rate with different
threshold values. For comparison, we train MMSB-MGM
and GLAD at each time independently as baselines. It can
be seen that d-GLAD achieves the lowest false positive rate,
which demonstrates the gain of d-GLAD over static models
on the dynamic dataset.
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6.2.2 Benchmark Data with Anomaly Labels

The benchmark data set is generated by a simulator from
a federal funded program. It contains email communication
records and working activities from 258 company employ-
ees. Each employee is featured by 6 types of activities. The
labeled dataset contains 39 individual anomalies and 5 of
them cannot be detected by any existing algorithms. We
set the number of groups as 20 as the optimal setting ob-
tained from cross validation and calculate the anomaly score
of each group by MCMC sampling. We treat all members in
the most anomalous group as individual anomalies and com-
pare them with the anomaly labels. Though the anomaly
labels are point anomalies rather than group anomalies, the
anomaly detection result reflects the potential of our ap-
proach to tackle other type of difficult anomaly detection
problems. The precision, recall and F1 score over 20 runs
on the benchmark dataset is shown in Figure

We can see that the GLAD model achieves comparable
precision and recall with low variances. In contrast, the
detection performances of the two-stage models fluctuates
significantly. In terms of the F1 scores in Figure both
GLAD and MMSB-MGM beat the other algorithms while
GLAD has a lower variance than MMSB-MGM. One possi-
ble explanation is that the point-wise features prevent the
size of the group to become either too large or too small,
thus leading to more robust performance.

6.3 Real World Datasets
6.3.1 Scientific Publications

Researchers study the topics of papers seeking for con-
cise representations of scientific publications, which contain
both pair-wise data like co-authorship and point-wise data
such as bag of words features. Detecting anomalous topic
distributions in scientific publications can sharpen our un-
derstanding of the structure of research communities and
possibly reveal unusual research trends. In order to quantify
our method, we resort to anomaly injection and construct a
dataset with group anomaly labels. One way to construct
group anomalies is the scenario that a conference paper cor-
pus is contaminated by group of papers from conferences in
other domains.
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Table 3: Group Anomaly Accuracy of GLAD and four baselines on DBLP publications. With KDD papers

treated as normal groups and other conferences are treated as group anomalies respectively.

Methods GLAD | Graph-LDA | Graph-MGM | MMSB-LDA | MMSB-MGM
DBLP:KDD/CVPR | 0.4167 0.3333 0.3333 0.2500 0.2500
DBLP:KDD/ICML | 0.2500 0.0833 0.0833 0.1667 0.1667

DBLP:KDD/SIGMOD | 0.2875 0.0750 0.0500 0.1625 0.1625
DBLP:KDD/CIKM | 0.4500 0.4000 0.3625 0.2625 0.2625
DBLP:KDD/EDBT | 0.2625 0.0500 0.0875 0.2000 0.2000

We create a dataset from a pre-processed Digital Bibliog-
raphy and Library Project (DBLP) dataset from [6]. The
dataset consists of conference papers from 20 conferences of
four major area: database (DB), data mining (DM), infor-
mation retrieval (IR) and artificial intelligence (AI). Each
paper has a bag-of words feature vector with a vocabulary
size of 11,771 and associated 28,702 authors information.
The detailed statistics of the dataset are shown in the top
half of Table[d] We set up the group anomaly detection sce-
nario as follows: we randomly sample groups of papers from
KDD and treat them as normal groups. Then we sample
groups of papers from the other conferences (e.g, CVPR,
ICML , SIGMOD) and inject them into KDD papers as
group anomalies. If the two papers have at least one com-
mon author, we add a link between them.

Accordingly, all conferences share four topics. But dif-
ferent conferences might have difference point of emphasis,
resulting in different mixture rates of topics. Our goal is to
pick out the “anomalous” papers from the corpus. We sam-
ple 50 groups of papers and inject 20% group anomalies. We
apply different models with 50 groups and 4 roles to the data
for inference of the membership and role distributions. Then
we rank 50 groups with respect to their anomaly scores. We
treat the top 20% groups as the detected anomalies. Table
shows the anomaly detection accuracy by GLAD and four
other baselines. GLAD is superior to all four baselines mod-
els for different combination of normal/abnormal settings.
We also display the topics learned by the GLAD model. In
Table [5} we show the top ten most representative words for
the four topics, which well reproduce the topic results re-
ported in [6].

Since the DBLP dataset does not contain time-specific in-
formation which is not suitable for the d-GLAD model, we
process another ACM dataset downloaded from ArnetMiner
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Table 4: Key statistics of the DBLP and ACM pub-
lication datasets

DBLP
# of docs 28,569 # of authors | 28,702
# of conf 20 # of words 11,771
# of links | 104,962 # of area 4
ACM
# of docs 31,574 | # of authors | 4,474
# of year 10 # of words 8,024

|16]. The dataset contains the publications from year 2000
to 2009 by 4,474 authors, mainly from the data mining com-
munity. In order to study the topic evolution for academic
scholars, we extract the abstracts of all publications and
group them by authors and publishing years. For each au-
thor, we construct a bag of words feature vector out of all the
papers he/she has written in one year. And the communica-
tion networks we generate are based on the co-authorship of
the papers. Whenever two authors have collaborations in a
certain year, we create a link between them for the network
snapshot in that year.

Due to the lack of labels, it is difficult to directly evalu-
ate our model on anomaly detection task. As an alterna-
tive, we design a prediction task to compare the modeling
performance of GLAD and d-GLAD on ACM publications.
Specifically, we separate the papers into training and test-
ing sets and measure the predictive model log-likelihood on
the testing data. For d-GLAD, we train our model using a
series of publications from previous years, and test on the
year immediately after. For the GLAD model, as it is a
static model, time independence assumption applies. We
train the model using previous year and test on the next
year. The model fitting results are shown in Table [f} Out



Table 6: Prediction negative log likelihood for GLAD and d-GLAD on ACM dataset over 9 years.

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009
GLAD 28421.63 28023.68 | 30184.66 | 32039.92 | 28317.67 | 30539.66 | 26105.21 34340.53 25967.75
DGLAD | 34411.28 | 33411.14 | 29935.87 | 31958.92 | 30082.65 | 29696.12 | 30042.77 | 34395.68 | 31683.49
Table 5: The most representative words learned by sen Nelson
GLAD on DBLP dataset of four topics: database,
data mining, information retrieval and artificial in-
telligence. y
DB DM IR AT . ¢
databases data web query . - e ¢
object mining information system
access efficient learning management .
database query search processing .
oriented algorithm retrieval web Imes leffonds
security queries clustering efficient
based clustering query performance
indexing databases text infomation . .
systems | algorithms model distributed 'Flgure 6: Common votes graph with party labels
. . . o inferred by GLAD for 100 senators on the aggre-
privacy large classification | optimization

of 9 training-testing experiments, d-GLAD model achieves
higher log-likelihood than GLAD model for 6 times, indi-
cating d-GLAD as a better fit for the evolving publication
modeling.

6.3.2 US Senate Voting

We collect the voting records from the government website
of United States 109th Congress EI using the New York Time
Congress APIE The records of 109th Congress contain 100
senators’ voting spanning two sessions from Jan 1st 2005 to
Dec 31st 2006. We divide the 24 months records into 8 time
slots, where each slot denotes a 3-month interval. Then
we apply the method of [11] to construct a network from
original yay/nay votes. For the nodes features, we collect
the statistics of votes in six dimensions, namely House Joint
Resolution(hjres), House of Representatives(hr), Presiden-
tial Nomination(pn), Simple Resolution(s), sconres(Senate
Concurrent Resolution) and Senate Joint Resolution(sjres).
We evaluate GLAD on single aggregated network and d-
GLAD on the 8 time slots time-varying data.

We set the number of groups as 2 and number of roles as
3 as the Senate consists of two major parties and maintains
three types of committees. Figure [6] shows the groups in-
ferred by GLAD. The blue nodes denote Democratic party
members and the red ones are Republican. Compared with
known facts, the model correctly reveals the party affiliation
except for two outliers: Ben Nelson (Democratic) and James
Jeffords (Independent). The underlying reason is that the
votes of these two senators are often at odds with the lead-
ership of his party, leading to false grouping. We conduct
an anecdotal investigation and find that the congressional
vote rating from the National Journal placed Ben Nelson
to the right of five Senate Republicans in 2006. For James
Jeffords, he served as a Republican until 2001, when he left
the party to become an Independent and began caucusing
with the Democrats.

"http://www.senate.gov/
Zhttp://developer.nytimes.com/docs/read /congress_api
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gated network. Compared with ground truth, two
outliers are highlighted due to their anomalous vot-
ing behavior.

Since there are merely two groups, it is impetuous to say
one party is more anomalous than the other. Instead, we
use d-GLAD to detect time points when the role mixture
rates change dramatically. In fact, d-GLAD raises an alarm
at the 7th time-step for Democratic. A well known political
event happened during this time is that Democratic sena-
tor Joseph Lieberman lost the Democratic Party primary
election and became a independent Democratic in Septem-
ber 2006. Though it may be over-optimistic to draw the
conclusion that this event causes the sudden change of role
mixture rates, it serves as an evidence that the dynamics of
the voting behavior is closely related to the party affiliation
of members.

7. CONCLUSION

In this paper, we study the problem of group anomaly
detection in social media analysis. We identify the group
membership and the role for each individual and define the
group anomaly with respect to the role mizture rate. We
develop a hierarchical Bayes model: the GLAD model, for
detecting the group anomaly. The GLAD model utilizes
both the pair-wise and point-wise data and automatically
infers the group membership and the role at the same time.
To further account for the dynamic nature of social media,
we generalize GLAD to the d-GLAD model as an extension
for handling time series. We derive the variational Bayesian
method as well as the Monte Carlo sampling for the model
inference.

The superior performances of GLAD and d-GLAD are
demonstrated on synthetic datasets and real world social
media datasets. For example, GLAD successfully detects
“anomalous” papers from the scientific publication corpus
with injected anomalies. d-GLAD uncovers the party affil-
iation changes in the Senate which correspond to political
events. The type of group anomaly that we define here has
also been investigated in the applications of astronomy [19],



particle physics |13] and fluid mechanics [20]. But our work
is the first study in group anomaly detection that aims to
identify groups and detect anomalies simultaneously. Dur-
ing this study, we mainly focus on the applications in social
media analysis, but we believe that our model is capable of
tackling similar problems in other domains.

Our current approach has a number of limitations. First,
the lack of labeled data for group anomaly increases the dif-
ficulty in evaluation. Here we create a benchmark dataset
using anomaly injection. But the injected anomaly cannot
fully represent the naturally occurred anomaly in practice.
Secondly, we do not fully address the problem of model selec-
tion for our approach. For the experiments on senator and
publication datasets, we either manually choose the model
hyper-parameters based on our prior knowledge or use cross-
validation. Finally, given the complexity of the model and
the particle filtering approach, the d-GLAD model is com-
putational expensive. Thus it is not yet scalable to data
with long time span.

For future directions, we will apply the variational Bayesian
method for d-GLAD or parallel sampling procedure to achieve
further speed-up for large-scale data. Furthermore, it would
be interesting to build non-parametric models to automati-
cally learn the number of groups and roles. Future research
should also address better procedures and criteria for eval-
uating the group anomaly detection methods in real world
social media applications.

8. ACKNOWLEDGMENTS

The research was sponsored by the U.S. Defense Advanced
Research Projects Agency (DARPA) under the Anomaly
Detection at Multiple Scales (ADAMS) program, Agreement
Number W911NF-11-C-0200 and NSF research grants IIS-
1134990. The views and conclusions are those of the authors
and should not be interpreted as representing the official
policies of the funding agency, or the U.S. Government.

9. REFERENCES

[1] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P.
Xing. Mixed membership stochastic blockmodels.
Journal of Machine Learning Research,
9(1981-2014):3, 2008.

L. Akoglu, M. McGlohon, and C. Faloutsos. Anomaly
detection in large graphs. In In CMU-CS-09-178
Technical Report. Citeseer, 2009.

D. M. Blei and J. D. Lafferty. Dynamic topic models.
In Proceedings of the 23rd international conference on
Machine learning, pages 113-120. ACM, 2006.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993-1022, 2003.

S. P. Borgatti, A. Mehra, D. J. Brass, and

G. Labianca. Network analysis in the social sciences.
science, 323(5916):892-895, 2009.

23]

381

[6] H. Deng, J. Han, B. Zhao, Y. Yu, and C. X. Lin.
Probabilistic topic models with biased propagation on
heterogeneous information networks. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages
1271-1279. ACM, 2011.

S. Fortunato. Community detection in graphs. June
2009. Physics Reports 486, 75-174 (2010).

D. M. Hawkins. Identification of outliers. Chapman
and Hall, 1980.

N. A. Heard, D. J. Weston, K. Platanioti, and D. J.
Hand. Bayesian anomaly detection methods for social
networks. 2010.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and

L. K. Saul. An introduction to variational methods for
graphical models. Machine learning, 37(2):183-233,
1999.

M. Kolar, L. Song, A. Ahmed, E. P. Xing, et al.
Estimating time-varying networks. The Annals of
Applied Statistics, 4(1):94-123, 2010.

G. Kossinets. Empirical analysis of an evolving social
network. Science, 311(5757):88-90, Jan. 2006.

K. Muandet and B. SchA{ilkopf. One-class support
measure machines for group anomaly detection. Mar.
2013.

J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation
discovery. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 653—658. ACM, 2004.

C. E. Priebe, J. M. Conroy, D. J. Marchette, and

Y. Park. Scan statistics on enron graphs.
Computational & Mathematical Organization Theory,
11(3):229-247, 2005.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD’08, pages 990-998, 2008.

H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random
walk with restart and its applications. 2006.

U. Von Luxburg. A tutorial on spectral clustering.
Statistics and computing, 17(4):395-416, 2007.

L. Xiong, B. Poczos, J. Schneider, A. Connolly, and
J. Vanderplas. Hierarchical probabilistic models for
group anomaly detection. pages 789-797, 2011.

L. Xiong, B. Péczos, and J. G. Schneider. Group
anomaly detection using flexible genre models. In
NIPS, pages 1071-1079, 2011.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15, 2009.

A. Doucet and A. M. Johansen. A tutorial on particle
filtering and smoothing: Fifteen years later.

D. Koller and N. Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

20]

(21]

(22]



	Introduction
	Related Work
	Definition of Group Anomaly
	the GLAD model
	Model Specification
	Inference and Learning

	dynamic extension of GLAD
	Model Specification
	Inference and Learning

	Experiments
	Baselines
	Synthetic Dataset
	Synthetic Data with Anomaly Injection
	Benchmark Data with Anomaly Labels

	Real World Datasets
	Scientific Publications
	US Senate Voting


	Conclusion
	Acknowledgments
	References



