
Supervised Deep Learning with Auxiliary Networks

Junbo Zhang†,‡, Guangjian Tian‡, Yadong Mu‡, Wei Fan‡
†School of Information Science and Technology,

Southwest Jiaotong University, Chengdu 610031, China
‡Huawei Noah’s Ark Lab, Hong Kong

jbzhang@my.swjtu.edu.cn, {tian.guangjian,mu.yadong,david.fanwei}@huawei.com

ABSTRACT
Deep learning well demonstrates its potential in learning latent fea-
ture representations. Recent years have witnessed an increasing
enthusiasm for regularizing deep neural networks by incorporat-
ing various side information, such as user-provided labels or pair-
wise constraints. However, the effectiveness and parameter sen-
sitivity of such algorithms have been major obstacles for putting
them into practice. The major contribution of our work is the ex-
position of a novel supervised deep learning algorithm, which dis-
tinguishes from two unique traits. First, it regularizes the network
construction by utilizing similarity or dissimilarity constraints be-
tween data pairs, rather than sample-specific annotations. Such
kind of side information is more flexible and greatly mitigates the
workload of annotators. Secondly, unlike prior works, our pro-
posed algorithm decouples the supervision information and intrin-
sic data structure. We design two heterogeneous networks, each
of which encodes either supervision or unsupervised data structure
respectively. Specifically, we term the supervision-oriented net-
work as “auxiliary network” since it is principally used for facili-
tating the parameter learning of the other one and will be removed
when handling out-of-sample data. The two networks are comple-
mentary to each other and bridged by enforcing the correlation of
their parameters. We name the proposed algorithm SUpervision-
Guided AutoencodeR (SUGAR). Comparing prior works on un-
supervised deep networks and supervised learning, SUGAR better
balances numerical tractability and the flexible utilization of super-
vision information. The classification performance on MNIST dig-
its and eight benchmark datasets demonstrates that SUGAR can ef-
fectively improve the performance by using the auxiliary networks,
on both shallow and deep architectures. Particularly, when multi-
ple SUGARs are stacked, the performance is significantly boosted.
On the selected benchmarks, ours achieve up to 11.35% relative
accuracy improvement compared to the state-of-the-art models.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623618 .

Keywords
Deep Neural Networks; Supervision; Autoencoder

1. INTRODUCTION
In recent years, learning feature representations from deep neural

networks has emerged as a prominent methodology in the machine
learning and data mining communities. It has gained numerous
success in the fields such as computer vision [14], speech recogni-
tion [8] and natural language processing [25]. Some comprehensive
surveys of recent progress are provided by Bengio in [2, 3].

Many classic deep neural networks, such as Autoencoders and
Restricted Boltzmann Machines (RBMs), operate in the unsuper-
vised manner. For example, an autoencoder pursues the optimal
network parameters piloted by the intuition of data self-reconstruction.
Nevertheless the deep neural networks can be also trained in a su-
pervised manner, such as Convolutional Neural Networks (CNN)
developed by LeCun et al. [16]. However, most attempts before
2006 at training supervised deep architectures failed. It turns out
that the deep supervised feedforward neural network tends to yield
inferior performances in terms of prediction error than shallow ones
(with 1 or 2 hidden layers). Hinton’s revolutionary work on Deep
Belief Networks (DBN) [12] in 2006 shed a light on effective su-
pervised deep learning. Other multi-layered deep neural networks
like Stacked Denoising Autoencoders (SDAE) [27] can be effi-
ciently pre-trained in layer-wise manner, followed by supervised
back-propagation in order to fine-tune the parameters [4].

However, existing schemes for incorporating side information
into deep neural networks are far from being satisfactory. For ex-
ample, though achieving striking empirical results on several real-
world applications, the two-step procedure adopted by DBN (i.e.,
unsupervised pre-training followed by supervised fine-tuning) does
not effectively handle sparse side information (e.g., sparse sim-
ilarity or dissimilarity constraints on data pairs). Moreover, the
methodology of separately performing unsupervised or supervised
parameter optimization also tends to converge to non-optimal solu-
tions. Our algorithm is proposed to address the above-mentioned
issues, and motivated by the recent surge in weakly-supervised ex-
tensions of the autoencoder algorithm [4, 20, 24, 25, 32]. These
extensions advance the original autoencoder algorithm by adding
label-specific output besides the data reconstruction [4], using re-
cursive structure [25] or non-parametric Gaussian process [24].

In this paper, we propose a novel deep learning model, whose
architecture is illustrated in Figure 1. Each layer of the deep model
includes a SUpervision-Guided AutoencodeR, which is referred to
as “SUGAR”. SUGAR is comprised of a main network, an aux-
iliary network, and a bridge that connects the two networks. The
main network adopts the data self-reconstruction criteria as in the
autoencoder algorithm, and enforces the solutions to be of moder-

353

Figure 1: Deep Architecture. Each layer consists of three com-
ponents: Main Network (solid box), Auxiliary Network (dotted
box), and Bridge. f , h are two encoders, g is a decoder, C is
a discernibility function. After training, the feedback decod-
ing modules g and the encoder modules h with the correspond-
ing classifier modules (all dashed lines) are discarded and the
system is used to produce very compact representations by a
feed-forward pass through the chain of encoders f .

ate sparsity in order to reduce the over-fitting risk. The auxiliary
network encapsulates the supervision information. It is designed to
ensure that both the similarity or dissimilarity pairwise constraints
are satisfied. In the stage of parameter learning, these two networks
are simultaneously optimized. The name “auxiliary networks” fol-
lows from the fact that the network will be removed when handling
out-of-sample data. In other words, the auxiliary network mainly
plays the role of regularizing the main network. Using the idea of
auxiliary network, SUGAR is able to accomplish a seamless hybrid
of unsupervised data structure discovery and sparsely-supervised
learning.

Comparing to competing models, our proposed model has the
following advantages:

• SUGAR employs a novel architecture to build deep networks,
i.e., “auxiliary networks” + “main networks” + “bridge”. The
auxiliary networks can be easily embedded into the conven-
tional networks, and then provide a sparsely-supervised guid-
ance. These two networks are complementary to each other,
since the auxiliary network can learn discriminant features
and the autoencoder-based main network can learn genera-
tive features. At the same time, the sparsity penalty is em-
ployed to make SUGAR more robust and efficient.

• SUGAR is very flexible and easily extendible. For exam-
ple, one can replace the autoencoder (AE) term in SUGAR
by many other autoencoder variants. In this paper, we tenta-
tively explore two extensions, i.e., the denoising autoencoder
(DAE) [27] and the contractive autoencoder (CAE) [22].

• SUGAR can be also easily stacked as a deep learning model.
After pre-training multiple hidden layers effectively, the deep
stacked SUGARs can learn highly abstracted features and
more meaningful representations.

2. METHODOLOGY
In this section we will elaborate on the details of the proposed

algorithm.

Table 1: Mathematical notation
Symbol Definition
N number of data samples
Nl number of labeled data samples
D dimensionality of data sample
K number of hidden units
X ∈ RD×N data samples
Xl ∈ RD×Nl labeled data samples
x ∈ RD data sample
x̂ ∈ RD vector of reconstruction
z ∈ RK hidden representation
h ∈ RK hashing representation
W ∈ RK×D weight matrix for autoencoder
b ∈ RK bias for encoder
b′ ∈ RD bias for decoder
P ∈ RK×D weight matrix for hashing
t ∈ RD bias for hashing
Ω ∈ RNl×Nl indicator matrix
I ∈ RK×K identity matrix
HK = {±1}K K-dimensional Hamming space
M neighbor-pairs
C nonneighbor-pairs

L1

L2

L1

L2

L1

L2

(a) (b) (c)

Figure 2: Illustration for the semi-supervised learning. (a) un-
supervised; (b) supervised; (c) semi-supervised. Supervised
learning in (b) generates reasonable solution yet does not en-
sure it is consistent to the underlying data distribution. The
result by semi-supervised learning on (c) is more reasonable.

2.1 Problem Formulation
Suppose that there are N training samples X = {xi}Ni=1 ∈

RD×N where each sample xi ∈ RD . Among them, Nl samples
are labeled, noted as Xl ∈ RD×Nl and its corresponding label Y.
Table 1 lists other mathematical notation used in the paper. The
traditional deep learning model such as RBM and autoencoders are
learnt in the unsupervised manner which has been demonstrated
to be effective for learning the latent representations. The unsu-
pervised pre-training methods are based on the hypothesis that the
marginal probability distribution of the input P (X) contains some
relevant information about the conditional probability P (Y|X).
Supervised learning can remarkably improve its performance when
it comes to the specific tasks. Intuitively, the labeled data comes
from the joint distribution of training data X and its corresponding
label Y, P (X,Y), while the unlabeled data comes the marginal
distribution of X, P (X). The joint utilization of P (X,Y) and
P (X) is supposed to be able to extract more useful information
from the unlabeled data. Figure 2 illustrates a simple case in the
linear feature space, where latent representations are learnt from
merely unlabeled data, supervision information, or both. In order
to make unsupervised learning useful, there must be connection
between the joint distribution P (X,Y) and marginal distribution

354

Bridge

Target

Supervised cost

Unsupervised cost

(Reconstruction error)

Mixed cost

Labeled data Training data

Xl X Reconstruction

WP

Auxiliary Network Main Network

Figure 3: Architecture of SUGAR. It is trained on labeled data
with the supervised learning on Auxiliary Network and unla-
beled data with the unsupervised autoencoder on Main Net-
work. They are bridged by enforcing the correlation of their
parameters.

P (X). The pure unsupervised autoencoder may not constrain this
connection, so we applied an explicit sparsely-supervised model to
the autoencoder to construct this connection. The flow chart of the
proposed method is shown in Figure 3. The mixed model includes
the following three components:

Main Network is used to reconstruct the input, i.e., the unsuper-
vised autoencoder;

Auxiliary Network is used to regularize the learnt network by pair-
wise similarity or dissimilarity constraints, i.e., the super-
vised learning;

Bridge is used to connect Main Network and Auxiliary Network
by enforcing the correlation of their parameters.

In the following part of this section, we first introduce the main
network that is designed to capture the intrinsic data structure, then
move to the auxiliary network that can regularize the main network
by pairwise similarity or dissimilarity constraints among data. Af-
ter that, the mixed model is introduced which involves a bridge.
Finally, we describe how to learn higher level feature with deep
networks.

2.2 Main Network
We propose a sparsity-encouraging variant of the classic autoen-

coder [23] to construct our main network. Autoencoder was in-
troduced to address the problem of “backpropagation without a
teacher”, by using the input data as the teacher. It is a feed for-
ward neural network conventionally used for reducing feature di-
mensionality and pre-training deep networks. For the consideration
of being self-contained, we will first briefly review the key idea of
autoencoder and afterwards highlight the significance of our pro-
posed variant.

The standard autoencoder consists of two parts: an encoder and a
decoder. It uses unlabeled training samples as both input and output
of the neural network. The encoder is a function f that maps an
input x ∈ RD to a hidden representation z ∈ RK . It has the form
as

z = f(x) = Sf (Wx + b), (1)

where W ∈ RK×D is a weight matrix, b ∈ RK is a hidden
bias vector, and Sf is an activation function, typically a logistic

sigmoid(τ) = 1
1+e−τ or tanh(τ) = eτ−e−τ

eτ+e−τ . The decoder func-
tion g maps the hidden representation z back to a reconstruction
x̂:

x̂ = g(z) = Sg(W
′z + b′), (2)

where W′ ∈ RD×K is a weight matrix, b′ ∈ RD is a bias vec-
tor, and Sg is a decoder’s activation function, typically either the
identity (yielding linear reconstruction) or a sigmoid.

The objective of a classic autoencoder is to minimize the recon-
struction error on a training set X, i.e., arg minφ

∑
x∈X L(x, x̂),

with respect to the parameters φ = {W,W′,b,b′}. L is the loss
function for the reconstruction residual. Typically it is set to be the
squared error L(x, x̂) = ‖x − x̂‖2 when Sg is the identity func-
tion and the cross-entropy loss L(x, x̂) = −(

∑D
i=1 xi log x̂i +

(1− xi) log(1− x̂i)) when Sg is the sigmoid function.
A critical downside of classic autoencoder is the over-fitting is-

sue caused by the extremely many parameters. To attack this issue,
we set W′ = WT and enforce W to be sparse. Specifically, we
add ‖W‖`1 to the objective function. In this way, we obtain

arg min
φ

∑
x∈X

L(x, x̂) + λ‖W‖`1 , (3)

where λ is a free parameter to control the sparsity of W, and
‖ · ‖`1 denotes the sum of the absolute values of matrix entries, i.e.,
‖W‖`1 ,

∑
ij |Wij |. In the experiments, we investigate the rela-

tionship between the solution sparsity and prediction accuracies, as
depicted in Figure 5(c).

2.3 Auxiliary Network
We propose to use a data similarity-preserving criterion to con-

struct our auxiliary network. Specifically, we generate binary code
for each datum and optimize the model parameters, which is known
as “supervised hashing" in the literature. The inner produce of two
hash codes approximately reflects the corresponding data similar-
ity in the original feature space. Hashing is known to be more suit-
able for approximate similarity search for high-dimensional data.
Some related methods have been proposed for learning a compact
representations for the discriminative tasks, such as locality sensi-
tive hashing [1], spectral hashing [30], and semi-supervised hash-
ing [19, 29].

Hashing aims to map the input data into a K-dimensional Ham-
ming space to obtain its compact representation HK = {±1}K .
Suppose that there are Nl labeled training samples, so the ma-
trix is given by Xl = {xi}Nli=1 ∈ RD×Nl where each sample
xi ∈ RD . Given an input x, one can learn K hash functions
H = [h1, · · · , hK] to produce a hashing representation h ∈ RK
by the form

h = H(x) = sgn(Px + t), (4)

where sgn(·) is the signum function, and P ∈ RK×D is a projec-
tion matrix, each column pk ∈ RD is a projection vector, t ∈ RK
is a bias vector, each element tk = − 1

n

∑n
i=1 pTk xi is equal to the

mean of the projected data and zero for centered data.
In the supervised hashing, the weight matrix P is determined

by enforcing the output of the corresponding hash functions H =
[h1, · · · , hK] to be consistent to the pre-specified side information.
Suppose the side information is provided in the form of either sim-
ilarity or disimilarity constraints between data pairs, we propose to

355

maximize the following objective function:

J (P) =

K∑
k=1

 1

|M|
∑

(xi,xj)∈M

hk(xi)hk(xj)−

1

|C|
∑

(xi,xj)∈C

hk(xi)hk(xj)

 , (5)

where any pair (xi,xj) from set M denotes a neighbor-pair. xi
and xj are either neighbors in a metric space or shared common
class labels. Similarly, a pair (xi,xj) ∈ C reflects the fact that xi
and xj are far away in a metric space or have different class labels.
Such an idea has been well explored in the context of discrimina-
tive subspace learning [28]. Its effectiveness in supervised deep
learning was proved in prior works on neural networks such as [6].
However, our adopted formulation supports sparse supervision and
is significantly more tractable.

For notation simplicity, the above objective function can be ex-
pressed in a compact matrix. For this purpose, an indicator ma-
trix Ω incorporating the pairwise labeled information from Xl ∈
RD×Nl as:

Ωij =

1× 1

|M| , (xi,xj) ∈M,

−1× 1
|C| , (xi,xj) ∈ C,

0, otherwise.

(6)

With indicator matrix Ω, one can rewrite Eq. (5) as

J (P) =
1

2
tr{H(Xl)ΩH(Xl)

T }. (7)

Without loss of generality, data are assumed to be zero-centered.
For numerical tractability, we relax the sign of the projection values
to be the signed magnitude, i.e., H(Xl) = sgn(PXl) is replaced
by PXl. As in spectral hashing [30] and semi-supervised hashing
[29], one can use the balancing and pairwise decorrelation con-
straints that can help generate good hash codes in which bits are
independent and each bit maximizes the information by generating
a balanced partition of the data. These constraints are replaced by
the orthogonality constraints PPT = I. In summary, we intend to
learn the supervised hashing by maximizing the relaxed objective
function with constraints as:

arg max
P

1

2
tr{PXlΩXT

l PT }, (8)

subject to PPT = I.

2.4 Bridge
The bridge is the most important component in our model. It

connects the auxiliary network to the main network by enforcing
the correlation of their parameters. According to the above intro-
duction, the main network consists in finding the parameters that
minimize the reconstruction error and the auxiliary network con-
sists in finding the parameters that maximize the empirical accu-
racy. We require the mixed model to inherit these two models; in
other words, the learnt features are expected to be generative, such
that they can produce good reconstructions, and to be discrimina-
tive, such that they can obtain the high empirical accuracy on la-
beled data. At the same time, we also desire the features to be
sparse, which can improve robustness and efficiency of the model.
Under these requirements, we connect the unsupervised term and
supervised term, see Figure 3. The features W learnt from the
unsupervised autoencoder is majorly useful for data reconstruction
rather than classifier. Therefore, a good connection can make the

features W be as consistent to the features P as possible where P is
discriminative. This process can be viewed as Guidance; therefore,
our model is named SUpervision-Guided AutoencodeR (SUGAR).
All of these yield the following mixed objective:

arg min
φ,P

αJAE(φ) + (1− α)JSH(P) +

ε

2
‖P−W‖2F + λ‖W‖`1 , (9)

subject to PPT = I.

where ε is a correlation coefficient between P and W, λ is sparsity
penalty ratio, α ∈ [0, 1] is a guiding coefficient, and linearly blends
the following two objectives:

JAE(φ) =
∑
x∈X

L(x, x̂) =
1

2

∑
x∈X

‖x− x̂‖2, (10)

JSH(P) = −1

2
tr{PXlΩXT

l PT }. (11)

In the autoencoder term JAE , the encoder is a linear transfor-
mation followed by a fixed element-wise nonlinearity. And the
squared reconstruction error is employed.

2.4.1 Optimization Algorithm
‖W‖`1 in the objective function is not differentiable at 0, which

poses a problem for gradient-based methods. Though other alterna-
tive optimization schemes exist, we resort to the following simple
approximation for function smoothing,

‖W‖`1 ≈
∑
ij

√
W 2
ij +$, (12)

where $ is a pre-specified positive scalar that is negligibly small.
In this way, the gradient calculation is enabled.

Another complication is from the orthogonality constraints on
P, i.e., PPT = I. The constraint is difficult since it is non-convex
and of high computational complexity to preserve in each iteration.
Though sophisticated update schemes (e.g., Crank-Nicolson-like
update scheme in [31]) have been proposed to preserve such con-
straint, we adopt the following operation in practice, which simply
sets the singular values of P to be all ones [13],

P← (PPT)−
1
2 P. (13)

The above operation is conducted after every gradient descent
step to keep the orthogonality. We here propose to take mini-
batches to update each iteration, where the true gradient is approx-
imated by a sum over a small number of randomly training sam-
ples. During each iteration, we alternate the optimization of P and
φ = {W,b,b′} while fixing the other one. The overall algorithm
is described in Algorithm 1. We name the algorithm as MSGD-
SUGAR, where MSGD stands for Mini-batch Stochastic Gradient
Descent.

2.5 Extensions
Nowadays, autoencoders have been widely researched and have

many variants, such as [7, 8, 21, 22, 26]. The autoencoder term
in our proposed model can also be replaced by many other au-
toencoder variants, e.g., the denoising autoencoder (DAE) [27] or
the contractive autoencoder (CAE) [22]. DAE encourages robust-
ness of reconstruction g(f(x)), whereas CAE explicitly encour-
ages robustness of latent representation f(x). Both learn the ro-
bust features in the unsupervised scheme with different aspects, and
that, our proposed model can also be learnt in supervised scheme.
Therefore, we here extend our proposed model to guide DAE and
CAE.

356

Algorithm 1: MSGD-SUGAR
Input: Learning rate η, mini-batch size m and m′, guiding coefficient

α, penalty coefficient ε, sparse coefficient λ. A set of training
data X where labeled data is Xl.

begin
Initialize the parameters φ = {W,b,b′},P.
repeat

// Fix φ, Update P
Pick m samples X′l from Xl

Let J1 = (1− α)JSH(P) + ε
2
‖P−W‖2F

= α−1
2m2 tr{PX′lΩX′Tl PT }+ ε

2
‖P−W‖2F

Update parameters P by
P← P− η ∂J1

∂P

Orthogonal projection by

P← (PPT)−
1
2 P

// Fix P, Update φ
Pick m′ samples X′ from X
Let J2 = αJAE(φ) + ε

2
‖P−W‖2F + λ‖W‖`1

= α
2m′

∑
x∈X′

‖x− x̂‖2+ ε
2
‖P−W‖2F +λ‖W‖`1

Update parameters φ by

φ← φ− η ∂J2
∂φ

until stopping criteria is met;
end

2.5.1 SUGAR with DAE
DAE can be used to learn robust representations through the ad-

ditive binary making noise (some input components are randomly
set as 0 in accordance with the corruption ratio ρ) or Gaussian noise
with the form x̃ = x+ ζ, ζ ∼ N (0, σ2I), where ρ or σ are called
the corruption ratio, and used to control the degree of regulariza-
tion. Simply, we here use DAE to replace AE in our proposed
model, then it generates a new model, i.e., “SUGAR with DAE”.
This yields the following objective function:

arg min
φ,P

αJDAE(φ) + (1− α)JSH(P) +

ε

2
‖P−W‖2F + λ‖W‖`1 , (14)

subject to PPT = I.

whereJDAE(φ) =
∑

x∈X Ex̃∼q(x̃|x)

[
L(x, ̂̃x)

]
. Here, the expec-

tation is over corrupted versions x̃ of the input x obtained from a
corruption process q(x̃|x) where ̂̃x is the reconstruction of x̃.

2.5.2 SUGAR with CAE
From the motivation of robustness to small perturbations around

the training points, CAE is more strongly contracting at the train-
ing samples. Similarly, we use CAE to replace AE, and propose
“SUGAR with CAE”, which yields the following objective func-
tion:

arg min
φ,P

αJCAE(φ) + (1− α)JSH(P) +

ε

2
‖P−W‖2F + λ‖W‖`1 , (15)

subject to PPT = I.

where JCAE(φ) =
∑

x∈X
(
L(x, x̂) + µ‖Jf (x)‖2F

)
. Here, µ is

the contraction ratio and ‖Jf (x)‖2F =
∑
ij

(
∂zj(x)

∂xi

)2
is the Frobe-

nius norm of the Jacobian. In the case of a sigmoid nonlinear-

ity, this norm has a simple expression ‖Jf (x)‖2F =
K∑
i=1

(zi(1 −

zi))
2
D∑
i=1

W 2
ij [22] where z denotes the hidden representation of

the input.

2.6 Building Deep Neural Networks
Stacking SUGARs to initialize a deep neural network works in

similar way as stacking RBMs in deep belief networks (DBN) [11,
12] or standard autoencoders [4, 27]. Stacked SUGARs always
consists two stages: pre-training and fine-tuning. A greedy layer-
wise strategy, by Hinton [11], has been proven to be very use-
ful in pre-training [9]. It was originally used to train a DBN one
layer at a time, and it also can train each layer as an autoencoder.
Unlike unsupervised pre-training, in our model, we use the super-
vised method with the label information into the antoencoder, i.e.,
SUGAR. In other words, we use SUGAR to replace the standard
autoencoder. The difference between SUGAR and the standard au-
toencoder is that the standard autoencoder only transmit the unla-
beled data to next layer but SUGAR also takes the labeled data.
The labeled hidden representation is used to guide the next layer as
well as the current layer. The complete procedure for pre-training
is shown in Figure 1.

Once a stack of encoders are built, the top level hidden repre-
sentation can be used as input to a stand-alone supervised learning
algorithm, e.g., a logistic regression or a support vector machine
classifier. In our model, as same as the strategy of [27], we also
add a logistic regression layer on top of the encoders to yield a deep
neural network to supervised learning. Then, all parameters of the
whole system can be fine-tuned using a backpropagation technique.
This stage is called as fine-tuning.

3. EXPERIMENTS
We first show the ability of SUGAR from multiple perspectives.

Then we evaluate SUGARs as a pre-training strategy deep net-
works, using the stacking procedure that we introduced in Sec-
tion 2.6. We will mainly compare the classification performance
of Stacked SUGARs versus some state-of-the-art models such as
Stacked Autoencoders on a benchmark of classification problems.

3.1 Datasets
We used the well-known digit classification problem and eight

deep learning benchmark datasets [15].

3.1.1 MNIST digits
The MNIST digits1 is a well-known classification problem. The

entire dataset is partitioned into three parts: a training set with
50000 samples, a validation set with 10000 samples, and a test set
with 10000 samples.

3.1.2 Benchmark classification tasks
The benchmark classification tasks2 include 8 different datasets.

Each of which contains tens of thousands of gray-level images
of size 28 × 28 pixels. Among them, the datasets Rectangles,
RectImg and Convex are two-class problems. The train set (val-
idation set) sizes of these three datasets are 1000 (200), 10000
(2000) and 7000 (1000), respectively. The following five datasets
are MNIST digits variants with ten-class problems. The train set
and validation set sizes of these five variants are 10000 and 2000,
1http://yann.lecun.com/exdb/mnist.
2http://www.iro.umontreal.ca/~lisa/icml2007.

357

respectively. Each dataset has 50000 test examples. Details on the
datasets are listed in Table 2 and a few example images are shown
in Figure 4.

Table 2: Description of Datasets
Data Set Train Valid. Test Class
Rectangles 1000 200 50000 2
RectImg 10000 2000 50000 2
Convex 7000 1000 50000 2
MNISTBasic 10000 2000 50000 10
MNISTRot 10000 2000 50000 10
MNISTRand 10000 2000 50000 10
MNISTImg 10000 2000 50000 10
MNISTRotImg 10000 2000 50000 10

Figure 4: Samples from the various image benchmark
datasets. From top row to bottom row: Rectangles, RectImg ,
Convex, MNISTBasic, MNISTRot, MNISTRand, MNISTImg ,
MNISTRotImg .

3.2 Hyper-parameters Selection
It is non-trivial to find an optimal combination of the hyper-

parameters (the number of hidden layers as well as that of hidden
units in each layer, the pre-training learning rate and the fine-tuning
learning rate, etc.). Fortunately, many researchers have devised
various rules of thumb for choosing hyper-parameters in a neural
network [17]. In our experiments, we mainly refer the strategies
that used in [15]. Network parameters were trained from a random
start3, using mini-batch stochastic gradient descent4 to perform all
weight updates with a fixed learning rate (e.g., 0.01 or 0.001).The
guiding coefficient α shown in Eq. (9) allows us to adjust the rel-
ative contribution of the supervised guidance. We perform a grid
search over the range of settings for α at intervals of 0.1. In all the
datasets, we tried two values for the correlation coefficient between
W and P (i.e., ε = 0.000001 or ε = 0.0000001). The sparsity
3Weights are sampled independently form a uniform in range
[−4× 6√

nin+nout
, 4× 6√

nin+nout
] for the sigmoid activation that

is used in our experiments where nin, nout in this case are the
input and output dimensions, respectively [10].
4In most cases, the mini-batch size is equal to 10.

penalty ratio λ controls the sparsity of W. We can observe the
sparsity on each epoch using a small newtork architecture firstly,
then empirically set a rough value and add the user-specified spar-
sity threshold to “stopping criteria”, such as the sparsity ≥ 30%.
We selected the value of hyper-parameters that yielded, after fine-
tuning, the best classification performance on the validation set. Fi-
nal classification error rate was then computed on the test set. The
Python Theano Library5 [5] is used for most of our experiments.

3.3 Performance Evaluation

3.3.1 Shallow Architecture
SUGAR with the shallow architecture (single hidden layer) is

used to construct our experiments as well as the standard autoen-
coder on MNIST. We desired to know the effect by using the auxil-
iary network. Typically, the weight decay penalization is also used
in the standard autoencoder.
1) Effect of the guiding coefficient α

We start to compare SUGAR and the standard autoencoder with
the adjustment of the hyper-parameter α, which controls the rel-
ative importance of the supervised guidance. Both models have
the same setup, i.e., 500 hidden units, the sigmoid activation func-
tion. Figure 5(a) shows the classification error rates on three shal-
low neural network models, i.e. SUGAR, Autoencoder, and NNet
(a standard single hidden layer feed-forward neural network). Ob-
viously, SUGAR performs best in all cases. The best classification
error rate of SUGAR is 1.50%. It improves 0.35% as compared
with that of the standard autoencoder, whose classification error
rate is 1.85%.

2) Effect of labeled data
In real applications, there are always fewer labeled data than un-

labeled data. To assess the benefit of SUGAR on different sizes
of the labeled data, we randomly sample 1000, 2000, · · · , 10000
labeled samples incrementally; at the same time, use all training
data as unlabeled data. Concretely, taking 1000 for example, we
use 1000 labeled samples and all 50000 training samples for pre-
training and use 1000 labeled samples for fine-turning. We set the
number of hidden layers as 100 and α = 0.2. The same exper-
iments were carried out in the unsupervised pre-training manner
with the pure autoencoder. Figure 5(b) shows the results. We find
that some supervised guidance is beneficial. And, it always per-
forms better when increasing the labeled data.

3) Effect of the sparsity penalty
Here, we show the effect of the sparsity penalty. We use a subset

of MNIST and select 1000 training samples. We here also set the
number of hidden layer as 100, α = 0.2, and fixed ε, but varying
λ which controls the sparseness of W. Figure 5(c) shows that the
classification error firstly decreases and then increases as the spar-
sity increases. We also lists some related filters learnt by different
sparsity, shown in Figure 6. It demonstrates our proposed model is
more robust and efficient.

4) Guidance to DAE and CAE
We tried to construct the experiments to verify the guiding ability

on different variants of autoencoder, i.e., the denoising autoencoder
and the contractive autoencoder. The autoencoder term in SUGAR
can be replaced by DAE and CAE, see the details in Section 2.5.
We use binary making noise in DAE and set the corruption ratio as
10%. In CAE, we set contraction ratio as 0.1. A group of subsets
of MNIST are chosen with varying training samples. We also set
5http://deeplearning.net/software/theano/.

358

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.00

0.50

1.00

1.50

2.00

1.85
1.90

C
la

ss
ifi

ca
tio

n
er

ro
r(

%
)

1.68
1.61

1.541.58
1.50

NNet AE SUGAR

(a)

0 2000 4000 6000 8000 10000
Number of Labeled Samples

6

8

10

12

14

16

C
la

ss
ifi

ca
ti

on
er

ro
r

(%
)

AE
SUGAR

(b)

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Sparsity

10

11

12

13

14

15

C
la

ss
ifi

ca
tio

n
er

ro
r(

%
)

AE
SUGAR

(c)

Figure 5: Experimental results on MNIST. (a) Classification error rates on the shallow neural network. NNet is a single layer neural
network without pre-training and its result is taken from [4]. (b) A comparison of SUGAR (α = 0.2) and the standard autoencoder
versus the number of labeled samples. Error Bars show 95% confidence interval. (c) Classification error rates on the varying sparsity
in SUGAR.

(a) 10% (b) 25% (c) 40% (d) 50% (e) 60% (f) 70%

Figure 6: Filters learnt by SUGAR from MNIST with various sparsity of W. Filters at the same position in all six images are related
here, but only by the fact that SUGAR is started from the same random initialization point in the parameter space.

the number of hidden layer as 100 and α = 0.2. As shown in
Figure 7, it demonstrates that the auxiliary network can improve
DAE and CAE effectively, and our proposed model is flexible and
can be used with other autoencoder types.

0 2000 4000 6000 8000 10000
Number of Training Samples

4

6

8

10

12

14

C
la

ss
ifi

ca
ti

on
er

ro
r

(%
)

DAE
SUGAR with DAE

(a) DAE vs. SUGAR with DAE

0 2000 4000 6000 8000 10000
Number of Training Samples

4

6

8

10

12

14

C
la

ss
ifi

ca
ti

on
er

ro
r

(%
)

CAE
SUGAR with CAE

(b) CAE vs. SUGAR with CAE

Figure 7: Guiding ability on autoencoder variants

3.3.2 Deep Architecture
We stacked multiple SUGARs as deep neural networks and tested

classification performances on the eight benchmark datasets. In de-
tail, 1, 2, 3 hidden layers are noted as SUGAR-1, SUGAR-2 and
SUGAR-3, respectively. We used a relatively small architecture
(500 or 1000 units in the first and second hidden layer and 1000
hidden units in the third layer) in most of datasets. The guiding co-
efficient α is an important hyper-parameter and it controls the rela-
tive importance of supervised guidance. In Section 3.3.1, we have
shown that different α almost can improve the classification accu-
racy of an autoencoder through the grid search on [0, 1]. However,
a full grid search is always time-consuming and even infeasible.
Here, we use bisection search to replace grid search to determine
α. It needs only several times to find a near optimal α. For the spar-

sity, we start a smaller sparsity penalty ratio (such as λ = 0.0001),
and observe the sparsity of W and adjust λ to the proper value.
Then, we add the sparsity requirement to “stopping criteria” (the
sparsity ≥ 50%).

0 10 20 30 40 50 60 70 80
Epoch #

0

10

20

30

40

50

60

70

C
la

ss
ifi

ca
tio

n
er

ro
r(

%
)

Rectanges
RectImg

Convex
MNISTBasic

MNISTRot

MNISTRand

MNISTImg

MNISTRotImg

Figure 8: Validation error rates of SUGAR-3 on eight bench-
mark datasets. It needs only about 20 epochs to obtain almost
the best validation error rate in most cases.

Figure 8 shows the error rates on validation sets in the stage of
fine-tuning of SUGAR-3. It is easy to see that it needs only about
20 epochs to obtain almost the best validation error rate, which
demonstrates our proposed model can provide an effective pre-
training. Final classification error rate was we computed on the
test set by selected parameters that yielded the best validation error
rate. SUGARs with 1, 2 and 3 layers (SUGAR-1, SUGAR-2 and
SUGAR-3) and SAA-3 (the deep autoencoders model) are com-
pared in Figure 9. As the depth of the neural network increases,
the classification accuracy also increases. It demonstrates our pro-

359

Table 3: Classification error rates on the benchmark datasets (error rates are in %). Models: SVM-RBF: SVM with RBF kernels.
SVM-Poly: SVM with polynomial kernels. NNet: (MLP) Feed-forward neural net. GSM: Gated softmax classifier. NonGSM: Non-
factored gated softmax classifier. SAA-3: Three-layer stacked auto-associator. RBM: Restricted boltzmann machine. SUGAR-3:
Three-layer stacked SUGAR. The results of SVM-RBF, SVM-Poly, NNet, SAA-3 and RBM are taken from [15], GSM and NonGSM
results from [18]. The best results obtained by all these models are marked in bold.

Dataset/Model: SVM-RBF SVM-Poly NNet GSM NonGSM SAA-3 RBM SUGAR-3
Rectangles 02.15 02.15 07.16 0.83 0.56 02.41 04.71 03.49
RectImg 24.04 24.05 33.20 22.51 23.17 24.05 23.69 22.55
Convex 19.13 19.82 32.25 17.08 21.03 18.41 19.92 17.00
MNISTBasic 03.03 03.69 04.69 03.70 03.98 03.46 03.94 03.47
MNISTRot 11.11 15.42 18.11 11.75 16.15 10.30 14.69 9.53
MNISTRand 14.58 16.62 20.04 10.48 11.89 11.28 09.80 11.40
MNISTImg 22.61 24.01 27.41 23.65 22.07 23.00 16.15 20.65
MNISTRotImg 55.18 56.41 62.16 55.82 55.16 51.93 52.21 49.40
Average 18.98 20.27 25.63 18.23 19.25 18.11 18.14 17.19

Rectangles RectImg Convex MNISTBasic MNISTRot MNISTRand MNISTImg MNISTRotImg

Dataset

0

5

10

15

20

25

30

35

40

45

50

55

60

C
la

ss
ifi

ca
tio

n
er

ro
r(

%
)

SUGAR-1
SUGAR-2
SUGAR-3
SAA-3

Figure 9: Classification error rates on eight benchmark classi-
fication tasks. SUGAR-3 appears to achieve performance su-
perior or equivalent to SAA-3 on all problem except Rectan-
gles. Notably, SUGAR-2 outperforms SAA-3 in three of the
eight datasets.

posed model can learn more meaningful representations with deep
neural networks. In most cases, stacking 3 layers of SUGAR seems
to be better than stacking 3 layers of autoencoders in SAA-3.

Table 3 reports the classification perfomance obtained on eight
deep learning benchmark datasets using SUGAR-3 as well as some
state-of-the-art models. It indicates that SUGAR-3 performs well
on all datasets. We see that SUGAR-3 outperforms the baseline
SVM-RBF, as well as SVM-Poly in six out of 8 cases (except for
Rectangles and MNISTbasic). The similar results can be found on
the baseline GSM and NonGSM. It is among the best (within 0.04
tolerance), or the best performer, in four out of 8 cases. Intuitively,
we also gave the average classification error rates of there models
on all datasets. It is relatively from 1.12% up to 11.35% higher
classification accuracy than these models, which demonstrates that
the proposed model has a best classification ability in average.

4. CONCLUSIONS
To the best of our knowledge, most of the existing deep learning

methods operate in the purely unsupervised manner or supervised
manner. In this paper, we proposed a novel supervised deep learn-
ing model. Each layer includes a SUGAR, which is consisting of
a main network, an auxiliary network, and a bridge. SUGAR reg-
ularizes the learnt networks by pairwise similarity or dissimilarity
constraints among data. At the same time, the sparse regulariza-

tion is employed, all of which make SUGAR produce good, sparse
and robust representations, and therefore effectively improve deep
networks with higher accuracy. The superiority of SUGAR is con-
firmed on MNIST digits and eight benchmark classification tasks.
Further, SUGAR can be easily extended and used with the denois-
ing autoencoder or the contractive autoencoder. It is demonstrated
to provide a good guidance. Finally, the comprehensive experi-
ments on the deep model show that it achieves performance su-
perior to the existing state-of-the-art models on four out of eight
datasets. All of these demonstrate that SUGAR can learn good fea-
ture representations for classification tasks.

Acknowledgments
The work is partly supported by a grant from China 973 Funda-
mental R&D Program (No.2014CB340304).

5. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117–122, Jan. 2008.

[2] Y. Bengio. Learning deep architectures for AI. Foundations
and trends R© in Machine Learning, 2(1):1–127, 2009.

[3] Y. Bengio. Deep learning of representations: Looking
forward. In A.-H. Dediu, C. Martín-Vidie, R. Mitkov, and
B. Truthe, editors, Statistical Language and Speech
Processing, volume 7978 of Lecture Notes in Computer
Science, pages 1–37. Springer Berlin Heidelberg, 2013.

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. Advances in
neural information processing systems, 19:153, 2007.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

[6] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1,
pages 539–546 vol. 1, June 2005.

[7] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer
networks in unsupervised feature learning. In International
Conference on Artificial Intelligence and Statistics, pages
215–223, 2011.

360

[8] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A.-r. Mohamed, and
G. E. Hinton. Binary coding of speech spectrograms using a
deep auto-encoder. In INTERSPEECH, pages 1692–1695.
Citeseer, 2010.

[9] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol,
P. Vincent, and S. Bengio. Why does unsupervised
pre-training help deep learning? J. Mach. Learn. Res.,
11:625–660, Mar. 2010.

[10] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In International
Conference on Artificial Intelligence and Statistics, pages
249–256, 2010.

[11] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[12] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[13] A. Hyvärinen, P. O. Hoyer, and M. Inki. Topographic
independent component analysis. Neural computation,
13(7):1527–1558, 2001.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[15] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and
Y. Bengio. An empirical evaluation of deep architectures on
problems with many factors of variation. In Proceedings of
the 24th international conference on Machine learning,
ICML ’07, pages 473–480, New York, NY, USA, 2007.
ACM.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[17] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages
9–50. Springer, 1998.

[18] R. Memisevic, C. Zach, M. Pollefeys, and G. E. Hinton.
Gated softmax classification. In Advances in Neural
Information Processing Systems, pages 1603–1611, 2010.

[19] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in
kernel space. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 3344–3351, June
2010.

[20] M. A. Ranzato and M. Szummer. Semi-supervised learning
of compact document representations with deep networks. In
Proceedings of the 25th international conference on Machine
learning, ICML ’08, pages 792–799, New York, NY, USA,
2008. ACM.

[21] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio,
Y. Dauphin, and X. Glorot. Higher order contractive
auto-encoder. In Proceedings of the 2011 European
conference on Machine learning and knowledge discovery in
databases - Volume Part II, ECML PKDD’11, pages
645–660, Berlin, Heidelberg, 2011. Springer-Verlag.

[22] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio.
Contractive auto-encoders: Explicit invariance during feature
extraction. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages
833–840, 2011.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature,
323(6088):533–536, Oct. 1986.

[24] J. Snoek, R. P. Adams, and H. Larochelle. Nonparametric
guidance of autoencoder representations using label
information. J. Mach. Learn. Res., 13(1):2567–2588, Sept.
2012.

[25] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D.
Manning. Semi-supervised recursive autoencoders for
predicting sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 151–161, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[26] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international
conference on Machine learning, ICML ’08, pages
1096–1103, New York, NY, USA, 2008. ACM.

[27] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 11:3371–3408, Dec. 2010.

[28] F. Wang and C. Zhang. Feature extraction by maximizing the
average neighborhood margin. In Computer Vision and
Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,
pages 1–8, June 2007.

[29] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for scalable image retrieval. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 3424–3431, 2010.

[30] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
Advances in neural information processing systems, pages
1753–1760, 2008.

[31] Z. Wen and W. Yin. A feasible method for optimization with
orthogonality constraints. Mathematical Programming,
142(1-2):397–434, 2013.

[32] Y. Yang, G. Shu, and M. Shah. Semi-supervised learning of
feature hierarchies for object detection in a video. In
Computer Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 1650–1657. IEEE, 2013.

361

