
Incremental and Decremental Training for Linear
Classification

Cheng-Hao Tsai
Dept. of Computer Science

National Taiwan Univ., Taiwan
r01922025@csie.ntu.edu.tw

Chieh-Yen Lin
Dept. of Computer Science

National Taiwan Univ., Taiwan
r01944006@csie.ntu.edu.tw

Chih-Jen Lin
Dept. of Computer Science

National Taiwan Univ., Taiwan
cjlin@csie.ntu.edu.tw

ABSTRACT
In classification, if a small number of instances is added or
removed, incremental and decremental techniques can be
applied to quickly update the model. However, the design
of incremental and decremental algorithms involves many
considerations. In this paper, we focus on linear classifiers
including logistic regression and linear SVM because of their
simplicity over kernel or other methods. By applying a warm
start strategy, we investigate issues such as using primal or
dual formulation, choosing optimization methods, and creat-
ing practical implementations. Through theoretical analysis
and practical experiments, we conclude that a warm start
setting on a high-order optimization method for primal for-
mulations is more suitable than others for incremental and
decremental learning of linear classification.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

Keywords
warm start; incremental learning; decremental learning; lin-
ear classification

1. INTRODUCTION
In supervised learning, when a small amount of data is

added or removed, the classification model may not change
much. Therefore, incremental and decremental algorithms
are useful to update the model without re-training the prob-
lem from scratch. However, the design of good incremental
and decremental learning algorithms is never easy. First,
they are often extended from a standard learning method,
but the resulting procedure may become very complicated.
Second, applying incremental and decremental algorithms is
not guaranteed to be faster than re-training the data from
scratch. Third, the scenarios to use incremental and decre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623661.

mental learning may significantly vary according to applica-
tions, so designing software for general use is difficult.

In this paper, we study incremental and decremental algo-
rithms for logistic regression (LR) and linear support vector
machine (SVM). The decision to work on linear rather than
kernel classifiers comes from a long journey of attempting to
support incremental and decremental learning in our SVM
software LIBSVM [4]. Although many users have requested
this function and some studies have been conducted, we were
hampered by two difficulties. First, extending the commonly
used decomposition methods to flexibly enlarge or shrink the
cached kernel elements during training is complicated. Note
that adding or removing data causes a “two-dimensional”
change of rows and columns of the kernel matrix. Second,
existing extensions of decomposition methods for incremen-
tal or decremental learning may not effectively reduce the
running time. Recently, in contrast to using kernels, linear
classification has been shown to give comparable accuracy
on some applications (see, e.g., a survey in [19]). The popu-
larity of linear classification has motivated us to study incre-
mental and decremental learning again. However, the goal
becomes to support this functionality in another software
LIBLINEAR [8] for large-scale linear classification.

We point out that the difficulties occurred in incremental
and decremental learning for kernel classifiers may be al-
leviated for linear classifiers because more optimization al-
gorithms are applicable. For kernel classifiers, it is rather
restrictive to design optimization algorithms because the
model is represented by a linear combination of training in-
stances. Therefore, the optimization problem must be de-
signed to find coefficients for this linear combination. In
contrast, as we will explain in Section 2, there are more op-
tions in solving optimization problems for linear classifiers.
We show that this difference between linear and kernel clas-
sifiers strongly affects their extensions to incremental and
decremental training.

In Section 3, we apply a warm start strategy for incre-
mental and decremental training of linear classification. The
optimal solution of training past data is modified as an ini-
tial solution for solving the new problem after data addition
or removal. We consider in Section 4 three representative
optimization algorithms for linear classification. They differ
in several aspects such as solving primal or dual formula-
tion, and using first-order (i.e., gradient) or second-order
information of the optimization problem. Our main find-
ings are that the warm start setting is in general more ef-
fective to improve the primal initial solution than the dual
and that the warm start setting more effectively speeds up

343

a high-order optimization method than a low-order one. Af-
ter addressing some implementation issues, we have suc-
cessfully finished an extension of the software LIBLINEAR
for incremental and decremental learning. It is available at
http://www.csie.ntu.edu.tw/~cjlin/papers/ws.

This paper is organized as follows. In Section 2, we show
the formulations of SVM and LR, and discuss existing meth-
ods for incremental and decremental learning. In Section
3, we propose a warm start setting, followed by analyzing
the difference between using primal and dual forms. The
comparison between high-order and low-order optimization
methods is described in Section 4. In Section 5, we dis-
cuss implementation issues for building a solid tool. Exper-
iments are presented in Section 6. Section 7 concludes our
work. Supplementary materials with additional results and
programs for experiments are also available at the above-
mentioned web site.

2. SVM, LR, AND THEIR INCREMENTAL
AND DECREMENTAL TRAINING

Assume we are given (label, feature-vector) pairs of train-
ing data (yi,xi) ∈ {−1, 1} × Rn, i = 1, . . . , l. Linear classi-
fication involves the following optimization problem.

min
w

f(w) where f(w)≡ 1

2
wTw+C

∑l

i=1
ξ(w;xi, yi). (1)

where ξ(w;xi, yi) is the loss function and C is a user-specified
parameter. Common loss functions include

ξL1(w;xi, yi) ≡ max(0, 1− yiwTxi), (2)

ξL2(w;xi, yi) ≡ max(0, 1− yiwTxi)
2, and (3)

ξLR(w;xi, yi) ≡ log(1 + e−yiw
Txi). (4)

If (2) or (3) is used, then problem (1) is SVM [1, 7]. If
(4) is used, then we have logistic regression. The three loss
functions in (2)-(4) have different differentiability.

L1 loss: not differentiable
L2 loss: differentiable but not twice differentiable
LR loss: twice differentiable

Many convex optimization methods have been considered to
find the optimal w. Alternatively, from optimization theory
or the representer theorem [12], the optimal w is a linear
combination of training instances with coefficients α.

w =
∑l

i=1
yiαixi. (5)

Then we can instead solve an optimization problem over α.
A common way is to derive the dual problem of (1).

max
α

fD(α) ≡
l∑

i=1

h(αi, C)− 1

2

l∑
i=1

l∑
j=1

αiαjK(i, j)−
l∑

i=1

α2
i

2
d

subject to 0 ≤ αi ≤ U,∀i = 1, . . . , l, (6)

where K(i, j) = yiyjx
T
i xj and

U =

{
C

∞
d =

{
0 for L1-loss SVM and LR,
1
2C

for L2-loss SVM.

Further, h(αi, C) ={
αi for L1-loss and L2-loss SVM,

C logC − αi logαi − (C − αi) log(C − αi) for LR.

We define 0 log 0 = 0, so

h(0, C) = 0 (7)

for all three losses. Besides (6), the dual problem can also
be represented by the following matrix form.

max
α

∑l

i=1
h(αi, C)− 1

2
αT Q̄α

subject to 0 ≤ αi ≤ U,∀i = 1, . . . , l, (8)

where Q̄ = Q+D ∈ Rl×l, Qij = K(i, j), and D is diagonal
with Dii = d,∀i. We refer to (1) as the primal problem.

We briefly discuss the difference between linear and kernel
classifiers. A kernel classifier maps data to a high (maybe in-
finite) dimensional space, so problem (1) cannot be directly
solved. Instead, by kernel tricks we solve an optimization
problem of α like (6).1 In contrast, for linear classifiers, it
is more flexible to design optimization algorithms because
we can solve problems of w or α. We will show in Section 3
that this difference between linear and kernel classifiers has
an impact on their incremental and decremental training.

2.1 Existing Methods
Most existing studies on incremental or decremental train-

ing focus on kernel rather than linear classifiers. By consid-
ering the dual problem of kernel SVM, [3] and subsequent
works [9, 11, 13, 16] investigate how to maintain the opti-
mality condition when data are slightly changed. Note that
at an optimum, all αi ∈ (0, U) correspond to the solution of
a linear system. They propose methods to quickly identify
these αi’s for the new data and efficiently solve the linear
system. A kernel sub-matrix is required to be enlarged or
shrunk. Careful implementations are essential as we can see
that [13] wrote “incremental SVM may not be so easy to
implement.” The only work known to us that solves the pri-
mal problem is [14]. They propose a Newton method for
both kernel and linear SVM. However, their method is not
scalable because matrix inversions are needed.

3. INCREMENTAL AND DECREMENTAL
LEARNING WITH WARM START

We consider a warm start setting by adjusting the optimal
solution before data change as the initial solution of the new
optimization problem. Because optimization algorithms are
iterative procedures, we hope that a good initial solution can
reduce the number of iterations to save the training time.
Let

(yi,xi), i = 1, . . . , l

be the original training set, and w∗ and α∗ be optimal so-
lutions of the primal and the dual problems, respectively.
For the primal problem with the variable w, the number of
variables is independent of data change because w’s size is
the same as the number of features. Therefore, w∗ can be
directly used such that

w̄ ≡ w∗

is the new initial solution. In contrast, if a dual problem is
used, α’s size is changed after data addition or removal. For
incremental learning, we assume

(yi,xi), i = l + 1, . . . , l + k
1 Besides (6), other optimization problems over α may be
considered; see, for example, [6].

344

http://www.csie.ntu.edu.tw/~cjlin/papers/ws

are instances being added, and the following ᾱ is considered
as the initial dual solution.

ᾱ = [α∗
1, . . . , α

∗
l , 0, . . . , 0]T ∈ R(l+k)×1.

For ᾱl+1, . . . , ᾱl+k, any value in [0, U] can be chosen to en-
sure the feasibility. Because it is unclear which value is the
best, we simply consider the zero value. For decremental
learning, we assume instances

(yi,xi), i = 1, . . . , k

are removed, and consider the following feasible ᾱ as the
initial dual solution.

ᾱ = [α∗
k+1, . . . , α

∗
l]T . (9)

We hope that an initial solution closer to the optimum
helps to reduce the running time. Subsequently, we check
the initial objective values of solving the primal and the dual
problems. A finding is that the primal initial point is closer
to the optimal point if the change of data is not significant.

3.1 Initial Values for Incremental Learning
The optimization problem after considering new data is

min
w

1

2
wTw + C

∑l+k

i=1
ξ(w;xi, yi). (10)

The primal and dual initial values are, respectively,

1

2
w̄T w̄+C

∑l

i=1
ξ(w̄;xi, yi)+C

∑l+k

i=l+1
ξ(w̄;xi, yi) (11)

and

l∑
i=1

h(α∗
i , C) +

l+k∑
i=l+1

h(0, C)− 1

2

[
α∗T 0T

] [
Q̄

...
· · ·

] [
α∗

0

]
=

1

2
w̄T w̄ + C

∑l

i=1
ξ(w̄;xi, yi), (12)

where (12) comes from (7), and the property of same primal
and dual optimal values in training the original set. Then

dual initial value ≤ new optimal objective value

≤ primal initial value

because w̄ and ᾱ are feasible solutions of the new primal
and dual problems, respectively.

We argue that the primal initial value is usually closer
to the optimal objective value of the new problem than the
dual. A scaled form of problem (1) is

min
w

1

2Cl
wTw +

1

l

∑l

i=1
ξ(w;xi, yi), (13)

which minimizes the average loss with regularization. If the
original and new data points follow a similar distribution,
and the original optimal solution w∗ describes the average
loss well, then the optimal w of (10) should be similar to
w∗. Therefore, (11) may be a good approximation of the
new optimal objective value.

For the dual initial objective value, from (10)-(12), we
suspect that it may be far away from the new optimal value
because of lacking the following term

C
∑l+k

i=l+1
ξ(w̄;xi, yi).

One may question the above conclusion on the superiority
of the primal initial value by claiming that the regularization

parameter C must be adjusted for a larger training set. That
is, to keep the same amount of total training losses, the
following optimization problem can be considered.

min
w

1

2
wTw + ∆IC

∑l+k

i=1
ξ(w;xi, yi),

where ∆I = l/(l + k). The corresponding dual problem is

max
α

l+k∑
i=1

h(αi,∆IC)− 1

2

l+k∑
i=1

l+k∑
j=1

αiαjK(i, j)−
l+k∑
i=1

α2
i

2

d

∆I

subject to 0 ≤ αi ≤ U,∀i = 1, . . . , l + k. (14)

For LR and L1-loss SVM, the upper bound U becomes

U = ∆IC. (15)

We then consider the following initial solutions

primal: w̄ dual: ∆Iᾱ. (16)

We must scale ᾱ because of the new upper bound in (15),
but w̄ can still be used without modification. We have

new optimal objective value

≤ primal initial value (17)

=
1

2
w̄T w̄ + ∆IC

∑l

i=1
ξ(w̄;xi, yi) + ∆IC

∑l+k

i=l+1
ξ(w̄;xi, yi).

Further,

dual initial value =
∑l+k

i=1
h(∆I ᾱi,∆IC)

− 1

2

(∑l+k

i=1

∑l+k

j=1
∆I ᾱi∆I ᾱjK(i, j) +

∑l+k

i=1
(∆I ᾱi)

2 d

∆I

)
=∆IC

∑l

i=1
ξ(w̄;xi, yi) +

l(l + 2k)

2(l + k)2
w̄T w̄, (18)

where details of deriving (18) are in Appendix. Because

l(l + 2k)

2(l + k)2
≤ 1

2
and ∆IC

l+k∑
i=l+1

ξ(w̄;xi, yi) is lacked, (19)

(18) tends to be too small. Thus, even if the parameter
C has been adjusted, the dual initial solution may still be
farther away from the optimum than the primal. In Section
6, we will conduct experiments to confirm our findings.

3.2 Initial Values for Decremental Learning
The optimization problem after data removal is

min
w

1

2
wTw + C

∑l

i=k+1
ξ(w;xi, yi). (20)

The corresponding dual problem is

max
α

l∑
i=k+1

h(αi, C)− 1

2

l∑
i=k+1

l∑
j=k+1

αiαjK(i, j)−
l∑

i=k+1

α2
i

2
d

subject to 0 ≤ αi ≤ U,∀i = k + 1, . . . , l. (21)

Using the initial points defined in (9), the primal and dual
initial objective values are, respectively,

1

2
w̄T w̄ + C

∑l

i=k+1
ξ(w̄;xi, yi) (22)

345

and

l∑
i=k+1

h(α∗
i , C)− 1

2

(l∑
i=k+1

l∑
j=k+1

α∗
iα

∗
jK(i, j) +

l∑
i=k+1

(α∗
i)2d

)
=

1

2
w̄T w̄ + C

∑l

i=k+1
ξ(w̄;xi, yi)

− 1

2

∑k

i=1

∑k

j=1
α∗
iα

∗
jK(i, j). (23)

Details are in Appendix. Similar to (10), we have

dual initial value ≤ new optimal objective value

≤ primal initial value

because w̄ and ᾱ are feasible solutions of the new primal
and dual problems, respectively.

For decremental learning, we can also argue that the pri-
mal initial objective value is usually closer than the dual to
the optimal objective value of the new problem. By (1),
(20), and the same explanation for incremental learning,
if not many data are removed, the optimal w should not
change significantly. In contrast, because of the

−1

2

∑k

i=1

∑k

j=1
α∗

iα
∗
jK(i, j).

term in (23), the dual initial objective value should be less
close to the new optimal value.

Like incremental learning, we discuss the situation of ad-
justing the parameter C to maintain a similar total training
loss. The following optimization problem is considered.

min
w

1

2
wTw + ∆DC

∑l

i=k+1
ξ(w;xi, yi),

where ∆D = l/(l − k). The dual problem is the same as
(21) except that C becomes ∆DC, d becomes d/∆D, and
U = ∆DC for L1-loss SVM and LR. Like (16), the following
initial solutions can be used.

primal: w̄ dual: ∆Dᾱ.

For initial objective values, we have

new optimal objective value (24)

≤ primal initial value =
1

2
w̄T w̄ + ∆DC

∑l

i=k+1
ξ(w̄;xi, yi)

and

dual initial value =
∑l

i=k+1
h(∆Dα

∗
i ,∆DC)−

1

2

∑l

i=k+1

∑l

j=k+1
∆2

Dα
∗
iα

∗
jK(i, j)−

∑l

i=k+1
(∆Dα

∗
i)2

d

2∆D

=
1

2
w̄T w̄ + ∆DC

l∑
i=k+1

ξ(w̄;xi, yi)−
∆D

2

k∑
i=1

k∑
j=1

α∗
iα

∗
jK(i, j)

− ∆2
D−∆D

2

l∑
i=k+1

l∑
j=k+1

α∗
iα

∗
jK(i, j) +

∆D−1

2
w̄T w̄, (25)

where the details of (25) are in supplementary materials
because of space limitation. If not many data are removed,
∆D ≈ 1 and the last two terms in (25) are close to zero.
Then the difference between (24) and (25) is similar to that
between (22) and (23) without changing C. Therefore, even
if the regularization parameter has been adjusted, the dual
initial solution tends to be farther away from the optimum
than the primal.

timed
is

ta
n
ce

to
o
p
ti

m
u
m

◦ ×

(a) Linear convergence

timed
is

ta
n
ce

to
o
p
ti

m
u
m

◦ ×

(b) Superlinear or
quadratic convergence

Figure 1: An illustration on how optimization meth-
ods may affect the effectiveness of a warm start set-
ting. The y-axis is log-scaled. ◦: initial solution ×:
optimum. The dashed horizontal line indicates the
initial distance to the optimum.

4. OPTIMIZATION METHODS AND INCRE-
MENTAL/DECREMENTAL LEARNING

The effectiveness of a warm start strategy may be strongly
related to the optimization method. We use Figure 1 to
illustrate this point. If an initial solution is close to the
optimum, then a high-order optimization method may be
advantageous because of the fast final convergence; see Fig-
ure 1(b). Therefore, higher-order methods such as quasi
Newton or Newton may be preferred for incremental and
decremental learning.

Interestingly, for linear classification, lower-order methods
such as stochastic gradient (SG) or coordinate descent are
more commonly used than high-order methods. The reason
is that low-order methods can quickly return a useful model.
On the contrary, a high-order method like Newton methods
may take considerable time to finish the first few iterations
for obtaining an approximate solution.

To investigate if high-order methods become useful for
incremental and decremental learning, in the rest of this
section, we briefly describe three methods that will be de-
tailedly compared in Section 6.
- Newton method to solve the primal problem.
- Coordinate descent method to solve the primal problem.
- Coordinate descent method to solve the dual problem.
The Newton method uses second-order information, while
the coordinate descent method considers only gradient (i.e.,
first order) information.

4.1 Solving Primal Problem by a Trust Re-
gion Newton Method

We consider the Newton method in LIBLINEAR to solve
the primal problem (1). It is a trust region Newton (TRON)
method developed in [15]. Because differentiability is re-
quired, this method is not applicable to L1-loss SVM.

At current iterate w, TRON obtains an approximate New-
ton step d within the trust region by solving the following
sub-problem.

min
d

q(d) subject to ‖d‖2 ≤ ∆, (26)

where q(d) ≡ ∇f(w)Td+
1

2
dT∇2f(w)d

is an approximation of f(w+d)− f(w) and ∆ is the size of
the trust region. Afterward by checking the ratio between

346

real function value reduction f(w + d) − f(w) and the es-
timated reduction q(d), TRON decides if w should be up-
dated and then adjusts the current trust region ∆. The sub-
problem (26) is solved by the conjugate gradient method, so
matrix inversion is not needed. For LR, whose objective
function is twice differentiable, [15] shows that TRON has
quadratic convergence.

4.2 Solving Primal Problem by a Coordinate
Descent Method

We consider the coordinate descent method in [5] to solve
the primal problem (1). This method updates one compo-
nent wi of w at a time.

wi ← wi + arg min
d
f(w + dei), (27)

where ei ≡ [0, . . . , 0, 1, 0, . . . , 0]T is zero except the ith el-
ement. The work [5] applies a Newton method to approx-
imately solve the one-variable sub-problem in (27), which
does not have a closed-form solution. Their approach, ap-
plicable to L2-loss SVM and LR, requires only ∇if(w) and
∇2

iif(w) at each step. Therefore, this method is a low-order
one in compared with TRON that needs the whole Hessian
matrix. The linear convergence is established in [5]. We
refer to this method as PCD.

4.3 Solving Dual Problem by a Coordinate De-
scent Method

For solving dual problem (6), we consider the coordinate
descent methods in [10, 18] that update αi at a time by

αi ← min
(

max
(
αi + arg min

d
fD(α+ dei), 0

)
, U
)
, (28)

where fD(·) is the dual objective function. A difference
between (28) and (27) is that in (28) we must ensure the new
αi is in [0, U]. The one-variable problem in (28) has a closed-
form solution for L1-loss and L2-loss SVM, but for LR, we
need an optimization procedure to obtain an approximate
solution. It is shown in [10, 17] that this dual coordinate
descent method linearly converges.

5. IMPLEMENTATION ISSUES
Although warm start is a simple strategy, its implementa-

tion may be complicated. Recall in Section 1 we mentioned
that the need to maintain the kernel cache is the main obsta-
cle for us to support incremental and decremental learning in
the kernel SVM software LIBSVM. Now for linear classifica-
tion, although the implementation is more straightforward,
many issues still need to be addressed in this section.

We begin with checking if additional information must be
maintained in the model after training. If the primal prob-
lem is considered, then w̄ is readily available because the
previously obtained w must be stored for prediction. In
contrast, the dual solution α is not maintained in a linear
classifier even if a dual-based solver is used. The reason
is because we can generate and store w by (5) for predic-
tion. Therefore, to employ a dual solver for incremental and
decremental learning, α must be additionally stored. Un-
fortunately, maintaining α is a complicated task because of
the following concerns on the correspondence between α and
data instances.
- If new instances are randomly inserted into the existing

set, it is difficult to maintain the mapping between α and

Table 1: Data statistics: Density is the average
ratio of non-zero features per instance.

Data set l: #instances n: #features density
ijcnn 49,990 22 41.37%
webspam 350,000 254 33.51%
news20 19,996 1,355,191 0.03%
rcv1 20,242 47,236 0.16%
real-sim 72,309 20,958 0.24%
yahoo-japan 140,964 832,026 0.16%

instances. Similarly, for decremental learning, the indices
of removed instances must be known, though in practice
this information may not be available.

- The task of multi-class classification is often decomposed
to several binary classification problems, so a set of α vec-
tors must be maintained. The storage cost can be high
if both numbers of instances and classes are large. Fur-
ther, if each binary problem involves a subset of data
(e.g., the one-against-one approach for multi-class classifi-
cation), the above-mentioned problem of mapping α and
data occurs.

Therefore, the implementation of dual solvers with warm
start is more complicated than that of primal solvers.

Stopping conditions of optimization algorithms are an-
other implementation issues because some relative condi-
tions depend on the initial point. For example, the TRON
implementation in LIBLINEAR employs the following condi-
tion.

‖∇f(wk)‖2
‖∇f(w0)‖2

≤ ε · min(l+, l−)

l
, (29)

where w0 is the initial point, wk is the current iterate, ε
is the user-specified stopping tolerance, and l+ and l− are
numbers of positive and negative data, respectively. For
standard linear classification, in general w0 = 0 is used.
However, with a warm start setting, the initial w0 is better
than 0, so a smaller ‖∇f(w0)‖2 appears in the denomina-
tor in (29). Then the stopping condition becomes too strict
under the same ε. To address this problem, in our imple-
mentation, ‖∇f(w0)‖2 in (29) is fixed to be ‖∇f(0)‖2.

6. EXPERIMENTS
In this section, we experimentally compare primal and

dual solvers with the warm start strategy. We consider data
sets ijcnn, webspam, news20, rcv1, real-sim and yahoo-japan,
where details are shown in Table 1. All sets except yahoo-
japan are available at LIBSVM data set.2 All the experiments
are conducted on a 2.50 GHz computer with 16 GB of RAM.

To evaluate methods for incremental learning, we ran-
domly divide each data set to r parts so that

r − 1 parts as original data, and
1 part as new data.

Therefore, the solution of training the r − 1 parts is used
to construct the initial point for training the whole set of
r parts. We consider r = 5, 50 and 500 to investigate the
effectiveness of the warm start method under different levels
of data changes. Note that a larger r means a smaller in-
crease of the data. Our setting ensures that the enlarged set
remains the same regardless of different r values. We need

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

347

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

this property so in figures for comparison only one curve is
drawn for the approach without a warm start setting. For
decremental learning, we use the following setting to ensure
that the reduced set is the same regardless of r. We split
1/5 data to r parts and have

4/5 data + 1 part of 1/5 data as the original data and
4/5 data as the reduced set.

Our evaluation is by the relative difference to the optimal
function value:

|f(w)− f(w∗)

f(w∗)
| and |f

D(α)− fD(α∗)

fD(α∗)
| (30)

for primal- and dual-based algorithms, respectively. Note
that optimal w∗ and α∗ are not available, so we obtain their
approximations by running a huge number of iterations of
optimization methods.

6.1 Analysis on Initial Values
In Sections 3.1 and 3.2, we discuss properties of primal

and dual initial solutions. To confirm our analysis, Table
2 shows the relative difference between initial and optimal
function values for incremental and decremental learning.
We check two values of the regularization parameter: C =
1 and C = 128. Because of space limitation, we consider
only logistic regression, although results for l2-loss SVM (in
Tables III and IV of supplementary materials) are similar.3

As a comparison, we include results without the warm start
setting by using w = 0 and α = 0 as initial points for
primal- and dual-based methods, respectively. Note that
fD(0) = 0, so

|f
D(0)− fD(α∗)

fD(α∗)
| = 1.

In contrast, primal f(0) is larger. For example, for logistic
loss, f(0) = Cl log(2). Therefore, without a warm start set-
ting, the primal initial point is far away from the optimal
solution. This situation can be clearly seen in Table 2.

We further make the following observations. First, from
results of each row of Table 2, the warm start setting signif-
icantly reduces the distance from the primal initial solution
to the optimum. In contrast, the improvement on the dual
initial solution is only modest.

Second, with the warm start setting, if C = 1, the distance
of the primal initial solution to the optimum is smaller than
that of the dual. In particular, for data with a small number
of features (e.g., ijcnn), the primal initial solution is very
close to the optimum. This result confirms the calculation
in Sections 3.1 and 3.2. However, the difference becomes
smaller for some sparse data (e.g., news20). An explanation
is that because of more features, more instances are needed
to have a stable optimal w.

Third, if a larger C = 128 is used, the superiority of the
primal initial solution becomes less clear. For sparse data,
it is sometimes worse than the dual initial solution under
the incremental learning scenario. This result is reasonable
because a large C causes a better fitting of the original data.
Then the solution w is sensitive to the increase of data.
However, we notice that for these data sets, a large C is
often not needed. Interestingly, for decremental learning
with a large C, the primal initial point is competitive for

3We did not consider L1-loss SVM here because our primal-
based optimization methods require the differentiability of
the objective function.

sparse data. The reason might be that the remained data
have been used in training the original set. In contrast, for
incremental learning, some unseen instances are added to
form the new training set.

Finally, we observe that under a larger r both primal and
dual initial solutions are closer to the optimum. This result
follows from our setting that a larger r implies a smaller
change of the data. If the change of data is minor, then
the initial solution w̄ or ᾱ is almost good enough to be a
model for the modified problem. For example, even under
r = 5, if C = 1 and the primal-based algorithm TRON is
used for incremental learning, the default stopping condition
of LIBLINEAR is reached within two Newton iterations for
all data sets except webspam.

6.2 Comparison of Optimization Methods for
Incremental and Decremental Learning

In Figures 2 and 3, we compare the three optimization
methods discussed in Section 4. Each sub-figure shows the
relationship between the training time and the relative dif-
ference to the optimal function value; see (30). Because of
space limitation, we present results of only logistic regres-
sion and leave the results of L2-loss SVM in supplementary
materials. We can make the following observations.

First, the warm start strategy is useful regardless of op-
timization methods. If data are not significantly changed
(i.e., larger r), the improvement is dramatic.

If without applying warm start, DCD is the fastest among
the three optimization methods. This situation has been
know from earlier works such as [10]. However, with warm
start settings TRON becomes competitive. Generally TRON
benefits more from warm start than DCD. For example, in
Figure 2(b), if r = 500, to reach 10−8 relative difference,
the warm start strategy reduces the DCD’s training time
from 4.5 to 3 seconds, while TRON’s training time from 40
to around 10 seconds. This result confirms our conjecture
in Figure 1 that warm start strategies are more helpful for
high-order optimization methods.

Although the warm start setting significantly improves the
training speed of TRON for solving the primal problem, from
Figures 2 and 3, DCD is still faster in general. Past works
(e.g., [10]) have shown that DCD may become inferior to
TRON if C is larger or feature values are in a large numerical
range. In Figures I and II of supplementary materials, we
present results of using C = 128. For data such as ijcnn,
webspam, rcv1 and real-sim, we can clearly see that TRON is
generally faster than DCD.

The two primal-based methods (PCD and TRON) share
the same initial point. PCD quickly decreases the function
value, but becomes slow in the end. In contrast, TRON is
overall superior because of fast final convergence.

7. CONCLUSIONS
This research has lead to an extension of LIBLINEAR for

incremental and decremental learning. Currently we choose
TRON as the underlying solver because of the following re-
sults obtained in this research work.
- The warm start setting generally gives a better primal

initial solution than the dual (Section 3).
- The warm start setting more effectively speeds up a high-

order optimization method such as TRON (Section 4).
- For implementation, a primal-based method is more straight-

forward than a dual-based method (Section 5).

348

Table 2: Relative objective value difference between the initial point and the optimal solution. Logistic
regression is considered. wo-ws: without warm start. The better value between primal and dual is boldfaced.

Data set Formulation C = 1 C = 128
wo-ws r = 5 r = 50 r = 500 wo-ws r = 5 r = 50 r = 500

ijcnn
Primal 2.4e+00 3.4e−04 2.2e−05 1.3e−06 2.5e+00 4.0e−04 2.5e−05 1.4e−06
Dual 1.0e+00 1.9e−01 1.8e−02 1.2e−03 1.0e+00 1.9e−01 1.9e−02 1.2e−03

webspam
Primal 2.1e+00 1.2e−04 8.5e−06 1.4e−06 2.4e+00 2.7e−04 4.5e−05 2.9e−06
Dual 1.0e+00 1.9e−01 1.9e−02 2.1e−03 1.0e+00 2.0e−01 2.0e−02 2.3e−03

news20
Primal 1.3e+00 1.7e−02 1.3e−03 1.3e−04 2.5e+01 5.6e−01 4.6e−02 2.2e−03
Dual 1.0e+00 1.6e−01 1.4e−02 1.4e−03 1.0e+00 1.6e−01 1.3e−02 9.5e−04

rcv1
Primal 2.4e+00 1.4e−02 9.9e−04 1.5e−04 3.4e+01 8.2e−01 5.8e−02 1.7e−02
Dual 1.0e+00 1.5e−01 1.3e−02 1.7e−03 1.0e+00 2.0e−01 1.5e−02 2.1e−03

real-sim
Primal 3.8e+00 1.2e−02 1.1e−03 1.4e−04 3.4e+01 5.5e−01 5.9e−02 5.2e−03
Dual 1.0e+00 1.5e−01 1.4e−02 1.7e−03 1.0e+00 2.2e−01 2.2e−02 1.8e−03

yahoo-japan
Primal 2.4e+00 1.6e−02 1.3e−03 1.7e−04 1.1e+01 6.7e−01 5.9e−02 8.3e−03
Dual 1.0e+00 1.9e−01 1.8e−02 2.4e−03 1.0e+00 2.4e−01 2.2e−02 3.5e−03

(a) Incremental learning

Data set Formulation C = 1 C = 128
wo-ws r = 5 r = 50 r = 500 wo-ws r = 5 r = 50 r = 500

ijcnn
Primal 2.3e+00 3.3e−04 3.2e−05 1.9e−06 2.5e+00 4.1e−04 3.8e−05 2.1e−06
Dual 1.0e+00 4.6e−02 5.0e−03 2.2e−04 1.0e+00 4.2e+00 6.5e−01 2.5e−02

webspam
Primal 2.0e+00 1.1e−04 1.1e−05 1.9e−06 2.4e+00 2.6e−04 5.7e−05 4.5e−06
Dual 1.0e+00 1.0e−02 9.0e−04 9.1e−05 1.0e+00 3.5e−01 9.6e−02 9.3e−03

news20
Primal 1.2e+00 1.3e−02 1.5e−03 1.4e−04 2.3e+01 7.2e−02 8.2e−03 5.6e−04
Dual 1.0e+00 8.5e−03 8.2e−04 4.0e−05 1.0e+00 2.8e−01 3.9e−02 2.2e−04

rcv1
Primal 2.2e+00 1.1e−02 1.1e−03 1.7e−04 3.3e+01 1.1e−01 8.8e−03 1.7e−03
Dual 1.0e+00 3.6e−03 3.4e−04 3.6e−05 1.0e+00 4.6e−01 4.5e−02 7.8e−04

real-sim
Primal 3.5e+00 8.9e−03 1.1e−03 1.6e−04 3.4e+01 1.1e−01 1.2e−02 1.7e−03
Dual 1.0e+00 5.2e−03 6.3e−04 9.4e−05 1.0e+00 9.9e−01 8.5e−02 5.8e−03

yahoo-japan
Primal 2.3e+00 1.3e−02 1.4e−03 2.0e−04 1.2e+01 1.4e−01 1.4e−02 2.4e−03
Dual 1.0e+00 1.0e−02 1.1e−03 1.9e−04 1.0e+00 8.6e−01 1.1e−01 1.9e−02

(b) Decremental learning

With the release of the software, we hope feedbacks from
real applications can lead us to refine the methods for incre-
mental and decremental learning.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Council of Taiwan via the grant 101-2221-E-002-199-MY3.
The authors thank Chia-Hua Ho for fruitful discussion.

9. REFERENCES
[1] B. E. Boser, I. Guyon, and V. Vapnik. A training

algorithm for optimal margin classifiers. In COLT,
1992.

[2] L. Bottou and C.-J. Lin. Support vector machine
solvers. In Large Scale Kernel Machines. 2007.

[3] G. Cauwenberghs and T. Poggio. Incremental and
decremental support vector machine learning. In
NIPS. 2001.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM TIST, 2:27:1–27:27,
2011.

[5] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate
descent method for large-scale L2-loss linear SVM.
JMLR, 9:1369–1398, 2008.

[6] O. Chapelle. Training a support vector machine in the
primal. Neural Comput., 19:1155–1178, 2007.

[7] C. Cortes and V. Vapnik. Support-vector network.
MLJ, 20:273–297, 1995.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. JMLR, 9:1871–1874, 2008.

[9] S. Fine and K. Scheinberg. Incremental learning and
selective sampling via parametric optimization
framework for SVM. In NIPS. 2001.

[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi,
and S. Sundararajan. A dual coordinate descent
method for large-scale linear SVM. In ICML, 2008.

[11] M. Karasuyama and I. Takeuchi. Multiple incremental
decremental learning of support vector machines.
IEEE TNN, 21:1048–1059, 2010.

[12] G. S. Kimeldorf and G. Wahba. A correspondence
between Bayesian estimation on stochastic processes
and smoothing by splines. Ann. Math. Stat.,
41:495–502, 1970.

[13] P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller.
Incremental support vector learning: Analysis,
implementation and applications. JMLR, 7:1909–1936,
2006.

349

[14] Z. Liang and Y. Li. Incremental support vector
machine learning in the primal and applications.
Neurocomputing, 72(10):2249–2258, 2009.

[15] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region
Newton method for large-scale logistic regression.
JMLR, 9:627–650, 2008.

[16] A. Shilton, M. Palaniswami, D. Ralph, and A. C.
Tsoi. Incremental training of support vector machines.
IEEE TNN, 16:114–131, 2005.

[17] P.-W. Wang and C.-J. Lin. Iteration complexity of
feasible descent methods for convex optimization.
JMLR, 2014.

[18] H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate
descent methods for logistic regression and maximum
entropy models. MLJ, 85:41–75, 2011.

[19] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent advances
of large-scale linear classification. PIEEE,
100:2584–2603, 2012.

APPENDIX
Details of Deriving (18)

To begin, we show that for any constant ∆ > 0,

h(∆α,∆C) = ∆h(α,C). (31)

For L1 and L2 losses, h(α,C) = α, so (31) obviously holds.
For LR loss,

h(∆α,∆C)

=∆C log ∆C −∆α log ∆α− (∆C −∆α) log(∆C −∆α)

=∆C(log ∆ + logC)−∆α(log ∆ + logα)

−∆(C − α)(log ∆ + log(C − α))

=∆(C logC − α logα− (C − α) log(C − α)) = ∆h(α,C).

With ∆I = l/(l + k) defined in Section 3.1, we have

1

2
α∗T Q̄α∗ − ∆I

2
α∗T (Q+

D

∆I
)α∗ (32)

=
1

2
α∗T (Q+D)α∗ − ∆I

2
α∗T (Q+

D

∆I
)α∗ =

k

2(l + k)
α∗TQα∗.

Finally, we derive (18) in detail.

dual initial value =
∑l+k

i=1
h(∆I ᾱi,∆IC)

− 1

2

(∑l+k

i=1

∑l+k

j=1
∆I ᾱi∆I ᾱjK(i, j) +

∑l+k

i=1
(∆I ᾱi)

2 d

∆I

)
=∆I

(∑l+k

i=1
h(ᾱi, C)− ∆I

2
α∗T (Q+

D

∆I
)α∗

)
=∆I

(
1

2
w̄T w̄ + C

∑l

i=1
ξ(w̄;xi, yi)

+
1

2
α∗T Q̄α∗ − ∆I

2
α∗T (Q+

D

∆I
)α∗

)
=∆IC

∑l

i=1
ξ(w̄;xi, yi) +

∆I

2
w̄T w̄ +

∆Ik

2(l + k)
α∗TQα∗

=∆IC
∑l

i=1
ξ(w̄;xi, yi) +

l(l + 2k)

2(l + k)2
w̄T w̄.

The second equality is from (31) and ᾱl+1 = · · · = ᾱl+k = 0.
The third equality is from (7) and (12). The fourth equality
is from (32). The last equality uses the property w∗Tw∗ =
α∗TQα∗ of optimal solutions.

Details of Deriving (23)

To begin, we show that

h(α∗
i , C)− 1

2
dα∗

i
2 − yiα∗

iw
∗Txi = Cξ(w∗;xi, yi) (33)

holds for L1, L2 and LR losses. For L1-loss SVM,

α∗
i − yiα∗

iw
∗Txi = α∗

i (1− yiw∗Txi) = C max(1− yiw∗Txi, 0)

by the following optimality condition (e.g., Eq. (17) in [2]).

α∗
i =

{
C if 1− yiw∗Txi > 0,

0 if 1− yiw∗Txi < 0.

For L2-loss SVM,

α∗
i −

1

4C
α∗
i
2 − yiα∗

iw
∗Txi =α∗

i (1− yiw∗Txi)−
1

4C
α∗
i
2

=C max(1− yiw∗Txi, 0)2.

The last equality is from the optimality condition

α∗
i = 2C max(1− yiw∗Txi, 0).

For LR, consider the following optimality condition

α∗
i = C

e−yiw
∗Txi

1 + e−yiw∗Txi

in Section 3.4 of [18]. Then we have (33) by

C logC − α∗
i logα∗

i − (C − α∗
i) log(C − α∗

i)− yiα∗
iw

∗Txi

=C log
C

C − α∗
i

+ α∗
i log

C − α∗
i

α∗
i

− yiα∗
iw

∗Txi

=C log(1 + e−yiw
∗Txi).

Denote the optimal value of the original problem as V ∗.

V ∗ =

l∑
i=1

h(α∗
i , C)− 1

2

(
l∑

i=1

l∑
j=1

α∗
iα

∗
jK(i, j) +

l∑
i=1

dα∗
i
2

)
.

Next, we denote the initial value of the decremented problem
as Vinit and extract the term Vinit from V ∗ to have

V ∗ = Vinit −
k∑

i=1

l∑
j=1

α∗
iα

∗
jK(i, j) +

1

2

k∑
i=1

k∑
j=1

α∗
iα

∗
jK(i, j)

− 1

2

∑k

i=1
dα∗

i
2

+
∑k

i=1
h(α∗

i , C)

= Vinit −
∑k

i=1
yiα

∗
iw

∗Txi +
∑k

i=1
h(α∗

i , C)− 1

2

∑k

i=1
dα∗

i
2

+
1

2

∑k

i=1

∑k

j=1
α∗
iα

∗
jK(i, j)

= Vinit + C
∑k

i=1
ξ(w∗;xi, yi) +

1

2

∑k

i=1

∑k

j=1
α∗
iα

∗
jK(i, j).

The second equality uses (5) and the last equality is from
(33). By the definitions of w̄ and V ∗, and (12),

Vinit = V ∗ − C
k∑

i=1

ξ(w̄;xi, yi)−
1

2

k∑
i=1

k∑
j=1

α∗
iα

∗
jK(i, j)

=
1

2
w̄T w̄ + C

l∑
i=k+1

ξ(w̄;xi, yi)−
1

2

k∑
i=1

k∑
j=1

α∗
iα

∗
jK(i, j).

350

TRON DCD PCD

0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.05 0.1 0.15 0.2
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 2 4 6 8 10
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(a) ijcnn

0 10 20 30 40
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 1 2 3 4 5
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 100 200 300 400 500 600 700
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(b) webspam

0 1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 10 20 30 40 50
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(c) news20

0 0.2 0.4 0.6 0.8
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.05 0.1 0.15 0.2 0.25
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(d) rcv1

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.2 0.4 0.6 0.8
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(e) real-sim

0 5 10 15 20 25
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 100 200 300 400 500
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(f) yahoo-japan

Figure 2: Incremental learning: running time (in seconds) versus the relative objective value difference.
Logistic regression with C = 1 is used.

351

TRON DCD PCD

0 0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.05 0.1 0.15 0.2
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(a) ijcnn

0 10 20 30 40
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 1 2 3 4
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 100 200 300 400 500
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(b) webspam

0 1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 10 20 30 40
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(c) news20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.05 0.1 0.15 0.2
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(d) rcv1

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 2 4 6 8
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(e) real-sim

0 5 10 15 20 25
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

0 50 100 150 200 250 300
−8

−6

−4

−2

0

2

Training time (seconds)

R
el

at
iv

e
fu

nc
tio

n
va

lu
e

di
ffe

re
nc

e
(lo

g)

no−warm−start
warm−start−r5
warm−start−r50
warm−start−r500

(f) yahoo-japan

Figure 3: Decremental learning: running time (in seconds) versus the relative objective value difference.
Logistic regression with C = 1 is used.

352

	Introduction
	SVM, LR, and their incremental and decremental training
	Existing Methods

	Incremental and decremental learning with warm start
	Initial Values for Incremental Learning
	Initial Values for Decremental Learning

	Optimization Methods and Incremental/Decremental Learning
	Solving Primal Problem by a Trust Region Newton Method
	Solving Primal Problem by a Coordinate Descent Method
	Solving Dual Problem by a Coordinate Descent Method

	Implementation Issues
	Experiments
	Analysis on Initial Values
	Comparison of Optimization Methods for Incremental and Decremental Learning

	Conclusions
	Acknowledgments
	References

