Box Drawings for Learning with Imbalanced Data

Siong Thye Goh
Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA02139, USA

stgoh@mit.edu

ABSTRACT

The vast majority of real world classification problems are
imbalanced, meaning there are far fewer data from the class
of interest (the positive class) than from other classes. We
propose two machine learning algorithms to handle highly
imbalanced classification problems. The classifiers are dis-
junctions of conjunctions, and are created as unions of par-
allel axis rectangles around the positive examples, and thus
have the benefit of being interpretable. The first algorithm
uses mixed integer programming to optimize a weighted bal-
ance between positive and negative class accuracies. Reg-
ularization is introduced to improve generalization perfor-
mance. The second method uses an approximation in order
to assist with scalability. Specifically, it follows a charac-
terize then discriminate approach, where the positive class
is characterized first by boxes, and then each box boundary
becomes a separate discriminative classifier. This method
has the computational advantages that it can be easily par-
allelized, and considers only the relevant regions of feature
space.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

Keywords

Classification; Imbalanced Data; Decision Trees

1. INTRODUCTION

Our interest is in deriving interpretable predictive classi-
fication models for use with imbalanced data. Data clas-
sification problems having imbalanced (also called “unbal-
anced”) class distributions appear in many domains, rang-
ing from mechanical failure detection or fault detection, to
fraud detection, to text and image classification, to medi-
cal disease prediction or diagnosis. Imbalanced data cause
typical machine learning methods to produce trivial results,
that is, classifiers that only predict the majority class. One

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specif ¢ permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24-27, 2014, New York, NY, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623648.

333

Cynthia Rudin
CSAIL and Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA02142, USA

rudin@mit.edu

dimension 2

dimension 1

Figure 1: Example of box drawing classifier.

cannot optimize vanilla classification accuracy and use stan-
dard classification methods when working with imbalanced
data. This is explained nicely by Chawla, Japkowicz, and
Kolez [7] who write: “The class imbalance problem is per-
vasive and ubiquitous, causing trouble to a large segment of
the data mining community.”

In order for the models we derive to be interpretable to
human experts, our classifiers are formed as a union of axis
parallel rectangles around the positive (minority class) ex-
amples, and we call such classifiers box drawing classifiers.
These are “disjunctions of conjunctions” where each conjunc-
tion is a box. An example of a box drawing classifier we
created is in Figure 1, exemplifying our goal to classify the
positive examples correctly even if they are scattered within
a sea of negative examples. Our classifiers are regularized
in several ways, to prefer fewer boxes and larger boxes. We
take two polar approaches to creating box drawing classi-
fiers, where the first is an exact method, based on mixed in-
teger programming (MIP). This method, called Ezact Bozes
can be used for small to medium sized datasets, and provides
a gold standard to compare with. If we are able to make sub-
stantial approximations and still obtain performance close
to that of the gold standard, our approximations would be
justified. Our second method, Fast Boxes makes such an
approximation.

Fast boxes takes the approach of characterize then dis-
criminate, where we first characterize the positive (minority)
class alone, and then bring in the negative examples to form



decision boundaries around each clusters of positives. This
approach has significant computational advantages, in that
using just the minority class in the first step requires a small
fraction of the data, assuming a high imbalance ratio. Also
by creating decision boundaries locally in the second step,
the number of examples involved in each classifier is smaller;
further, creating each classifier separately allows computa-
tions to be made parallel, though since the computation for
each decision boundary is analytical, that may not be nec-
essary for many datasets. The computation is analytical
because there is a closed form solution for the placement of
the decision boundary. Thus, the discriminate step becomes
many parallel local analytical calculations. This is much
simpler and scalable than, for instance, a decision tree that
chooses splits greedily and fails to scale with dimension and
large number of observations.

We make several experimental observations, namely that:
box drawing classifiers become more useful as data imbal-
ance increases; the approximate method performs at the top
level of its competitors, despite the fact that it is restricted
to producing interpretable results; and performance can be
improved on the same datasets by using the mixed integer
programming method.

After related work just below, we describe the advantages
of our approach in Section 2. In Section 3, we introduce our
two algorithms. Experimental results will be presented in
Section 4. Section 4 provides a vignette to show how box
drawing models can be interpretable. In Section 5, theoreti-
cal generalization bounds will be presented for box drawing
classifiers. Section 6 discusses possible approaches to make
the MIP formulation more scalable.

2. RELATED WORKS

Overviews of work on handling class imbalance problems
include those of He and Garcia [11], Chawla, Japkowiz and
Kolez [7] and Qi [19]. Many works discuss problems caused
by class imbalance [22, 16]. There are many avenues of
research that are not directly related to the goal of inter-
pretable imbalanced classification, specifically kernel and ac-
tive learning methods [20, 23], and work on sampling [1, 6]
that includes undersampling, oversampling, and data gener-
ation, which can be used in conjunction with methods like
the ones introduced here. We use a cost-sensitive learn-
ing approach in our methods, similar to Liu and Zhou [14]
and McCarthy et al. [15]. We note that many papers on
imbalanced data do not experimentally compare their work
with the cost-sensitive versions of decision tree methods. We
choose to compare with other cost-sensitive versions of de-
cision trees as our method is a cost-sensitive method.

There is some evidence that more complex approaches
that layer different learning methods seem to be helpful
for learning [20, 23], though the results would not be in-
terpretable in that case. This, however, is in contrast with
other views (e.g., [12]) that for most common datasets, sim-
ple rules exists and we should explore them.

The works most similar to ours are that of the Patient
Rule Induction Method (PRIM) [9] and decision tree meth-
ods for imbalanced classification (e.g., [13]), as they parti-
tion the input space like our work. Approaches that par-
tition space tend to recover simple decision rules that are
easier for people to understand. Decision tree methods are
composed using greedy splitting criteria, unlike our meth-
ods. PRIM is also a greedy method that iteratively peels off

334

parts of the input space, though unfortunately we found it to
be extremely slow - as described by Sniadecki [21], “PRIM is
eloquently coined as a patient method due to the slow, step-
wise mechanism by which it processes the data.” Neither our
Exact Boxes nor Fast Boxes methods are greedy methods,
though Fast Boxes makes a different type of approximation,
which is to characterize before discriminating. As discussed
by Raskutti [20], one-class learning can be useful for highly
imbalanced datasets - our characterization step is a one-class
learning approach.

3. NEW ALGORITHMS

We start with the mixed-integer programming formula-
tion, which acts as our gold standard for creating box draw-
ing classifiers when solved to optimality.

3.1 Exact Boxes

For box drawing classifiers, a minority class (positive) ex-
ample is correctly classified only if it resides within at least
one box. A majority class (negative) example is correctly
classified if it does not reside in any box. We are given
training examples {(xi, y;) }iz1,%: € R™,y; € {—1,+1}. We
introduce some notation in Table 1 that we will use through-
out this subsection. We use this notation from here on.

Notation Definitions
K Number of parallel axes boxes
m Number of examples
n Number of features
7 Index for examples
7 Index for features
i) j-th feature of example 17
k Index for box
Lik Lower boundary of feature j for box k
Uk Upper boundary of feature j for box k
v Margin for decision boundary
lijk lijr = 1if x5 > l;; +v and 0 otherwise
Ujjk wijp = 1if z;; < ujp — v and 0 otherwise
Wik w; = 1 if example 7 is in box k and 0 otherwise
2 z; = 1 if it is classified correctly.
St Index set of example of minority class
S_ Index set of example of majority class
Ce A regularizer to encourage expansion of box
cr Weight for majority class, ¢y < 1
Table 1: Notation for Box Drawings with Mixed

Integer Programming

The FEzact Bozes method solves the following, where the
hypothesis space F is the set of box drawings (unions of axis
parallel rectangles), where f € F has f: R" — {-1,1}.

1 (x;)=1+C
max. [fGe)=11TC1

iy, =1 tiy;=—1

The objective is a weighted accuracy of positives and neg-
atives, regularized by the number of boxes. This way, the
number of boxes is not fixed, and a smaller number of clus-
ters is preferred (analogous to nonparametric Bayesian mod-
els where the number of clusters is not fixed). Our gold
standard will be the minimizer of this objective. We now
derive the MIP that computes this minimizer.

If 7 € S, the definitions of l~ijk, Wijk, Wik, and z; give rise
to the following constraints:

Lk +v < 45 iff’lvijk =1

Uik — UV > Tij iff izijk =1,

(1)
(2)

Z 11(x;)=—11—CE(#of boxes of f).



which say that x;; need to be at least margin v away from
the lower (resp. upper) boundary of the box in order for

lijt =1 (resp. u;jx = 1). Further, our definitions give rise
also to

n
Zﬁijk + lijk >2n — 1iff wy =1,

=1

(3)

which says that for example 7 to be in box k, all of the u;;

and Ejk are 1 for box k. We also have, still for i € S,
that the example must be in one of the boxes in order to be
classified correctly, that is:

K
Zwik >0iff 2 = 1.

k=1

(4)

Continuing this same type of reasoning for ¢ € S_, the def-
initions of l;jr ,Uijk, Wik, and z; give rise to the following
constraints:

ik —v>uwxy iff =1
win +v <wyy iff U =1
n
Zﬂijk +lijr >0 iff wy =0
=1
K
Zwik >0 iff z =0.
k=1

By setting M to be a large positive constant and setting e
to be a small positive number (to act as a strict inequality),
we now have the following formulation:

_max
Llu,u,w,z

—c. K + Z zi +er Z zi | subject to
€Sy €S _

ij — Lk — v < Mlyy, Vi € Sy, V5, k (5)
M(lije —1) 4+ €< aij — g —v,Vie Sy,Vik  (6)
Ujk — V — Tij SMﬂijk,Vi€S+,Vj,k (7)
nM(ﬂijkzl)-i-GSu]'k—mij—U,Vi€S+7Vj7k' (8)
Zﬁjk+Zﬁijk—2n+lgwik,ViES+,Vj,k (9)
=1 i=1, n
2nw;, < Zl:]k + Zﬂumw € S4,V5,k (10)
=1 j=1
> wik < Kz, Vi € 84, Vk (11)
k=1 K
2 <Y wik, Vi € Sy, Vk (12)

k=1
Lin —v—xi; < My, Vi € S_,Vj, k
M(lije — 1) 4 € < L —v — x45,Vi € S_,Vj, k
Tij — Uk — U < MU, Vi€ S_,Vj, k
M@ijk — 1);}—6 < xij —ujr —v,Vie S_,Vj,k

STl + >tk — 20 +1 < 20(1 — wir),

j=1 i=1 Vie S_,Vjk (17)
1-—- i < : ~i' ) ) — .7 1
w%_;lwr;u]k Vi€ S_,Vjk (18)
Stwn < K(-z),Vie S, Vk (19)

k=1 K
l—z < > wi,VieS Vk (20)

k=1

335

Lik < ujk, Vi, k. (21)

Here, (5) and (6) are derived from (1), (7) and (8) are
derived from (2), (9) and (10) are derived from (3), (11) and
(12) are derived from (4), equations (13)-(20) are derived
analogously for S_. The last constraint (21) is to make sure
that the solution that we obtain is not degenerate, where the
lower boundary is above the upper boundary. In practice,
M should be chosen as a fixed large number and e should be
chosen as a fixed small number based on the representation
of numbers in the computing environment.

In total, there are O(mnK) equations and O(mnK) vari-
ables, though the full matrix of variables corresponding to
the mixed integer programming formulation is sparse since
most boxes operate only on a small subset of the data. This
formulation can be solved efficiently for small to medium
sized datasets using MIP software, producing a gold stan-
dard box drawing classifier for any specific number of boxes
(determined by the regularization constant). The fact that
Exact Boxes produces the best possible function in the class
of box drawing classifiers permits us to evaluate the quality
of Fast Boxes, which operates in an approximate way on a
much larger scale.

3.2 Fast Boxes

Fast Boxes uses the approach of characterize then discrim-
inate. In particular, we hypothesize that the data distribu-
tion is such that the positive examples cluster together rel-
ative to the negative examples. This implies that a reason-
able classifier might first cluster the positive examples and
then afterwards discriminate positives from negatives. The
discrimination is done by drawing a high dimensional axis-
parallel box around each cluster and then adjusting each
boundary locally for maximum discriminatory power. If the
cluster assumption about the class distributions is not cor-
rect, then Fast Boxes could have problems, though it does
not seem to for most real imbalanced datasets we have found,
as we show in the experiments. Fast Boxes has three main
stages as follows.

1. Clustering stage: Cluster the minority class data into
K clusters, where K is an adjustable parameter. The
decision boundaries are initially set as tight boxes around
each of the clusters of positive examples.

2. Dividing space stage: The input space of the data is
partitioned to determine which positive and negative
examples will influence the placement of each decision
boundary.

3. Boundary expansion stage: Each boundary is expanded
by minimizing an exponential loss function. The solu-
tion for the decision boundary is analytical.

Details of each stage are provided below.

3.2.1 Clustering Stage

In the clustering stage, the minority class data are clus-
tered into K clusters. Since this step involves only the mi-
nority class data, it can be performed efficiently, particularly
if the data are highly imbalanced. Cross-validation or other
techniques can be used to determine K. In our experiments,
we used the basic k-means algorithm with Euclidean dis-



tance. Other clustering techniques or other distance metrics
can be used.

After the minority class data are separated into small clus-
ters, we construct the smallest enclosing parallel axes rect-
angle for each cluster. The smallest enclosing parallel axes
rectangle can be computed by taking the minimum and max-
imum of the minority class data in each cluster and for each
feature. Let ls ;1 and us,j r denote the lower boundary and
upper boundary for the j-th dimension, for the k-th cluster.
Here the subscript s is for “starting” boundary, and in the
next part we will created a “revised” boundary which will
be given subscript . The “final” boundary will be given
subscript f.

3.2.2  Dividing Space Stage

Define the set X ;1 as follows:

Xige = {z:m; <l K}V {17 Hlsge <xy < 5

Lspk S p S Usp ks P 7 5}

These are the data points that will be used to adjust the
lower boundary of the j-th dimension of the k-th rectangle.
Similarly, we let

ls,jk + Us,j,

Xujr = {z:3; 2 us i}V {x : 3

Lspk S Tp < Uspks 7 5}

These are the training examples that will be used to deter-
mine the upper boundary of the j-th dimension of the k-th
rectangle.

Figure 2 illustrates the domain for X, ; to the right of
the blue dashed line.

dimension 2
[=]

RN DU
N

-1 0
dimension 1

Figure 2: The examples used to determine the right
vertical decision boundary are on the right side of
the blue dotted line.

Note that this method is very parallelizable after the clus-
tering stage. The dividing space stage computations can be
done in parallel for each cluster, and for the boundary ex-
pansion stage discussed below, each boundary of each box
can be determined in parallel.

3.2.3 Boundary Expansion Stage

In this stage we discriminate between positives and nega-
tives by creating a 1-dimensional classifier for each boundary
of each box. We use a regularized exponential loss. Specif-
ically, for lower boundary j of box k, We minimize the fol-
lowing with respect to I, jr where [, ;i refers to the lower
boundary of the j-th dimension of k-th revised box being

ls,jk + Usjk

’

(22)

k
< x5 < Usjks

(23)

336

determined by the loss function:

> expl—(xj — )]
zesj_nxl,jyk
+ ¢ Z exp [+ | xj — lrjk

zESliﬁlejyk.

+ Z(pr —Uspk)y + [lspk — Tp],)
p#j

+ /Blr,j,k-

where c is the weight for the majority class, ¢ < 1, Sfr is the
set of positive examples in the k-th cluster, S* is the set of
examples not in the k-th cluster, g is a regularization param-
eter that tends to expand the box, and |.| denotes max(.,0).
For simplicity, we use the same parameter to control the ex-
pansion for all the clusters and all the features. Note that
the term 7 (|7p — uspk), + [ls,pk — Zp] ) is designed
to give less weight to the points that are not directly oppo-
site the box edges (the points that are diagonally away from
the corners of the box). To explain these terms, recall that
the exponential loss in classification usually operates on the
term y; f(zi), where the value of f(z;) can be thought of
as a distance to the decision boundary. In our case, for the
lower decision boundary we use the perpendicular distance
to the decision boundary |z; — ;. ; x|, and include the addi-
tional distance in every other dimension p for the diagonal
points. For the upper diagonal points we include the dis-
tance to the upper boundary wus p i, namely x, — us p i, and
analogously for the points on the lower diagonal we include
distance ls,p,x — zp. We perform an analogous calculation
for the upper boundary.

Note that we perform a standard normalization of all fea-
tures to be between -1 and 1 before any computation begins,
which also mitigates numerical issues when dealing with the
(steep) exponential loss. Another mechanism we use for
avoiding numerical problems is by multiplying each term
in the objective by exp(1) and dividing each term by the
same factor. We will construct the derivation of the lower
boundary as follows. We rewrite the objective to minimize:

RYFexp (—loje + 1+ lrjin)

+ R P exp (Lo gk — 1= k) + Blrjk, (24)
where
RY* = 3> expl—(a—lyx+ 1], (25)
xeSiﬁlejyk
RhI* Z exp [x; —lsju+1

zeSFNXy ;g

+ Z(pr - Us,p,k’J+ + s,pk — mpj+) (26)
P#j

Because of the factors of 1 added and subtracted in the ex-
ponent, we ensure le’k is at least exp(—1) > 0.3, avoiding
numerical problems. From there, we can solve for [, ;r by
taking the derivative of the objective and equating it to zero.
Then we multiply both sides of the resulting equation by
exp (Is,j, — 1 — I j,x) and solve a quadratic equation. The
the result is below. The details have been omitted due to
space constraints.



PROPOSITION 1. If R“"% >0, the solution to (24) is

B+ \/52 + 4cRFRITE
1,5,k
2RY

lrjk = ls,j,0 —1+1log . (27)

If R%"F = 0 or close to zero, which can happen when there
are no points outside the smallest enclosing box in direction
j, we set ;1 = I; where I; is the smallest value of feature
j. In that case, the boundary effectively disappears from the
description of the classifier, making it more interpretable.

The interpretation of the proposition is that the boundary
has moved from its starting position I ; by amount 1 —

P AL PRI

Similarly, we let u., jx be the revised upper boundary of
the jth dimension for the k-th revised box and it can be
computed as follows.

PROPOSITION 2. If Rb9F >0,

B+ \/62 +4cRYTF R

Ur ik = Us,j kT 1+ log ZCRu'j'k (28)
where
Ry = 3 e [—(uegk —a+ 1], (29)
xesinxudﬁk
R™“* Z exp |us ik —x; + 1

zeSkNX,

+ Z(Ll’p - us,p,kj+ + [Ls,pk — pr+) (30)
P#j

The proof and interpretation are similar to Proposition 1.

If R“7* = 0 or close to zero, we set v = u; where ; is
the largest possible value for feature j.

After we learn each of the decision boundaries, we per-
form a final adjustment that accomplishes two tasks: (i) it
ensures that the box always expands rather than contracts,
(ii) further expands the box to € away from the nearest neg-
ative example. This gives us final values Iy, and uy j k,
where subscript “f” is for final. Written out, this is:

lyje = sup{zj|lzeS_ x;

< min(lryjyk,ls,j,k)} + eV, k (31)
Ug gk = inf {1:]|x S Sf,l’j

> max(ur ik, Us,jk)} — €Yk (32)

where € is a small number. The boxes always expand for
this algorithm, which implies that this algorithm is meant
for applications where correct classification of the minority
class data is crucial in practice. This expansion step can be
omitted if desired, for instance if misclassifying the negative
examples is too costly.

The algorithm is summarized as follows:

3.2.4  Overall Algorithm

Input: number of boxes K, tradeoffs ¢ and 8, Data {xi, yi}:.
Output: Boundaries of boxes.

337

1. Normalize the features to be between -1 and 1.
2. Cluster the minority class data into K clusters.

3. Construct the minimal enclosing box for each cluster,
that is compute starting boundaries ls ;r and us jx,
the j-th dimension lower boundary and upper bound-
ary respectively for the k’th cluster.

4. Construct data for local classifiers X ;1 and Xy j
based on equations (22) and (23) respectively.

5. Compute Rf’k, RWE, Ri’j’k, R“7* according to equa-
tions (25), (26), (29), and (30).

6. Compute I, ; , based on equation (27) and u, ;. based
on equation (28) respectively.

7. Perform expansion based on equations (31) and (32).

8. Un-normalize by rescaling the features back to get
meaningful values.

Note that after the clustering step on the minority class
data, all the other steps are easily parallellizable.

4. PREDICTION QUALITY

Now that we have two very different algorithms for cre-
ating box drawing classifiers, we will compare their perfor-
mances experimentally.

Evaluation Metric

We chose to use the area under the convex hull of the ROC
curve (AUH) [18] as our evaluation metric; it is frequently
used for imbalanced classification problems and considers
the full ROC curve (Receiver Operator Characteristic) curve
to evaluate performance. To compute the AUH, we compute
classifiers for various settings of the tradeoff parameter c,
which controls the relative importance of positive and nega-
tive classes. Each setting of ¢ corresponds to a single point
on the ROC curve, with a count of true and false positives.
We compute the AUH formed by the points on the ROC
curve, and normalize as usual by dividing it by the number
of positive examples times the number of negative examples.
The best possible result is an AUH of 1.

Baseline Algorithms

For comparison, we consider logistic regression, SVM with
radial basis kernel, CART, C4.5, Random Forests, AdaBoost
(with decision trees), C5.0, and Hellinger Distance Decision
Tree (HDDT) [8]. Most of these algorithms are listed among
the top 10 algorithms in data mining [24]. Among these algo-
rithms, only CART, C4.5, C5.0, and HDDT yield potentially
interpretable models. HDDT uses Hellinger distance as the
splitting criterion, which is robust and skew-insensitive.

In addition to the baselines above, we implemented the
Patient Rule Induction Method (PRIM) for “bump hunting”
[9]. This method also partitions the input variable space into
box shaped regions, but in a different way than our method.
PRIM searches iteratively for sub-regions where the target
variable has a maxima, and peels them off one at a time,
whereas our clustering step finds maxima simultaneously.

The data sets we considered are listed in Table 2. Some
data sets (castle, corner, diamond, square, flooded, castle3D,
corner3D, diamond3D, flooded3D, flooded3D) are simulated
data that are able to be visualized (made publicly available
at [10]). The breast and pima data sets were obtained from



the UCI Machine Learning Repository [3]. The data set
fourclass was obtained from LIBSVM [4]. The remaining
imbalanced data sets were obtained from the KEEL (Knowl-
edge Extraction based on Evolutionary Learning) imbal-
anced data repository [2]. The IrisO data set is an imbal-
anced version of the standard iris data set, where two of the
classes (iris-versicolor and iris-virginica) have been combined
to form the majority class.

Data number of | feature size | imbalance
examples ratio
pima 768 8 1.8657
castle 8716 2 22.2427
corner 10000 2 99
diamond 10000 2 24.9067
square 10000 2 11.2100
flooded 10000 2 31.1543
fourclass 862 2 1.8078
castle3D 545 3 7.2576
corner3D 1000 3 28.4118
diamond3D 1000 3 33.4828
square3D 1000 3 7
flooded3D 1000 3 26.7778
breast 569 30 1.6840
abalonel9 4174 9 129.4375
yeast6 1484 8 41.4
yeasth 1484 8 32.7273
yeast1289 947 8 30.5667
yeast4 1484 8 28.0980
yeast28 482 8 23.1000
yeast 1458 693 8 22.1000
abalone918 731 9 16.4048
pageblocks134 | 472 10 15.8571
ecoli4 336 7 15.8000
yeast17 459 7 14.3
shuttle04 1829 9 13.8699
glass2 214 9 11.5882
vehicle3 846 18 2.9906
vehiclel 846 18 2.8986
vehicle2 846 18 2.8807
haberman 306 3 2.7778
yeast1 1484 8 2.4592
glassO 214 9 2.0571
iris0 150 4 2
wisconsin 683 9 1.8577
ecoli0l 220 7 1.8571
glassl 214 9 1.8158
breast tissue 106 9 3.8182
Table 2: Summary of datasets used for experiments

Performance analysis

Here we compare the performance of Fast Boxes with the
baseline algorithms. For each algorithm (except C4.5) we set
the imbalance weighting parameter to each value [0.1, 0.2, 0.3,
...,1]. The other parameters were set in data-dependent
way; for instance, for SVM with RBF kernel, the kernel
width was chosen using the sigest function in the R pro-
gramming language. The data were separated into 10 folds,
where each fold was used in turn as the test set. We do
not prune the decision trees beyond their built-in pruning
as previous research shows that unpruned decision trees are
more effective in their predictions on the minority class [17,
5], and because it would introduce more complexity that
would be difficult to control for. Within the training set, for
the Fast Boxes algorithm we used 3-fold cross-validation to
select the cluster number and expansion parameter.

338

Table 5 shows the performances in terms of AUH means
and standard deviations. The values that are bolded rep-
resent the algorithms whose results are not statistically sig-
nificantly different from the best algorithm using a matched
pairs sign test with significance level o = 0.05. When there
was more than one best-performing classifier, the one with
the smaller standard deviation was chosen as the best per-
former for that data set. Fast Boxes was often (but not
always) one of the best performers for each dataset. This
brings up several questions, such as: Under what conditions
does Fast Boxes perform well? How do its parameters effect
the result? Does it tend to produce trivial results? Can FEx-
act Bozes improve upon Fast Boxes’ results in cases where it
does not perform well? Are the results interpretable? These
are questions we will address in the remainder of this section.

We start with a partial answer to the question of when
Fast Boxes performs well - it is when the classes are more
imbalanced. Figure 3 shows a scatter plot of the quality of
Fast Boxes’ performance versus the imbalance ratio of the
dataset. The vertical axis represents our rank in perfor-
mance among all of the algorithms we tested. The horizon-
tal axis is the number of negatives divided by the number
of positives. The performance of Fast Boxes changes from
being among the worst performers when the data are not
imbalanced (and the cluster assumption is false), to being
among the best performers when the data are imbalanced.

Ranking against imbalanced ratio

6p ©
X~
Bep
@ o
2loo @ o o
booo oam o
G0 50 100 150

imbalanced ratio

Figure 3: Ranking of Fast Boxes versus imbalance
ratio of data

Below we provide some intuition about Fast Boxes’ clus-
ters and the expansion parameter before answering the ques-
tions posed just above.

Effect of Fast Boxes’ parameter settings

We expect that if our main modeling assumption holds,
which is that the positive examples naturally cluster, there
should be a single best number of clusters. If we choose
the number of clusters too small, we might underfit, and if
we allow too many clusters, we could overfit. Figure 4 il-
lustrates the cluster assumption on the diamond3D dataset,
where this effect of overfitting and underfitting can be seen.

The expansion parameter is also designed to assist with
generalization. We would like our boxes to be able to capture
more of the positive cluster than is provided by the tightest
box around the training examples, particularly since true
positives are worth more than true negatives in our objec-
tive function. The exponential loss creates a discriminative
classifier, but with a push outwards. Naturally, as we in-
crease the expansion parameter, the training AUH will drop
as more negative training examples are included within the
box. On the other hand, the test AUH tends to increase



*
*******as
0.8

0.6

AUH

0.4

0.2

5
number of clusters

Figure 4: The effect of the number of clusters on
AUH for the data set diamond3D. Fast Boxes was
run once for each number of clusters. Training AUH
is reported as circles, and testing AUH as stars.

before decreasing, as more positive examples are within the
expanded box. This effect is illustrated in Figure 5.

0.8

0.6

AUH

0.4

0.2

0 50 100 150
expansion parameter

200

Figure 5: The effect of the expansion parameter on
AUH for the diamond3D data set.

Considering the final expansion stage, Figure 6 illustrates
why this stage is necessary. We visualize the irisO dataset
with dimension 1 and dimension 4, where if we had not
expanded out to the nearest negative example, we would
have missed a part of the positive distribution within the
test set.

Production of trivial rules

When the data are highly imbalanced, we have found that
some of the baseline algorithms for producing interpretable
models often produce trivial models, that is, models that
always predict a single class. This is true even when the
weighting factor on the positive class is varied throughout
its full range at a reasonably fine granularity. This means
that either it is not possible to obtain a meaningful model
for the dataset with that method, or it means one would
need to work fairly hard in order to find a weighting factor
that did not produce a trivial model; that is, the range for
which nontrivial models are possible is very small. Figure
3 considers three interpretable methods we compare with,
namely CART, C4.5, and C5.0. It shows the fraction of
time these algorithms produce trivial models. For CART,
C5.0, and Fast Boxes, the percentage was computed over
100 models computed over 10 splits and 10 options for the
imbalance parameter. C4.5 does not have a built in imbal-
ance parameter, so the percentage was computed over 10
splits.

339

1 60 0
9% o
08 ¢ LN
E N .30 :
§os 0% &
S goo
c 04 o
=
o
0.2 Soo
w@ow O
OUNXED O
0 <5
0 0.5 1
dimension 1

Figure 6: The red and yellow points are negative
training points and testing point respectively, the
blue and green points are positive training points
and testing points respectively. If we had used
the tightest decision boundary around the positive
training examples, we would have missed part of the
positive distribution.

Data CART | C4.5 | C5.0 | Fast Boxes
pima 0.00 0.00 | 0.00 0.07
castle 0.00 0.00 | 0.00 0.10
corner 0.00 0.60 | 0.70 0.00
diamond 0.00 0.00 | 0.00 0.00
square 0.00 0.00 | 0.00 0.00
flooded 0.00 0.70 | 0.80 0.00
fourclass 0.00 0.00 | 0.00 0.03
castle3D 0.00 0.00 | 0.00 0.10
corner3D 0.00 0.50 | 0.50 0.07
diamond3D 0.00 1.00 | 1.00 0.06
square3D 0.00 0.90 | 0.80 0.10
flooded3D 0.05 1.00 | 1.00 0.09
breast 0.00 0.00 | 0.00 0.37
abalonel9 0.43 1.00 | 1.00 0.35
yeast6 0.00 0.00 | 0.00 0.02
yeasth 0.00 0.00 | 0.00 0.36
yeast1289 0.16 0.70 | 0.60 0.35
yeast4d 0.00 0.20 | 0.20 0.30
yeast28 0.39 0.90 | 0.90 0.00
yeast1458 0.24 0.70 | 0.90 0.19
abalone918 0.00 0.10 | 0.10 0.40
pageblocks134 0.00 0.00 | 0.00 0.39
ecolid 0.00 0.00 | 0.00 0.32
yeast17 0.03 0.20 | 0.30 0.21
shuttle04 0.00 0.00 | 0.00 0.00
glass2 0.09 0.40 | 0.70 0.28
vehicle3 0.00 0.00 | 0.00 0.01
vehiclel 0.00 0.00 | 0.00 0.02
vehicle2 0.00 0.00 | 0.00 0.27
haberman 0.00 0.40 | 0.70 0.13
yeast1 0.00 0.00 | 0.00 0.08
glassO 0.00 0.00 | 0.00 0.08
irisO 0.00 0.00 | 0.00 0.03
wisconsin 0.00 0.00 0.00 0.34
ecoli0l 0.00 0.00 | 0.00 0.21
glassl 0.00 0.00 | 0.00 0.16
breast tissue 0.00 0.00 0.00 0.08

Table 3: Fraction of the time we get a trivial model.
Bold indicates values over 0.5.

Comparison of Fast Boxes and Exact Boxes

Since we know that Fast Boxes is competitive with other
baselines for handling imbalanced data, we would like to



know whether Exact Boxes has the potential to yield signifi-
cant performance gains over Fast Boxes and other methods.
We implemented the MIP using GUROBI on a quad core
Intel i7 860 2.8 GHz, 8GB cache, processor with 4 cores
with hyperthreading and 16GM of RAM. We first ran the
Exact Boxes algorithm for 30 minutes, and if the AUH per-
formance was not competitive and the optimality gap was
above 1%, we ran it up to 90 minutes for each instance. We
did not generally allow the MIP to solve to provable opti-
mality. This has the potential to hinder performance, but
as we were performing repeated experiments we needed to
be able to solve the method repeatedly.

Table 4 shows results from Exact Boxes for several of the
smaller data sets, along with the results from Fast Boxes
for comparison. Bold font in this table summarizes results
from the other baseline algorithms as well: if the entry is
in bold, it means that the result is not statistically signifi-
cantly different than the best out of all of the algorithms.
Thus, for 5 out of 8 datasets we tried, the MIP was among
the top performers. Further, the AUH value was substan-
tially improved for some of the data sets. Thus, restricting
the algorithm to produce a box drawing classifier does not
generally seem to hinder performance.

Data Best Fast Exact Exact
Perfor- Boxes Boxes Boxes
mance ranking

vehicle2 0.9496 0.9191 0.9496 1
(0.015) (0.0242) | (0.015)

haberman| 0.6699 0.5290 0.6632 | 2
(0.0276) | (0.0265) | (0.0303)

yeast1 0.7641 0.5903 0.7392 2
(0.0133) | (0.0286) | (0.0172)

glassO 0.8312 0.7937 0.7977 2
(0.0345) | (0.0212) | (0.0421)

irisO 1 1 1 1
0) 0) 0)

wisconsin | 0.9741 0.8054 0.9726 | 2
(0.0075) | (0.1393) | (0.0079)

ecoli0l 0.9840 0.9433 0.9839 | 2
(0.0105) | (0.0300) | (0.0109)

glassl 0.7922 0.6654 0.7922 |1
(0.0377) | (0.0356) | (0.0337)

Table 4: Comparison of test data AUH of inter-
pretable methods with Exact Boxes. Bold font in-
cludes results from non-interpretable methods.

Note that it is time-consuming to perform cross-validation
on the MIP, so the cluster number that we found using cross-
validation for Fast Boxes was used for Exact Boxes.

Interpretability demonstration

We provide a classifier we learned from the glass2 data set
that predicts whether a particular glass is a building window
that is non-float processed. The other types of glasses are
building windows that are float processed, vehicle windows,
containers, tableware, and headlamps. The attributes in-
clude the refraction index as well as various indices for met-
als. These metals include Sodium, Magnesium, Aluminum,
Silicon, Potassium, Calcium, Barium, and Iron.

One of the predictive models from Fast Boxes is as fol-
lows. To be a particular glass of a building window that is
non-float processed:

1) The refractive index should be above 1.5161.
2) Magnesium index must be above 3.3301.
3) Aluminum should be below 1.7897.

340

4) Silicon should be below 73.0199.

5) Potassium should be below 0.6199.

6) Calcium should be between 8.3101 and 2.3741.

7) Barium should be below 2.6646.

8) Sodium and iron are not important factors.

We believe that this simple form of model would appeal
to practitioners because of the natural threshold structure
of the box drawing classifiers.

5. THEORETICAL GUARANTEE ON PER-

FORMANCE

Statistical learning theory will allow us to provide a proba-
bilistic guarantee on the performance of our algorithms. We
will construct a uniform generalization bound, which holds
over all box drawing classifiers with K boxes anchored at M;
different fixed values for each dimension, where K is fixed.
We might choose M; as the count of numbers with at most
a certain number of decimal places (say 2 decimal places) in
between the largest and smallest possible values for a par-
ticular feature. (Often in practice only 2 decimal places are
used.) The main step in our proof is to count the number of
possible box drawing classifiers. The set of all box drawing
classifiers with up to K boxes, with I; and u; attaining the
M; values, will be called F'.

Define the empirical risk to be the objective of Exact
Boxes with no regularization,

RP(f) = D L=t +C1 Y Liseen=-1;

Ty; =1 iy, =—1

and let the true risk R"¢(f) be the expectation of this taken

over the distribution that the data are drawn iid from.

PROPOSITION 3. For all 6 > 0 with probability at least
1-4,VfeF,

RT(f) < R”’”’(f)ﬂ/

2m

To outline the proof, there are H;Zl ( Agj ) ways to

construct a single box, since for each dimension, we select
2 values, namely the lower boundary /; and upper bound-
ary wu;. To construct multiple boxes, there are at most

(%)

boxes matter. Since the order does not matter, we need
to divide the term by K!. Note that this is an upper bound
which is not tight since some boxes can be a proper subset
or equal to another box. Although we are considering the
set of all box drawing classifiers up to K boxes, it suffices
to consider box drawing classifiers with exactly K boxes.
This can be seen by supposing we constructed a classifier
with | < K boxes, and noting the same classifier can be
constructed using K boxes by duplicating some boxes. We
apply Hoeffding’s inequality and the union bound to com-
plete the proof.

ways if the order of construction of the

6. MAKING THE MIP MORE PRACTICAL

From the experimental outcome, it is clear that Exact
Boxes is indeed a competitive solution. The main challenge
lies in its computational complexity. There are several ways

K Z?:l log(iMj(]\;["ﬂ)) —logK! + log %



one might make the MIP more practical: first, one could
limit computation to focus only a neighborhood of the posi-
tive data, and use the solution to this problem to warm start
the MIP on the full problem. In that case we would consider
only negative points that are close to the positive points in
at least one dimension, which can be identified in a single
pass through the negative examples. Alternatively, one can
perform clustering first as in the Fast Boxes approach, and
solve the MIP on each cluster. For each cluster, we would
scan through each feature of the data in a single pass and
keep only the data that are close to the mean of the cluster
center to use in the MIP.

7. DISCUSSION AND CONCLUSION

We have presented two new approaches to designing in-
terpretable predictive models for imbalanced data settings.
Exact Boxes is formulated as a mixed integer program, and
acts as a gold standard interpretable modeling technique to
compare with. It can be used for small to moderately sized
problems. Fast Boxes uses a characterize-then-discriminate
approach, and tends to work well when the minority class is
naturally clustered (for instance when the clusters represent
different failure modes of mechanical equipment). We illu-
minated the benefits and limitations of our approaches, and
hope that these types of models will be able to provide alter-
native explanations and insights into imbalanced problems.
In comparing Fast Boxes with gold standard interpretable
techniques like Exact Boxes, and with many other methods,
we can now judge the power of the class of interpretable
models: it is interesting that such simple approaches can
achieve comparable performance with even the best state-
of-the-art techniques.

Acknowledgements Funding for this work provided by
Siemens.

8. REFERENCES

[1] N. Abe. Sampling approaches to learning from
imbalanced datasets: Active learning, cost senstive
learning and beyond, 2003. Proc. ICML, Workshop
Learning from Imbalanced Data Sets II.

J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac,
and S. Garcia. Keel data-mining sofware tool: Data
set repository, integration of algorithms and
experimental analysis framework. 2011.
http://sci2s.urg.es/keel/imbalanced.php#sub3.
K. Bache and M. Lichman. UCI machine learning
repository. 2013. http://archive.ics.uci.edu/ml.
C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1-27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

N. V. Chawla. C4.5 and imbalanced data sets:
investigating the effect of sampling method,
probabilistic estimate, and decision tree structure. In
In Proceedings of the ICMLo03 Workshop on Class
Imbalances, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. Smote: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321-357, 2002.

341

[7] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial:
Special issue on learning from imbalanced data sets.
SIGKDD Ezxplor. Newsl., 6(1):1-6, June 2004.

D. Cieslak, T. Hoens, N. Chawla, and W. Kegelmeyer.
Hellinger distance decision trees are robust and
skew-insensitive. Data Mining and Knowledge
Discovery, 24(1):136-158, 2012.

J. Friedman and N. Fisher. Bump hunting in
high-dimensional data. Statistics and Computing,
9(2):123-143, 1999.

S. T. Goh and C. Rudin. 2014. http:
//web.mit.edu/stgoh/www/imbalanceddatafolder/.
H. He and E. Garcia. Learning from imbalanced data.
Knowledge and Data Engineering, IEEE Transactions
on, 21(9):1263-1284, Sept 2009.

R. C. Holte. Very simple classification rules perform
well on most commonly used datasets. In Machine
Learning, pages 63-91, 1993.

N. Japkowicz. Class imbalances: Are we focusing on
the right issue? In Notes from the ICML Workshop on
Learning from Imbalanced Data Sets II, 2003.

X.-Y. Liu and Z.-H. Zhou. The influence of class
imbalance on cost-sensitive learning: An empirical
study. In Data Mining, 2006. ICDM °06. Sizth
International Conference on, pages 970-974, Dec 2006.
K. McCarthy, B. Zabar, and G. Weiss. Does
cost-sensitive learning beat sampling for classifying
rare classes? In Proceedings of the 1st International
Workshop on Utility-based Data Mining, UBDM ’05,
pages 69-77, New York, NY, USA, 2005. ACM.

R. Prati, G. Batista, and M. Monard. Class
imbalances versus class overlapping: An analysis of a
learning system behavior. In R. Monroy,

G. Arroyo-Figueroa, L. Sucar, and H. Sossa, editors,
MICAI 2004: Advances in Artificial Intelligence,
volume 2972 of Lecture Notes in Computer Science,
pages 312—321. Springer Berlin Heidelberg, 2004.

F. Provost and P. Domingos. Tree induction for
probability-based ranking, 2002.

F. Provost and T. Fawcett. Robust classification for
imprecise environments. Machine Learning,
42(3):203-231, 2001.

Y. Qi. A brief literature review of class imbalanced
problem. IR-Lab Project of Yanjun Qi, 2004.

B. Raskutti and A. Kowalczyk. Extreme re-balancing
for svms: A case study. SIGKDD Ezplor. Newsl.,
6(1):60-69, June 2004.

J. Sniadecki. Bump hunting with sas: A macro
approach to employing prim. SAS Global Forum 2011,
Data Mining and Text Analytics, 2011.

G. M. Weiss. Mining with rarity: A unifying
framework. SIGKDD Explor. Newsl., 6(1):7-19, June
2004.

G. Wu and E. Y. Chang. Class-boundary alignment
for imbalanced dataset learning. In In ICML 2003
Workshop on Learning from Imbalanced Data Sets,
pages 49-56, 2003.

X. Wu, V. Kumar, Ross, J. Ghosh, and et al. Top 10
algorithms in data mining. Knowledge and
Information Systems, 14(1):1-37, 2008.

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]



Data Logistic | SVM CART |[C4.5 Ada- RF C5.0 HDDT | Fast
Boost Boxes
pima 0.8587 | 0.8468 [0.7738 |0.6579 |0.6810 |0.6942 |0.6574 |0.6642 |0.7298
(0.0112)| (0.0126)| (0.0123)| (0.0347) | (0.0218)| (0.0126) | (0.0353)| (0.0274) | (0.0241)
castle 0.5 1 0.9941 [0.9947 |0.9949 |0.9922 [0.9941 |0.9949 |1
(0) (0) (0.0068) | (0.0060) | (0.0046) | (0.0079) | (0.0060)| (0.0062)] (0)
corner 0.9871 | 0.9948 [0.9488 [0.5997 |0.6984 |0.6828 |0.5612 |0.6865 |0.9891
(0.0129)| (0.0005)| (0.2717)| (0.1482) | (0.0449)| (0.0265)| (0.1110)| (0.0365) | (0.0001)
diamond | 0.5 0.9980 | 0.9585 |0.9328 [0.9460 |0.9433 [0.9311 |0.9364 |0.9744
(0) (0.0004)| (0.0129)| (0.0181) | (0.0117)| (0.0121) | (0.0208)| (0.0180) | (0.0062)
square 0.5404 [ 0.9944 [0.9949 [0.9949 [0.9939 |0.9947 |[0.9949 |0.9949 |0.9984
(0.0718)| (0.0001)| (0.0051) | (0.0043) | (0.0033)| (0.0033)| (0.0043)| (0.0027) | (0.0015)
flooded 0 0.9831 [ 0.9466 |0.5488 |0.7017 |0.7036 |0.5482 |[0.6992 |09638
(0) (0.0010) | (0.0157)| (0.1074) | (0.0231)| (0.0252) | (0.1077)| (0.0208)| (0.0091)
fourclass | 0.8122 | 0.9957 | 0.9688 [0.9916 |0.9670 |0.9920 |0.9670 |0.9698 |0.9546
(0.0195)| (0.0176)| (0.0176) | (0.0296) | (0.0265)| (0.0053)| (0.0130)| (0.0116) | (0.0174)
castle3D | 0.5449 |1 0.9532° [ 0.9530 |0.9272 |0.9455 |0.9439 |0.9530 |1
(0.0324) | (0) (0.0347) | (0.0374) | (0.0499)| (0.0563)| (0.0615)| (0.0374)] (0)
corner3D | 0.8448 | 0.9225 | 0.8481 |[0.5596 |0.6245 |0.5657 |0.5622 |0.6413 |0.9736
(0.0316) | (0.0463)| (0.0504) | (0.0729) | (0.03927) (0.0309) | (0.0778)| (0.0457) | (0.0091)
diamond3D| 0.5449 | 0.7962 | 0.7372 | 0.5 0.5492 | 0.5957 |0.5622 |0.6883 |0.9516
(0.0324) | (0.0917)| (0.0347) | (0.0374)| (0.0499) | (0.0309)| (0.0778)| (0.0542) | (0.0119)
square3D | 0.5 0.9626 | 0.9106 | 0.5387 |0.8703 |0.8790 |0.5811 |0.9034 |0.9578
(0) (0.0156) | (0.0306) | (0.1224) (0.01451) (0.0234)| (0.1712) (0.0322) | (0.0090)
flooded3D | 0.5 0.7912 | 0.7724 | 0.5 0.5471 | 0.5489 [ 0.5 0.6422" [0.9233
(0) (0.0781)| (0.0902) | (0) (0.0329) | (0.0440) | (0) (0.0749) | (0.0307)
breast 0.9297 | 0.9801 [0.9516 |0.9251 |0.9457 |0.9609 |0.9281 |0.9231 |0.8888
(0.0230) | (0.0079)| (0.0173)| (0.0138) | (0.0329)| (0.0102)| (0.0135)| (0.0180) | (0.0313)
abalonel9 |0.5188 | 0.5 0.5382 | 0.5 0.5 0.5 0.5 0.5116 |0.6882
(0.0182)| (0) (0.0261) | (0) (0) (0) (0) (0.0164) | (0.0583)
yeast6 0.8503 [ 0.8649 [0.7995 |0.7129 |0.7126 |0.7277 |0.7129 |0.7064 |0.8609
(0.0341) | (0.0246)| (0.0624) | (0.0829) | (0.0536)| (0.0581) (0.0853)| (0.0772) | (0.0585)
yeasth 0.9499 [ 0.9229 |0.9197 |0.8280 |0.8305 |0.8061 |0.8241 |0.7931 |0.9767
(0.0479)| (0.0339)| (0.0575) | (0.1159)| (0.0859) | (0.0616)| (0.1157)| (0.1126) | (0.0092)
yeast1289 | 0.6319 |0.5618 |0.7076 |0.5088 |0.5152 |0.5067 |0.5156 |0.5531 |0.5932
(0.0433) | (0.0332)| (0.0665) | (0.0322) | (0.0288)| (0.0141)| (0.0342)| (0.0436) | (0.0557)
yeast4 0.8001 [0.7836 |0.7595 |0.6115 |0.6131 |0.5922 |0.6210 |0.6289 |0.8794
(0.0309) | (0.0480)| (0.0410) | (0.0902) | (0.0326) | (0.0326)| (0.07899) (0.0471) | (0.0274)
yeast28 0.7907 | 0.6596 |[0.6402 [0.5100 |0.5 0.6489 |0.5248 |[0.6126 |0.7366
(0.0525)| (0.0565)| (0.0893) ] (0.0316)| (0) (0.0472)| (0.0784) | (0.0606) | (0.0467)
yeast1458 | 0.6164 | 0.5420 |0.6032 |0.5 0.5023 | 0.5095 | 0.5 0.5340 | 0.6090
(0.0510) | (0.0322)| (0.0281) | (0) (0.0088) | (0.0154)] (0) (0.0467) | (0.0431)
abalone918[ 0.8849 | 0.6780 |0.7427 |0.5904 |0.6117 |0.5580 |0.5725 |0.6310 |0.7171
(0.0270)| (0.0391)| (0.0517)| (0.0581) | (0.0456) | (0.03213) (0.0470)| (0.0418) | (0.0603)
pageblocks | 0.9461 | 0.7874 | 0.9945 | 0.9908 | 0.9908 | 0.9500 | 0.9908 | 0.9551 | 0.9500
134 (0.0444)| (0.1184)| (0.0109) | (0.0219)| (0.0449) | (0.0345)| (0.0219)| (0.0487) | (0.0359)
ecolid 0.8926 | 0.9176 | 0.8809 |0.7759 |0.7965 |0.8494 |0.8471 |0.8430 |0.9202
(0.0615) | (0.0424)| (0.0593)| (0.07756) (0.0775) | (0.0775)| (0.0532)| (0.0743) | (0.0622)
yeast17 0.7534 | 0.6905 | 0.7481 |0.5841 |0.5382 |0.5529 |0.5721 |0.6070 |0.7033
(0.0611) | (0.0386)| (0.0713)| (0.0698) | (0.0225)| (0.0359) | (0.0699) | (0.0509) | (0.0547)
shuttle04 | 0.9965 | 0.9828 |1 0.9994 |1 1 1 0.9994 | 0.9967
(0.0045)| (0.0105)| (0) (0.0008) | (0) (0) (0) (0.0008) | (0.0042)
glass2 0.7609 |0.6128 [0.7112 |0.5541 |0.5324 |0.5479 |0.5200 |0.5892 |0.7334
(0.0726) | (0.0941)| (0.1090) | (0.0640)| (0.0417)| (0.0597)| (0.0415)| (0.0573) | (0.0904)
vehicle3 | 0.8397 | 0.8524 |0.7733 |0.6515 |0.6591 |0.6484 |0.6621 |0.6823 |0.7003
(0.0079) | (0.0169)| (0.0255) | (0.0401) | (0.0212)| (0.0232)| (0.02117) (0.0300) | (0.0267)
vehiclel | 0.8587 | 0.8468 |0.7738 |0.6579 |0.6810 |0.6942 |[0.6574 |0.6719 |0.7298
(0.0112)| (0.0126) | (0.0123) | (0.0347)| (0.0218)| (0.0126)| (0.0353)| (0.0265) | (0.0241)
vehicle2 | 0.9632 |0.9837 |0.9437 [0.9351 |0.9677 |0.9775 |0.9365 |0.9248 [0.9191
(0.0134) | (0.0072)| (0.01880) (0.0133) | (0.0097)| (0.0106) | (0.0129)| (0.0243) | (0.0242)
haberman | 0.6589 | 0.6898 | 0.6699 | 0.5733 |0.6004 |0.6130 |0.5420 |0.5604 |0.5290
(0.1713)| (0.0427) (0.0276) | (0.0748)| (0.0323)| (0.0318)| (0.6780)| (0.0231) | (0.0265)
yeastl 0.7836 | 0.7991 |0.7641 |0.6672 |0.6859 |0.6130 |0.5420 |0.6369 |0.5903
(0.0184) | (0.0150)| (0.0133)| (0.0372) | (0.0219)| (0.0318)| (0.0678)| (0.0128) | (0.0286)
glass0 0.7951 | 0.8636 |0.8312 |0.7687 |0.7998 |0.8572 |0.7690 |0.7569 |0.7937
(0.0437)| (0.0336) | (0.0345) | (0.0619)| (0.0381)| (0.0281)| (0.0595)| (0.0424) | (0.0212)
iris0 1 0.998 |1 0.978 |1 1 0.972 | 0.9880 |1
(0) (0.0063)| (0) (0.0175)| (0) (0) (0.0169)| (0.0193) | (0)
wisconsin | 0.9746 | 0.9735 | 0.9741 | 0.9455 |0.9611 |0.9672 |0.9416 |0.9249 |0.8054
(0.0093) | (0.0073)| (0.0075) | (0.0124)] (0.0122)| (0.0072)| (0.0121)| (0.0203) | (0.1393)
ecoli0l 0.9728 | 0.9850 | 0.9840 | 0.9806 | 0.9828 | 0.9855 | 0.9806 | 0.9806 |0.9433
(0.0140) | (0.0091)| (0.0105)| (0.0107) | (0.0063)| (0.0097)| (0.0107)| (0.0107) | (0.0300)
glass1 0.7247 | 0.8057 [0.7598 |0.7050 |0.6997 |0.7833 |0.6822 |0.7189 |0.6654
(0.0363) | (0.0340)| (0.0490) | (0.0358) | (0.0478)| (0.0274)| (0.0320) | (0.0586) | (0.0356)
breast tis- | 0.9411 |0.9908 |0.9417 |0.9450 |[0.9632 |0.9531 |0.9630 |0.9314 |0.9953
sue (0.0394) | (0.0064)| (0.0747)| (0.0602) | (0.0297)| (0.0505)| (0.0403)| (0.0550) | (0.0042)
Table 5: Comparison of test data AUH of Fast Boxes with other algorithms

342




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 15.12 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140624130206
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Up
     15.1200
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move right by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140624130206
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Right
     7.2000
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 14.40 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140624130206
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     14.4000
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     10
     9
     10
      

   1
  

 HistoryList_V1
 qi2base





