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ABSTRACT
Distance metric learning (DML) aims to learn a distance
metric better than Euclidean distance. It has been success-
fully applied to various tasks, e.g., classification, cluster-
ing and information retrieval. Many DML algorithms suffer
from the over-fitting problem because of a large number of
parameters to be determined in DML. In this paper, we
exploit the dropout technique, which has been successfully
applied in deep learning to alleviate the over-fitting prob-
lem, for DML. Different from the previous studies that only
apply dropout to training data, we apply dropout to both
the learned metrics and the training data. We illustrate
that application of dropout to DML is essentially equivalent
to matrix norm based regularization. Compared with the
standard regularization scheme in DML, dropout is advan-
tageous in simulating the structured regularizers which have
shown consistently better performance than non structured
regularizers. We verify, both empirically and theoretically,
that dropout is effective in regulating the learned metric
to avoid the over-fitting problem. Last, we examine the
idea of wrapping the dropout technique in the state-of-art
DML methods and observe that the dropout technique can
significantly improve the performance of the original DML
methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning

General Terms
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1. INTRODUCTION
Learning a good distance metric is essential to distance

based algorithms and applications, e.g., k-nearest neighbors,
k-means clustering, content-based image retrieval (CBIR),
etc. Distance metric learning (DML) aims to learn a lin-
ear mapping such that in the mapped space, examples from
the same class are closer to each other than those from
different classes. Many methods have been developed for
DML [6, 7, 16, 26, 27] in the past, and DML has been suc-
cessfully applied in various domains, including information
retrieval [13], ranking [6], supervised classification [26], clus-
tering [27], semi-supervised clustering [5] and domain adap-
tation [20].

One problem with DML is that since the number of pa-
rameters to be determined in DML is quadratic in the di-
mension, it may overfit the training data [26], and lead to
a suboptimal solution. Although several heuristics, such as
early stopping, have been developed to alleviate the over-
fitting problem [26], their performance is usually sensitive
to the setting of parameters (e.g. stopping criterion in early
stopping), making it difficult for practitioners. Another
problem with many existing DML methods is their high
computational cost since they have to project intermediate
solutions onto the Positive Semi-Definite (PSD) cone at ev-
ery iteration to ensure that the learned metric is PSD. In [6],
the authors show that it is possible to avoid the high cost
of PSD projection by an one-projection paradigm that only
needs to project the learned metric onto the PSD cone once
at the end of the optimization algorithm. We adopt the
one-projection paradigm in this paper to alleviate the high
computational cost.

Recently, dropout has been found to be helpful in allevi-
ating the over-fitting problem in training deep neural net-
works [14]. It randomly omits half of the feature detectors
to prevent the complex co-adaptation between those neu-
rons. The main intuition behind dropout is that it improves
the robustness of individual neurons in order to avoid the
over-fitting problem. Theoretical analysis about the regu-
larization role of dropout in neural network can be found
in [1]. Besides the success in deep learning, dropout has
been applied to regression [24] in order to obtain robust fea-
ture representations. Features with artificial noises has been
a classic topic in machine learning and data mining, and
has been examined by many studies [17, 19] with the focus
on additive noise that usually leads to a L2 regularizer [2].
Wager et al. [25] analyze dropout within the framework of
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regression and find that dropout is first-order equivalent to a
L2 regularizer for the dataset scaled by the inverse diagonal
Fisher information matrix. Although dropout has received
a lot of interests in machine learning and data mining com-
munity, to the best of our knowledge, this is the first study
that exploits dropout for alleviating the over-fitting problem
in DML.

In this paper, we, for the first time, introduce dropout
to DML. Unlike previous studies on dropout that only ap-
ply dropout to training data, we apply dropout to both the
learned metrics and the training data. By applying appro-
priate dropout probabilities to the learned metric, we show
that dropout can be equivalent to Frobenius norm and Lp in
expectation. In addition, we develop a structured regular-
izer using the dropout technique. Unlike the conventional
regularizer that treats diagonal and off diagonal elements
equivalently, the structured regularizer introduces different
dropout probabilities for diagonal elements and off diago-
nal elements. To verify the effect of dropout in DML, we
have conducted a comprehensive study that compares the
dropout technique to other regularization techniques used in
DML. Experimental results show that dropout significantly
improves the classification performance on most datasets.
In addition, we observe that dropout behaves like a trace
norm based regularizer in DML when applied to training
data: it controls the rank of the learned metric and leads to
a skewed distribution of eigenvalues. This is in contrast to
the previous studies that view dropout as a L2 regularizer.
Finally, we show that the dropout technique can be easily
incorporated into the state-of-art DML methods and signif-
icantly improve their performance for most cases. The main
contribution of this work is summarized as follows.

• We, for the first time, introduce dropout to DML and
apply it to both the learned metric and the training
data.

• We show that it is possible to construct structured
regularizers using the dropout technique, and verify
its performance, both theoretically and empirically.

• We apply the dropout to the state-of-art DML meth-
ods and show it can significantly enhance their perfor-
mance.

The rest of the paper is organized as follows. Section 2
introduces the related DML methods and the analysis for
dropout. Section 3 describes applying dropout to the learned
metric and training data, respectively. Section 4 summarizes
the results of the empirical study. Section 5 concludes this
work and discusses the future directions.

2. RELATED WORK
Distance metric learning has been studied sufficiently dur-

ing the past years [6, 7, 22, 26, 27] and detailed investigations
could be found in the survey papers [15, 28]. The early works
focus on optimizing pair-wise constraints [7, 27] to make
sure the distance between examples from the same class is
less than a pre-defined threshold while that from the differ-
ent classes is larger than the other threshold. Nowadays,
triplet constraints, where the distance of examples from the
same class should be marginally smaller than that of exam-
ples from different classes, are preferred [6, 26] due to their
superior performance compared with pair-wise constraints.

More analysis shows that triplet constraints have the large
margin property and could be explained as learning a set of
local SVMs [8]. However, either taking pair-wise constraints
or triplet constraints increases the number of training data
exponentially, which significantly promotes the risk of over-
fitting for DML. In fact, over-fitting phenomenon is reported
by many DML methods [6, 26], and most of them try to al-
leviate it by PSD constraint. PSD constraint, on one hand,
is the feasible set where the optimal metric should live in,
and on the other hand, restricts the learned metric in the
PSD cone to reduce the complexity of the model. Given
a huge number of constraints, stochastic gradient descent
(SGD) is widely used to learn the metric and PSD projec-
tion occurs at every iteration [23]. Unfortunately, the com-
putational cost of PSD projection is cubic to the dimension
of data, which significantly limits the application of DML
in high dimensional datasets. Additionally, recent empir-
ical study [6] demonstrates that one-projection paradigm,
which only performs PSD projection once at the end of the
algorithm, has the similar performance as projecting at ev-
ery iteration. In this paper, we bring dropout to overcome
over-fitting in DML. We adopt triplet constraints and one-
projection paradigm setting, and show that dropout signifi-
cantly improves the performance of existing DML methods.

Dropout is a technique developed for training deep neural
networks [14]. Since deep neural network is a very complex
model and is easy to overfit a small size of training data,
dropout randomly omits half of neurons during training to
limit the co-adaptation between neurons. Dropout makes
sure that each learned neuron is robust. Besides deep learn-
ing, dropout has been introduced to more general regression
task these years [24, 25]. Maaten et al. [24] use dropout to
learn a robust feature representation for bag-of-words fea-
tures, which significantly improves the performance over the
original features. Although dropout belongs to the classic
artificially corrupted features, it is better than other kinds
of noises as reported in the work [24]. Recently, Wager et
al. [25] analyze dropout within the framework of general
regression task, and find that dropout is first-order equiv-
alent to the L2 regularizer on the rescaled data. The ex-
periments in the study [25] demonstrate that dropout, as
a data-dependent L2 regularizer, outperforms the standard
L2 norm significantly. In this paper, we introduce dropout
for DML. Unlike the previous works that focus on dropout
in features [24, 25], we also apply dropout for the learned
metric. We observe that dropout is equivalent to Frobenius
norm, L1 norm and trace norm with different dropout strate-
gies. Empirical study validates the effectiveness of dropout
in DML.

3. DML USING DROPOUT
Given the dataset X = [x1, · · · ,xn] ∈ Rd×n, distance

metric learning is to learn a good Mahalanobis distance met-
ric M , so that for each triplet constraint (xi,xj ,xk), where
xi and xj are in the same class and xk is from a different
class, we have

dist(xi,xk)− dist(xi,xj) > 1

where dist(xi,xj) is the squared Mahalanobis distance be-
tween xi and xj and is measured by

dist(xi,xj) = (xi − xj)
>M(xi − xj)
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Algorithm 1 SGD for DML

1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet {xt

i,x
t
j ,x

t
k}

5: Mt = Mt−1 − η∇`
6: end for
7: return Πpsd(M̄)

Therefore, the objective optimization problem based on min-
imizing empirical risk could be written as

min
M∈Sd

+

∑
t

`(〈At,M〉)

where Sd
+ is the d×d symmetric PSD cone, `(·) is the convex

loss function, and At = (xt
i−xt

j)(x
t
i−xt

j)
>− (xt

i−xt
k)(xt

i−
xt
k)>. 〈·, ·〉 denotes the dot product for matrix.
Since the number of triplets is very large (it can be as

high as O(n3)), the optimization problem is usually solved
by stochastic gradient descent (SGD) [7, 23]. Instead of
projecting the learned metric onto PSD cone at every itera-
tion, which can be an expensive operation, we adopt one-
projection paradigm [6], which only projects the learned
metric onto the PSD cone once at the end of iterations.
Empirical studies have shown that one-projection-paradigm
is significantly more efficient and yields the similar perfor-
mance as SGD with PSD projection performed at every iter-
ation. Therefore, in this work, we will focus on the following
optimization problem without the PSD constraint.

min
M∈Sd

∑
t

`(〈At,M〉)

Algorithm 1 gives the standard SGD algorithm for DML
and dropout will be applied to perturb Step 5. We will dis-
cuss the details in the next section within this framework.
In particular, we will discuss two different applications of
dropout, i.e. application of dropout to the learned metric
and application of dropout to the training data, in the fol-
lowing two subsections.

3.1 Applying Dropout to Distance Metric
In this section, we focus on applying dropout to the learned

metric. Let M be the metric learned from the previous it-
eration. To apply the dropout technique, we introduce a
Bernoulli random matrix δ = [δi,j ]

d
i,j=1, where each δi,j is a

Bernoulli random variable with δi,j = δj,i. Using the ran-
dom matrix δ, we compute the dropped out distance metric,
denoted by M̂ as

M̂i,j = δi,jMi,j , i, j = 1, . . . , d

Note that by enforcing δi,j = δj,i, M̂ is ensured to be a
symmetric matrix. Below, we will discuss how to design the
dropout probabilities for the Bernoulli random matrix δ to
simulate the effect of Frobenius norm based regularization
and L1 norm based regularization, respectively.

3.1.1 Frobenius norm
Frobenius norm is the most widely used regularizer in

DML [23, 26], and the standard DML problem with Frobe-

nius norm is given by

min
M∈Sd

1

T

T∑
t=1

`(〈At,M〉) +
q

2η
‖M‖2F (1)

The updating rule in SGD for Frobenius norm based regu-
larization is

Mt = Mt−1 − qMt−1 − η∇`t(Mt−1)

where `t(M) = `(〈At,M〉).
Instead of using the regularizer directly, we could simu-

late the effect of Frobenius norm based regularization by
applying dropout to the learned metric Mt−1. In particu-
lar, the Bernoulli random matrix δ is constructed by sam-
pling each δi,j:i≤j independently from a Bernoulli distribu-
tion with Pr[δ = 0] = q and setting δj,i = δi,j to ensure that
δ is symmetric. It is easy to verify that

E[M̂t−1] = (1− q)Mt−1

and the updating rule becomes

Mt = M̂t−1 − η∇`t(Mt−1)

Theorem 1. Let M∗ be the optimal solution output by
Algorithm 1. Let M̄ be the solution output by Algorithm 1
with dropout in Step 5 and q be the probability that dropout
occurs in each item of the learned metric. Assume |x|2 ≤ r
and q = 1/T , we have

E[`(M̄)]− `(M∗) ≤
1

ηT
‖M∗‖2F + 8ηr2(1 +

1

T
)

The detailed proof can be found in appendix. By setting the
stepsize η as

η =
‖M∗‖F
r
√

8 + 8T

we have

E[`(M̄)]− `(M∗) ≤
4r
√

2 + 2T

T
‖M∗‖F = O(1/

√
T )

It is well known that O(1/
√
T ) is the minimax convergence

rate for SGD, when the loss function is Lipschitz continu-
ous [11, 12, 29]. As a result, with the appropriate choice of
dropout probabilities, dropout will maintain the same con-
vergence rate as the standard SGD method. We also notice
that q is suggested to be set as 1/T in order to achieve

O(1/
√
T ) convergence. This result implies that dropout

should not be taken too frequently, which is consistent with
the analysis of other corrupted feature methods [2, 24]. Fi-
nally, since the derivation of convergence rates keep the same
regardless of the sampling probabilities used in dropout, we
thus will omit the analysis on convergence for the following
cases.

3.1.2 L1 norm
Besides Frobenius norm, L1 norm also could be used in

DML as

min
M∈Sd

1

T

∑
t

`(〈At,M〉) +
q

η
‖M‖1

It is known as the composite optimization problem [18] and
could be solved by iterative thresholding method{

M ′t = Mt−1 − η∇`t(Mt−1)
Mt:i,j = sign(M ′t:i,j) max{0, |M ′t:i,j | − q}
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With different design of sampling probabilities, we can
apply dropout to the learned metric to simulate the effect
of L1 regularization. In particular, we introduce a data-
dependent dropout probability as

Pr[δi,j = 0] = min{1, q

|Mi,j |
}

Now, instead of perturbing Mt−1, we apply dropout to M ′t ,
i.e. the matrix after the gradient mapping. It is easy to
verify that the expectation of the perturbed matrix M̂ ′ is
given by

E
[
[M̂ ′t]i,j

]
=

{
[M ′t ]i,j − sign([M ′t ]i,j)q : q ≤ |[M ′t ]i,j |

0 : q > |[M ′t ]i,j |

which is equivalent to the thresholding method stated above.
It is straightforward to extend the method to Lp norm

Lp(M) = (
∑
i,j

|Mi,j |p)1/p

by setting the probability as

Pr[δi,j = 0] = min{1, q|Mi,j |p−2

(
∑

i,j M
p
i,j)

1−1/p
}

Note that when p = 1, it is equivalent to the probability for
L1 norm.

3.1.3 Structured regularizer
Although these conventional regularizers have been ap-

plied for DML, they cannot exploit the structure of metrics
sufficiently. Given a distance metric, the diagonal elements
are more important than those from off diagonal. It is due
to the fact that diagonal elements represent the importance
of each feature (e.g., linear classifier) rather than the inter-
actions between different features, and they also control the
trace of the learned metric. Therefore, different regularizers
should be assigned for diagonal and off diagonal elements,
respectively. Fortunately, dropout can serve this purpose
conveniently.

Given Q, which is a random matrix with each element
from a uniform distribution in [0, 1], we investigate the ma-
trix

R = (Q+Q>)/2 (2)

It is obvious that the diagonal elements of R are still from
the same uniform distribution, while elements in off diagonal
are from a triangle distribution with cumulative distribution
function as

F (q) =

{
2q2 : 0 ≤ q < 0.5

1− 2(1− q)2 : 0.5 ≤ q ≤ 1

Figure 1 illustrates the cumulative distribution function for
the diagonal elements of R and those living in off diagonal.
The dropout probability based on the random matrix R is
defined as

Pr[δi,j = 0] = Pr[Ri,j ≤ q]

First, we consider dropout with the same probability for
each item of the metric as for Frobenius norm. Then, the
probability of δ is

Pr[δi,j = 0] = Pr[Ri,j ≤ q] =

{
q : i = j

2q2 : i 6= j
(3)

Figure 1: Cumulative distribution function for diag-
onal elements and those in off diagonal.
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Algorithm 2 Dropout as Structured Frobenius Norm
(SGD-M1)

1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xt

i,x
t
j ,x

t
k)

5: Generate random matrix R as in Eqn. 2
6: Generate dropout parameters δ by Eqn. 3
7: Dropout: M̂t−1 = δMt−1

8: Mt = M̂t−1 − η∇`
9: end for

10: return Πpsd(M̄)

since q = 1/T � 0.5 as indicated in Theorem 1.

Therefore, the expectation of M̂t−1 is

M̂t−1 =

{
M t−1

i,j − qM
t−1
i,j : i = j

M t−1
i,j − 2q2M t−1

i,j : i 6= j

which is equivalent to solving the following problem

min
M∈Sd

1

T

∑
t

`(〈At,M〉) +
q

2η

d∑
i

M2
i,i +

q2

η

∑
i,j:i 6=j

M2
i,j

It is obvious that the L2 norm of diagonal elements in the
metric is penalized quadratically more than those from off
diagonal. This regularizer seems complex but the implemen-
tation by dropout is quite straightforward and Algorithm 2
summarizes the method.

Then, we consider dropout with the probability based on
the elements as

Pr[δi,j = 0] = Pr[Ri,j ≤ min{1, q

|Mi,j |
}] (4)

=


min{1, q/|Mi,j |} : i = j

2(q/|Mi,j |)2 : i 6= j, q < 0.5|Mi,j |
1− 2(1− q/|Mi,j |)2 : i 6= j, 0.5 ≤ q/|Mi,j | ≤ 1

1 : q > |Mi,j |

It seems too complicated to analyze at the first glance, but
Figure 1 could help us to understand the dropout strategy
clearly. For the diagonal elements, they are actually shrunk
by q as the L1 regularizer. For the off diagonal elements,
if |Mi,j | > 2q, the red dashed curve is under the blue solid
one, which means the shrinkage is less than q. When q ≤
|Mi,j | ≤ 2q, the red dashed curve stands above the blue solid
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Algorithm 3 Dropout as Structured L1 Norm (SGD-M2)

1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xt

i,x
t
j ,x

t
k)

5: M ′t = Mt−1 − η∇`
6: Generate random matrix R as in Eqn. 2
7: Generate dropout parameters δ by Eqn. 4
8: Dropout: Mt = δM ′t
9: end for

10: return Πpsd(M̄)

one and the shrinkage on these elements is much faster than
the standard L1 norm. Since q is very small, most of the
off diagonal elements have relatively larger values and will
be shrunk slower than those with extremely small values.
Algorithm 3 summarizes this method. Unlike Algorithm 2,
dropout in Algorithm 3 is performed after updating with the
current gradient.

3.2 Applying Dropout to Training Data
Besides dropout within the learned metric, in this section

we apply dropout to the training data as many pervious
studies [24, 25]. Since the analysis for data highly depends
on the loss function, we take the hinge loss, which is the
most widely used loss function in DML [6, 7, 23, 26], as an
example.

Hinge loss is defined as `(z) = [1+z]+, where z = 〈At,M〉
and

At = (xt
i − xt

j)(x
t
i − xt

j)
> − (xt

i − xt
k)(xt

i − xt
k)>

Obviously, the loss function penalizes At rather than the
individual example, so dropout is taken according to the
structure of At. To avoid affecting the decision of hinge
loss, we perturb At after calculating the hinge loss.

We begin with additive noise as

Ât = (xt
i − xt

j + ε)(xt
i − xt

j + ε)> − (xt
i − xt

k)(xt
i − xt

k)> (5)

where ε ∼ N (0, qId×d). So the expectation of Ât is

E[Ât] = E[(xt
i − xt

j + ε)(xt
i − xt

j + ε)>]

−(xt
i − xt

k)(xt
i − xt

k)>

= At + qI

By replacing At in Prob. 1 with Ât, the expectation of the
problem becomes

min
M∈Sd

∑
t

`(〈At,M〉) +
∑

t:`t>0

q‖M‖tr (6)

Note that the trace norm stands outside of the hinge loss,
since the noise is added only after computing the hinge loss
and only active constraints will contribute to the trace norm.
We use the trace norm rather than the trace of the metric,
because the final metric will be projected onto the PSD cone,
where the trace of metric is equivalent to the trace norm.
Algorithm 4 describes the details of the method.

Although the Guassian noise could perform as the trace
norm, the external noise may affect the solution. Therefore,
we consider dropout as

x̂t
i = δtx

t
i, x̂t

j = δtx
t
j

Algorithm 4 Additive Noise as Trace Norm (SGD-D1)

1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xt

i,x
t
j ,x

t
k)

5: if `(At,Mt−1) > 0 then
6: Generate a Guassian noise vector ε
7: Add noise as in Eqn. 5
8: Mt = Mt−1 − ηÂt

9: end if
10: end for
11: return Πpsd(M̄)

Algorithm 5 Dropout as Trace Norm (SGD-D2)

1: Input: Dataset X ∈ Rd×n, #Iterations T , Stepsize η
2: Initial M0 as an identity matrix
3: for t = 1, · · · , T do
4: Randomly sample a triplet (xt

i,x
t
j ,x

t
k)

5: if `(At,Mt−1) > 0 then
6: Dropout as in Eqn. 7
7: Mt = Mt−1 − ηÂt

8: end if
9: end for

10: return Πpsd(M̄)

where δt is a binary value random variable and

Pr[δt = 1 + q/(xt
i − xt

j)
2] = 1/(1 + q/(xt

i − xt
j)

2)

It is obvious that E[δt] = 1 and V [δt] = 1 + q/(xt
i − xt

j)
2.

Similar to the additive noise, we only apply dropout for the
first item of At as

Ât = (x̂t
i − x̂t

j)(x̂
t
i − x̂t

j)
> − (xt

i − xt
k)(xt

i − xt
k)>

Note that when we perform dropout to the training data ac-
cording to this strategy, we actually drop the rows and the
corresponding columns in the first component (xt

i−xt
j)(x

t
i−

xt
j)
> of At. Since the expectation of random variables in

diagonal is the variance and it is 1 in off diagonal, the ex-
pectation of Â is

E[Ât] = E[(x̂t
i − x̂t

j)(x̂
t
i − x̂t

j)
>]− (xt

i − xt
k)(xt

i − xt
k)>

= At + qI

By taking Ât back to Prob. 1, we obtain the same problem
as Prob. 6. Algorithm 5 summarizes this dropout strategy
for training data.

Theorem 2. Let M∗ be the optimal solution output by
Algorithm 1. Let M̄ be the solution output by Algorithm 5
and q be the probability that dropout occurs in each feature
of the dataset. Assume |x|2 ≤ r and q = 1/T , we have

E[`(M̄)]−`(M∗) ≤
‖M∗‖2F

2ηT
+8ηr2+

4ηr2

T
(2d+1)+

‖M∗‖tr
T

The detailed proof is referred in appendix. If we set the
stepsize η as

η =
‖M∗‖F

2r
√

4T + 4d+ 2

327



we have

`(M̄)− `(M∗) ≤
1

T

(
2r
√

(4T + 4d+ 2)‖M∗‖F + ‖M∗‖tr )

where O(1/
√
T ) convergence rate, the well known result for

standard SGD, is also observed as in Theorem 1.
According to Theorem 2, applying dropout to training

data with the appropriate component and dropout probabil-
ity does not hurt the convergence performance of standard
SGD method too. Furthermore, q is required to be suffi-
ciently small to avoid the suboptimal solution, which is also
consistent with the analysis in Theorem 1.

4. EXPERIMENTS

4.1 Experiments Setting
Six datasets from different application scenarios are used

to verify the effectiveness of the proposed method. Table 1
summarizes the information of these datasets. ta is a so-
cial network dataset with 6 different categories of terrorist
attacks [21]. semeion is a handwritten digit dataset down-
loaded directly from the UCI repository [9]. caltech10 is a
subset of Caltech256 image dataset [10] with 10 most pop-
ular categories and we use the version pre-processed by the
study [6], where each image is represented by an 1, 000-
dimension vector. The other datasets are directly down-
loaded from LIBSVM database [4]. For dna, protein and
sensit, we use the standard training/testing split provided
by the original dataset. For the rest datasets, we randomly
select 70% of data for training and use the remaining 30% for
testing. For each dataset, we randomly select T = 100, 000
active triplets (e.g., incur the positive hinge loss by Eu-
clidean distance) within the range of 3-nearest same class
neighbors as suggested by the study [26]. K-Nearest Neigh-
bor (k=3) classifier is applied after obtaining the metric,
since we optimize the triplets from 3-nearest neighbors. All
experiments are repeated by 5 trials on different randomly
generated triplet sets and the average result with standard
deviation is reported.

4.2 Comparison with SGD Methods
In the first experiment, we compare the standard SGD

for DML to five SGD variants including our proposed meth-
ods (i.e., SGD-M1, SGD-M2, SGD-D1, and SGD-D2). The
methods are summarized as follows.
• SGD: stochastic gradient descent method as described in

Algorithm 1.
• SGD-PSD: SGD with PSD projection at every iteration.
• SGD-M1: SGD with dropout for the learned metric as

structured Frobenius norm (Algorithm 2).
• SGD-M2: SGD with dropout for the learned metric as

structured L1 norm (Algorithm 3).
• SGD-D1: SGD with additive Guassian noise in training

data as trace norm (Algorithm 4).
• SGD-D2: SGD with dropout for training data as trace

norm (Algorithm 5).
Euclidean distance is also included as the baseline method
and denoted as “Euclid”.

All of these SGD methods are applied on the same triplet
set and take one-projection paradigm except SGD-PSD that
projects the learned metric onto the PSD cone at every iter-
ation. We search the stepsize η in {0.1, 1, 10} by cross val-

Table 1: Statistics for the datasets used in the em-
pirical study. #C is the number of classes. #F
is the number of features. #Train and #Test rep-
resent the number of training data and test data,
respectively.

# C # F #Train #Test
ta 6 106 902 391

semeion 10 256 1,115 478
dna 3 180 2,000 1,186

caltech10 10 1,000 3,151 1,338
protein 3 357 17,766 6,621
sensit 3 100 78,823 19,705

idation and η = 1 shows the best performance, so we fix it
for all experiments. The dropout probability parameter q for
the proposed methods is searched in {10−i : i = 1, · · · , 5}.
All SGD methods are started with an identity matrix in the
experiment.

Table 2 shows the classification accuracy of different SGD
methods. First, it is not surprising to observe that all DML
algorithms improve the performance compared to the Eu-
clidean distance. Second, for all datasets, we observe that
the proposed SGD methods with dropout (i.e., SGD-M1,
SGD-M2, SGD-D1, and SGD-D2) significantly outperform
the baseline SGD methods (i.e., SGD and SGD-PSD), which
is also demonstrated by the statistical significance exam-
ined via pairwise t-tests at the 5% significance level. Con-
cretely, on most datasets, the accuracy of SGD with dropout
is about 2% improved compared with that of SGD and it is
even 4% on protein.

Furthermore, we observe that SGD-M1 shows the best
performance on semeion, caltech10 and protein, while SGD-
M2 outperforms other methods on ta and dna, and SGD-D2
is the best on sensit. It is because dropout in the learned
metric and dropout in the training data represent different
regularizers, and different dataset prefers different regular-
izer. SGD-D1 and SGD-D2 have the similar performance
because they optimize the same trace norm. However, SGD-
D2 is a little bit better than SGD-D1 due to the reason that
no additional Guassian noise is introduced by SGD-D2. Fi-
nally, SGD-PSD performs same as if not worse than SGD,
which is consistent with the observation in the study [6].

Then, we investigate if dropout can perform as the reg-
ularizers as we expected. Figure 2 compares the effect of
different norms with different weights to that of SGD, where
only the parameter q of dropout varies and the others are
kept the same. First, since SGD-M1 puts more aggressive
penalty on the diagonal, Figure 2(a) shows how L2 norm
of the diagonal elements in the metric learned by SGD-
M1 varies as q decreases. We observe that the smaller the
parameter is, the larger the L2 norm is, and even when
q = 10−5, the L2 norm is still less than that of SGD. It
demonstrates that dropout as structured Frobenius norm
restricts the size of diagonal elements well. Second, Fig-
ure 2(b) compares the sparsity of the learned metric, where
sparsity is defined as

Sparsity =
#(Mi,j = 0)

d2
.

Without the constraint of L1 norm, the sparsity of the met-
ric learned by SGD is small as shown by the blue dashed line.
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Table 2: Comparison of classification accuracy (%) for different SGD methods, and the best result is bolded
(statistical significance examined via pairwise t-tests at the 5% significance level between baselines and the
proposed methods).

ta semeion dna caltech10 protein sensit
Euclid 80.15 91.63 80.10 62.36 50.05 72.72
SGD 83.14±0.39 94.14±0.36 92.58±0.39 65.29±0.29 60.19±0.16 74.92±0.09

SGD-PSD 82.94±0.56 94.27±0.11 92.61±0.35 64.88±0.39 58.15±0.47 74.54±0.08
SGD-M1 85.77±0.42 96.03±0.39 93.86±0.33 67.32±0.29 64.05±0.31 76.33±0.10
SGD-M2 86.55±0.22 95.61±0.42 94.76±0.59 66.04±0.24 62.76±0.47 76.10±0.08
SGD-D1 84.33±0.69 95.31±0.55 93.36±0.41 65.85±0.46 61.36±0.57 76.82±0.05
SGD-D2 84.74±0.50 95.40±0.39 93.66±0.39 66.07±0.37 62.86±0.46 76.89±0.07

Figure 2: Trend of effect for dropout as regularizers on dataset caltech. Fig.(a) is the L2 norm of the diagonal
elements in the metric learned by SGD-M1. Fig.(b) is the sparsity of the metric learned by SGD-M2. Fig.(c)
is the rank of the metric learned by SGD-D2.
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Figure 3: Comparison of training error and test error of different SGD methods with different size of triplets.
There is no over-fitting observed for SGD method with dropout.
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However, in SGD-M2 as plotted by the red dash dotted line,
with the increasing of the probability of dropout as the struc-
tured L1 norm, the learned metric becomes more sparse,
which confirms the effectiveness of SGD-M2. Finally, trace
norm constraint usually leads to a low-rank metric [3], so
we study the rank of the learned metric by SGD-D2 in Fig-
ure 2(c). As expected, when q becomes larger, more stress is
put on the trace norm and the lower-rank metric is induced.

Since dropout is found to be helpful to overcome over-
fitting in deep learning [10], we empirically study the role
of dropout for alleviating over-fitting problem in DML. We
fix all parameters as above except the number of sampled
triplets, to study the changes of training error and test er-
ror on the training and test set, with the increasing of the
number of triplets. Figure 3 shows the training error and
test error of SGD, SGD-PSD and SGD with best dropout
strategy on three small datasets (i.e., SGD-M1 on semeion
and SGD-M2 on the others), while the number of sampled

triplets increases from 20, 000 to 100, 000. First, we observe
that the training error of SGD with dropout is similar to
that of conventional SGD methods as we indicate in Theo-
rem 1. However, over-fitting is observed for SGD and SGD-
PSD when the number of triplets is up to 40, 000, while
there is no over-fitting phenomenon for SGD with dropout.
It further demonstrates the overwhelming performance of
dropout strategies in Table 2 and confirms that dropout is
also helpful to overcome the over-fitting problem in DML.

4.3 Comparison with State-of-Art Methods
Besides the comparison with various SGD methods, we

also compare our proposed dropout methods to three state-
of-art DML algorithms as follows.
• SPML [23]: a mini-batch stochastic gradient descent al-

gorithm for DML, which optimizes the hinge loss with
Frobenius norm as the regularizer.
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Table 3: Comparison of classification accuracy (%) with state-of-art DML methods. “Dropout” refers to
the best result of dropout from Table 2. Note that LMNN is a batch learning algorithm, and there is no
limitation for the triplets it uses and the number of PSD projections. The best result is bolded (statistical
significance examined via pairwise t-tests at the 5% significance level).

ta semeion dna caltech10 protein sensit
SPML 83.56±0.50 94.60±0.27 92.85±0.37 65.46±0.50 59.15±0.37 74.99±0.10
OASIS 83.20±0.95 94.06±0.19 88.57±0.28 65.06±0.40 58.83±0.38 73.50±0.15
LMNN 84.79±0.65 93.77±0.48 95.13±0.26 67.17±0.49 60.73±0.12 76.47±0.04

Dropout 86.55±0.22 96.03±0.39 94.76±0.59 67.32±0.29 64.05±0.31 76.89±0.07

Table 4: Comparison of classification accuracy (%) for SPML and its variants by wrapping different dropout
strategies in. The best result is bolded.

ta semeion dna caltech10 protein sensit
SPML 83.56±0.50 94.60±0.27 92.85±0.37 65.46±0.50 59.15±0.37 74.99±0.10

SPML-M1 84.59±0.38 95.48±0.41 93.27±0.16 66.68±0.70 61.38±0.36 75.63±0.08
SPML-M2 84.46±0.44 95.27±0.35 93.91±0.32 66.15±0.40 61.03±0.48 75.90±0.23
SPML-D 84.74±0.56 95.44±0.27 93.41±0.23 66.27±0.36 62.14±0.68 76.84±0.13

Table 5: Comparison of classification accuracy (%) for OASIS and its variants by wrapping different dropout
strategies in. The best result is bolded.

ta semeion dna caltech10 protein sensit
OASIS 83.20±0.95 94.06±0.19 88.57±0.28 65.06±0.40 58.83±0.38 73.50±0.15

OASIS-M1 84.74±0.86 95.69±0.43 93.35±0.33 67.11±0.31 62.44±0.55 75.47±0.15
OASIS-M2 84.79±0.79 94.73±0.38 94.33±0.54 66.12±0.49 62.61±0.60 75.47±0.12
OASIS-D 84.38±0.59 95.23±0.48 93.15±0.28 66.71±0.62 63.06±0.55 76.56±0.15

• OASIS [6]: an online learning approach for DML and the
symmetric version is adopted in the comparison.

• LMNN [26]: a batch learning method with Frobenius
norm for DML.

SPML and OASIS use the same triplet set as the proposed
methods and also adopt one-projection paradigm. LMNN is
a batch learning method, and thus there is no limitation for
the type and the number of triplets that it could use for each
iteration. Specifically, LMNN is not restricted to the set of
triplets used by other methods. There is also no constraint
for PSD projection in LMNN and it can perform PSD pro-
jection whenever it requires. All codes for these methods
are from the authors and the recommended parameters are
used. Since SPML is a stochastic method, it shares the same
setting as the proposed methods, where the parameter for
Frobenius norm is searched within the same range as q to
obtain the best performance. SPML and OASIS are both
initialized with an identity matrix, while LMNN starts with
the matrix from PCA without dimension reduction, which
usually has a better performance than the identity matrix
for the method [26].

Table 3 summarizes the classification accuracy of differ-
ent DML algorithms. “Dropout” denotes the best result
of dropout methods adopted from Table 2. It can be easily
observed that, although LMNN is a batch learning method
and could utilize much more information than our methods,
LMNN only has the similar performance on dna and cal-
tech10, while SGD method with dropout significantly out-
performs on all other datasets. It further demonstrates the
effectiveness of the proposed methods. SPML and OASIS
are slightly better than the standard SGD method, but sig-
nificantly worse than SGD method with dropout technique.
The performance of OASIS could be explained by the fact

that it does not include any conventional regularizer and
over-fitting could be easily induced. Although SPML com-
bines the Frobenius norm as the regularizer, it is worse than
SGD-M1 and SGD-M2 shown in Table 2, which implies that
the proposed structured norm by dropout is more effective
than the standard norm.

4.4 Wrap Dropout in Existing DML Methods
In this section, we demonstrate that dropout can be eas-

ily wrapped in the existing DML methods and help improve
the performance. First, we wrap dropout in SPML, which is
a state-of-art mini-batch SGD method for DML. Note that
SPML has the Frobenius norm as the regularizer, so we drop
it first to make sure that there is only one regularizer at one
time. Since it is a SGD method, the dropout on M is the
same as Algorithm 2 and Algorithm 3. We denote dropout as
the structured Frobenius norm on SPML as“SPML-M1”and
dropout as the structured L1 norm as “SPML-M2”. Instead
of randomly selecting one triplet at each iteration, SPML
samples b triplets at one time and updates according to the
batch of the gradient. Therefore, when applying dropout to
the training data, we simply perform the dropout on differ-
ent matrix A in the mini-batch as in Algorithm 5 and the
method is denoted as “SPML-D”.

Table 4 summarizes the results for wrapped SPML meth-
ods. First, it is not surprising to observe that all dropout
strategies improve the performance of SPML. On almost all
datasets, the improvement on accuracy is more than 1% and
it is even about 3% on protein, which is also consistent with
the observation in the comparison for various SGD meth-
ods. Although SPML applies the standard Frobenius norm
as the regularizer, SPML with different dropout strategies
outperforms it significantly according to the statistical sig-
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Figure 4: Procedure of wrapping dropout in OASIS.
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nificance examined via pairwise t-tests at the 5% significance
level, which shows the superior performance of the proposed
structured regularizers.

Then, we wrap dropout in OASIS, which is a state-of-art
online learning method for DML. Since online learning has
the similar process as stochastic gradient descent method,
wrapping dropout in is pretty straightforward. Figure 4 il-
lustrates the procedures of wrapping different dropout strate-
gies in OASIS. Let “OASIS-M1”, “OASIS-M2”,“OASIS-D”
denote dropout as the structured Frobeniuse norm, the struc-
tured L1 norm and the trace norm in OASIS, respectively.
The comparison of classification accuracy applied by 3-NN
is summarized in Table 5. The similar phenomenon as for
SPML is observed, that dropout always helps to improve the
performance of OASIS significantly according to pairwise t-
test at the 5% significance level.

In summary, wrapping dropout in existing DML methods
is not only convenient but also very helpful for performance
improvement.

5. CONCLUSION
In this paper, we propose two strategies to perform dropout

for DML, i.e., dropout in the learned metric and dropout in
the training data. For dropout in the metric, we propose
the structured regularizer, which is simulated with dropout
by assigning different dropout probabilities for the diagonal
elements and those living in off diagonal. For dropout in
the training data, the data-dependent dropout probability
is adopted to mimic the trace norm. We develop the theo-
retical guarantees for both dropout scenarios to show that
dropout will not affect the convergence rate of SGD with the
appropriate dropout probability. Furthermore, we demon-
strate that the proposed strategies are very convenient to
wrap in the existing DML methods. Our empirical study
confirms that the proposed methods have the overwhelm-
ing performance compared with the baseline methods, and
could significantly improve the classification accuracy for
the state-of-art DML methods. Since we currently apply
dropout to the learned metric and the training data sepa-
rately, we plan to examine the performance of the combina-
tion in the near future.
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APPENDIX
A. PROOF OF THEOREM 1

Proof.

‖Mt −M∗‖2F = ‖M̂t−1 − ηAt −M∗‖2F
= ‖δMt−1−(1− q)Mt−1+Mt−1−ηAt−M∗−qMt−1‖2F
= (δ−(1− q))2‖Mt−1‖2F +‖Mt−1−M∗‖2F +η2‖At‖2F
+q2‖Mt−1‖2F − 2η〈At,Mt−1 −M∗〉
+2(δ − (1− q))〈Mt−1,Mt−1 − ηAt −M∗ − qMt−1〉
−2q〈Mt−1,Mt−1 − ηAt −M∗〉

Since the loss function is convex, we have

`(Mt−1)−`(M∗) ≤
1

2η
(‖Mt−1 −M∗‖2F−‖Mt −M∗‖2F )

+
η

2
‖At‖2F +

1

2η

(
(δ − (1− q))2‖Mt−1‖2F + q2‖Mt−1‖2F

+2(δ − (1− q))〈Mt−1,Mt−1 − ηAt −M∗ − qMt−1〉
−2q〈Mt−1,Mt−1 − ηAt −M∗〉)

Taking expectation on δ, we have

E[`(Mt−1)]−`(M∗) ≤
1

2η
(‖Mt−1−M∗‖2F−‖Mt−M∗‖2F )

+
η

2
‖At‖2F +

1

2η
(q‖Mt−1‖2F−2q〈Mt−1,Mt−1−ηAt−M∗〉)

≤ 1

2η
(‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F ) +

η

2
‖At‖2F

+
q

2η
(2〈Mt−1, ηAt +M∗〉 − ‖Mt−1‖2F )

≤ 1

2η
(‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F ) +

η

2
‖At‖2F

+
q

2η
(‖ηAt +M∗‖2F )

≤ 1

2η
(‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+
(1 + q)η

2
‖At‖2F +

q

2η
‖M∗‖2F + q`(M∗)

Since |x| ≤ r, ‖At‖F ≤ 4r. Adding iterations from 1 to T
and setting q = 1/T , we have

E[`(M̄)]− (1− 1/T )`(M∗) ≤
1

ηT
‖M∗‖2F + 8r2(1 + 1/T )η

B. PROOF OF THEOREM 2
Proof.

‖Mt −M∗‖2F = ‖Mt−1 − ηÂt −M∗‖2F
= ‖Mt−1 −M∗‖2F + η2‖Ât‖2F − 2η〈Ât,Mt−1 −M∗〉

Taking expectation on Ât, we have

‖Mt −M∗‖2F
= ‖Mt−1−M∗‖2F +η2E[‖Ât‖2F ]−2η〈At + qI,Mt−1−M∗〉

Since the loss function is convex, it is

E[`(Mt−1)]−`(M∗) ≤
1

2η
(‖Mt−1−M∗‖2F−‖Mt−M∗‖2F )

+
η

2
E[‖Ât‖2F ] + q(‖M∗‖tr − ‖Mt−1‖tr)

≤ 1

2η
(‖Mt−1 −M∗‖2F − ‖Mt −M∗‖2F )

+
ηr2

2
(16 + 16dq + 8q) + q‖M∗‖tr

where q’s high order items are omitted since q is a small
number. Sum over the iteration from 1 to T , we have

E[`(M̄)]− `(M∗) ≤
‖M∗‖2F

2ηT
+ ηr2(8 + 8dq + 4q) + q‖M∗‖tr

The proof is finished by setting q = 1/T .
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