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ABSTRACT
Support vector machine (SVM) has been one of the most
popular learning algorithms, with the central idea of maxi-
mizing the minimum margin, i.e., the smallest distance from
the instances to the classification boundary. Recent theo-
retical results, however, disclosed that maximizing the min-
imum margin does not necessarily lead to better general-
ization performances, and instead, the margin distribution
has been proven to be more crucial. In this paper, we pro-
pose the Large margin Distribution Machine (LDM), which
tries to achieve a better generalization performance by opti-
mizing the margin distribution. We characterize the margin
distribution by the first- and second-order statistics, i.e., the
margin mean and variance. The LDM is a general learning
approach which can be used in any place where SVM can
be applied, and its superiority is verified both theoretically
and empirically in this paper.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
Recognition]: Design Methodology—classifier design and
evaluation; H.2.8 [Database Management]: Database Ap-
plications—Data mining

Keywords
Margin distribution; minimum margin; classification

1. INTRODUCTION
Support Vector Machine (SVM) [5, 26] has always been

one of the most successful learning algorithms. The basic
idea is to identify a classification boundary having a large
margin for all the training examples, and the resultant opti-
mization can be accomplished by a quadratic programming
(QP) problem. Although SVMs have a long history of lit-
eratures, there are still great efforts [16, 6, 25, 14, 8] on
improving SVMs.
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It is well known that SVM can be viewed as a learning ap-
proach trying to maximize over training examples the min-
imum margin, i.e., the smallest distance from the examples
to the classification boundary, and the margin theory [26]
provided a good support to the generalization performance
of SVM. It is noteworthy that the margin theory not only
plays an important role for SVMs, but also has been ex-
tended to interpret the good generalization of many other
learning approaches, such as AdaBoost [10], a major repre-
sentative of ensemble methods [31]. Specifically, Schapire et
al. [21] first suggested margin theory to explain the phe-
nomenon that AdaBoost seems resistant to overfitting; soon
after, Breiman [4] indicated that the minimum margin is
crucial and developed a boosting-style algorithm, Arc-gv,
which is able to maximize the minimum margin but with a
poor generalization performance. Later, Reyzin et al. [20]
found that although Arc-gv tends to produce larger min-
imum margin, it suffers from a poor margin distribution;
they conjectured that the margin distribution, rather than
the minimum margin, is more crucial to the generalization
performance. Such a conjecture has been theoretically s-
tudied [27, 11], and it was recently proven by Gao and Zhou
[11]. Moreover, it was disclosed that rather than simply con-
sidering a single-point margin, both the margin mean and
variance are important [11]. All these theoretical studies,
however, focused on boosting-style algorithms, whereas the
influence of the margin distribution for SVMs in practice
has not been well exploited.

In this paper, we propose the Large margin Distribution
Machine (LDM), which tries to achieve strong generalization
performance by optimizing the margin distribution. Inspired
by the recent theoretical result [11], we characterize the mar-
gin distribution by the first- and second-order statistics, and
try to maximize the margin mean and minimize the margin
variance simultaneously. For optimization, we propose a d-
ual coordinate descent method for kernel LDM, and propose
an averaged stochastic gradient descent (ASGD) method for
large scale linear kernel LDM. Comprehensive experiments
on twenty regular scale data sets and twelve large scale data
sets show the superiority of LDM to SVM and many state-
of-the-art methods, verifying that the margin distribution is
more crucial for SVM-style learning approaches than mini-
mum margin.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 presents the LDM.
Section 4 reports on our experiments. Section 5 discusses
about some related works. Finally, Section 6 concludes.
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2. PRELIMINARIES
We denote by X ∈ Rd the instance space and Y = {+1,−1}

the label set. Let D be an unknown (underlying) distribu-
tion over X × Y. A training set of size m

S = {(x1, y1), (x2, y2), . . . , (xm, ym)},

is drawn identically and independently (i.i.d.) according to
the distribution D. Our goal is to learn a function which is
used to predict the labels for future unseen instances.
For SVMs, f is regarded as a linear model, i.e., f(x) =

w⊤ϕ(x) wherew is a linear predictor, ϕ(x) is a feature map-
ping of x induced by a kernel k, i.e., k(xi,xj) = ϕ(xi)

⊤ϕ(xj).
According to [5, 26], the margin of instance (xi, yi) is for-
mulated as

γi = yiw
⊤ϕ(xi), ∀i = 1, . . . ,m. (1)

From [7], it is shown that in separable cases where the train-
ing examples can be separated with the zero error, SVM with
hard-margin (or Hard-margin SVM),

min
w

1

2
w⊤w

s.t. yiw
⊤ϕ(xi) ≥ 1, i = 1, . . . ,m,

is regarded as the maximization of the minimum margin
{min{γi}mi=1}.
In non-separable cases where the training examples cannot

be separated with the zero error, SVM with soft-margin (or
Soft-margin SVM) is posed,

min
w,ξ

1

2
w⊤w + C

m∑
i=1

ξi

s.t. yiw
⊤ϕ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,m.

(2)

where ξ = [ξ1, . . . , ξm]⊤ measure the losses of instances, and
C is a trading-off parameter. There exists a constant C̄ such
that (2) can be equivalently reformulated as,

max
w

γ0 − C̄
∑m

i=1
ξi

s.t. γi ≥ γ0 − ξi,

ξi ≥ 0, i = 1, . . . ,m,

where γ0 is a relaxed minimum margin, and C̄ is the trading-
off parameter. Note that γ0 indeed characterizes the top-p
minimum margin [11]; hence, SVMs (with both hard-margin
and soft-margin) consider only a single-point margin and
have not exploited the whole margin distribution.

3. LDM
In this section, we first formulate the margin distribution,

and then present the optimization algorithms and the theo-
retical guarantee.

3.1 Formulation
The two most straightforward statistics for characteriz-

ing the margin distribution are the first- and second-order
statistics, that is, the mean and the variance of the mar-
gin. Formally, denote X as the matrix whose i-th column
is ϕ(xi), i.e., X = [ϕ(x1) . . . ϕ(xm)], y = [y1, . . . , ym]⊤ is
a column vector, and Y is a m × m diagonal matrix with

y1, . . . , ym as the diagonal elements. According to the defi-
nition in (1), the margin mean is

γ̄ =
1

m

m∑
i=1

yiw
⊤ϕ(xi) =

1

m
(Xy)⊤w, (3)

and the margin variance is

γ̂ =
1

m2

m∑
i=1

m∑
j=1

(yiw
⊤ϕ(xi)− yjw

⊤ϕ(xj))
2

=
2

m2
(mw⊤XX⊤w −w⊤Xyy⊤X⊤w).

(4)

Inspired by the recent theoretical result [11], LDM attempt-
s to maximize the margin mean and minimize the margin
variance simultaneously.

We first consider a simpler scenario, i.e., the separable
cases where the training examples can be separated with the
zero error. In these cases, the maximization of the margin
mean and the minimization of the margin variance leads to
the following hard-margin LDM,

min
w

1

2
w⊤w + λ1γ̂ − λ2γ̄

s.t. yiw
⊤ϕ(xi) ≥ 1, i = 1, . . . ,m,

where λ1 and λ2 are the parameters for trading-off the mar-
gin variance, the margin mean and the model complexity.
It’s evident that the hard-margin LDM subsumes the hard-
margin SVM when λ1 and λ2 equal 0.

For the non-separable cases, similar to soft-margin SVM,
the soft-margin LDM leads to

min
w,ξ

1

2
w⊤w + λ1γ̂ − λ2γ̄ + C

m∑
i=1

ξi

s.t. yiw
⊤ϕ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,m.

(5)

Similarly, soft-margin LDM subsumes the soft-margin SVM
if λ1 and λ2 both equal 0. Because the soft-margin SVM
often performs much better than the hard-margin one, in the
following we will focus on soft-margin LDM and if without
clarification, LDM is referred to the soft-margin LDM.

3.2 Optimization
We in this section first present a dual coordinate descen-

t method for kernel LDM, and then present an average s-
tochastic gradient descent (ASGD) method for large scale
linear kernel LDM.

3.2.1 Kernel LDM
By substituting (3)-(4), (5) leads to the following quadrat-

ic programming problem,

min
w,ξ

1

2
w⊤w +

2λ1

m2
(mw⊤XX⊤w −w⊤Xyy⊤X⊤w)

− λ2
1

m
(Xy)⊤w + C

m∑
i=1

ξi

s.t. yiw
⊤ϕ(xi) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,m.

(6)

(6) is often intractable due to the high or infinite dimen-
sionality of ϕ(·). Fortunately, inspired by the representer
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theorem in [22], the following theorem states that the opti-
mal solution for (6) can be spanned by {ϕ(xi), 1 ≤ i ≤ m}.

Theorem 1. The optimal solution w∗ for problem (6)
admits a representation of the form

w∗ =

m∑
i=1

αiϕ(xi) = Xα, (7)

where α = [α1, . . . , αm]⊤ are the coefficients.

Proof. w∗ can be decomposed into a part that lives in
the span of ϕ(xi) and an orthogonal part, i.e.,

w =
m∑
i=1

αiϕ(xi) + v = Xα+ v

for some α = [α1, . . . , αm]⊤ and v satisfying ϕ(xj)
⊤v = 0

for all j, i.e., X⊤v = 0. Note that

X⊤w = X⊤(Xα+ v) = X⊤Xα,

so the second and the third terms of (6) are independent of
v; further note that the constraint is also independent of v,
thus the last terms of (6) is also independent of v.
As for the first term of (6), since X⊤v = 0, consequently

we get

w⊤w = (Xα+ v)⊤(Xα+ v) = α⊤X⊤Xα+ v⊤v

≥ α⊤X⊤Xα

with equality occurring if and only if v = 0.
So, setting v = 0 does not affect the second, the third

and the last term while strictly reduces the first term of (6).
Hence, w∗ for problem (6) admits a representation of the
form (7).

According to Theorem 1, we have

X⊤w = X⊤Xα = Gα,

w⊤w = α⊤X⊤Xα = α⊤Gα,

where G = X⊤X is the kernel matrix. Let G:i denote the
i-th column of G, then (6) can be cast as

min
α,ξ

1

2
α⊤Qα+ p⊤α+ C

m∑
i=1

ξi

s.t. yiα
⊤G:i ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . ,m,

(8)

where Q = 4λ1(mG⊤G − (Gy)(Gy)⊤)/m2 + G and p =
−λ2Gy/m. By introducing the lagrange multipliers β =
[β1, . . . , βm]⊤ and η = [η1, . . . , ηm]⊤ for the first and the
second constraints respectively, the Lagrangian of (8) leads
to

L(α, ξ,β,η) =
1

2
α⊤Qα+ p⊤α+ C

m∑
i=1

ξi

−
m∑
i=1

βi(yiα
⊤G:i − 1 + ξi)−

m∑
i=1

ηiξi.

(9)

By setting the partial derivations of {α, ξ} to zero, we have

∂L

∂α
= Qα+ p−

m∑
i=1

βiyiG:i, (10)

∂L

∂ξi
= C − βi − ηi = 0, i = 1, . . . ,m. (11)

Algorithm 1 Kernel LDM

Input: Data set X, λ1, λ2, C
Output: α
Initialize β = 0, α = λ2

m
Q−1Gy, A = Q−1GY , hii =

e⊤
i Y GQ−1GY ei;

while β not converge do
for i = 1, . . .m do

[∇f(β)]i ← e⊤
i Y Gα− 1;

βold
i ← βi;

βi ← min
(
max

(
βi − [∇f(β)]i

hii
, 0
)
, C
)
;

α← α+ (βi − βold
i )Aei;

end for
end while

By substituting (10) and (11) into (9), the dual 1 of (8) can
be cast as:

min
β

f(β) =
1

2
β⊤Hβ +

(
λ2

m
He− e

)⊤

β,

s.t. 0 ≤ βi ≤ C, i = 1, . . . ,m.

(12)

where H = Y GQ−1GY , Q−1 refers to the inverse matrix
of Q and e stands for the all-one vector. Due to the simple
decoupled box constraint and the convex quadratic objec-
tive function, as suggested by [29], (12) can be efficiently
solved by the dual coordinate descent method. In dual co-
ordinate descent method [13], one of the variables is selected
to minimize while the other variables are kept as constants
at each iteration, and a closed-form solution can be achieved
at each iteration. Specifically, to minimize βi by keeping the
other βj ̸=i’s as constants, one needs to solve the following
subproblem,

min
t

f(β + tei)

s.t. 0 ≤ βi + t ≤ C,
(13)

where ei denotes the vector with 1 in the i-th coordinate
and 0’s elsewhere. Let H = [hij ]i,j=1,...,m, we have

f(β + tei) =
1

2
hiit

2 + [∇f(β)]it+ f(β),

where [∇f(β)]i is the i-th component of the gradient∇f(β).
Note that f(β) is independent of t and thus can be dropped.
Considering that f(β + tei) is a simple quadratic function
of t, and further note the box constraint 0 ≤ αi ≤ C, the
minimizer of (13) leads to a closed-form solution,

βnew
i = min

(
max

(
βi −

[∇f(β)]i
hii

, 0

)
, C

)
.

Algorithm 1 summarizes the pseudo-code of kernel LDM.
For prediction, according to (10), one can obtain the co-

efficients α from the optimal β∗ as

α = Q−1(GY β∗ − p) = Q−1

(
λ2

m
GY e+GY β∗

)
= Q−1GY

(
λ2

m
e+ β∗

)
.

1Here we omit constants without influence on optimization.
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Hence for testing instance z, its label can be obtained by

sgn
(
w⊤ϕ(z)

)
= sgn

(
m∑
i=1

αik(xi, z)

)
.

3.2.2 Large Scale Kernel LDM
In section 3.2.1, the proposed method can efficiently deal

with kernel LDM. However, the inherent computational cost
for the kernel matrix in kernel LDM takes O(m2) time,
which might be computational prohibitive for large scale
problems. To make LDM more useful, in the following, we
present a fast linear kernel LDM for large scale problems by
adopting the average stochastic gradient descent (ASGD)
method [19].
For linear kernel LDM, (5) can be reformulated as the

following form,

min
w

g(w) =
1

2
w⊤w +

2λ1

m2
w⊤(mXX⊤ −Xyy⊤X⊤)w

− λ2

m
(Xy)⊤w + C

m∑
i=1

max{0, 1− yiw
⊤xi}, (14)

where X = [x1 . . .xm], y = [y1, . . . , ym]⊤ is a column vec-
tor.
For large scale problems, computing the gradient of (14)

is expensive because its computation involves all the train-
ing examples. Stochastic gradient descent (SGD) works by
computing a noisy unbiased estimation of the gradient via
sampling a subset of the training examples. Theoretical-
ly, when the objective is convex, it can be shown that in
expectation, SGD converges to the global optimal solution
[15, 3]. During the past decade, SGD has been applied to
various machine learning problems and achieved promising
performances [30, 23, 2, 24].
The following theorem presents an approach to obtain an

unbiased estimation of the gradient ∇g(w).

Theorem 2. If two examples (xi, yi) and (xj , yj) are sam-
pled from training set randomly, then

∇g(w,xi,xj) = 4λ1xix
⊤
i w − 4λ1yixiyjx

⊤
j w +w

− λ2yixi −mC

{
yixi i ∈ I,

0 otherwise,
(15)

where I ≡ {i | yiw⊤xi < 1} is an unbiased estimation of
∇g(w).

Proof. Note that the gradient of g(w) is

∇g(w) = Qw + p− C

m∑
i=1

yixi, i ∈ I,

where Q = 4λ1(mXX⊤ − Xy(Xy)⊤)/m2 + I and p =
−λ2Xy/m. Further note that

Exi [xix
⊤
i ] =

1

m

m∑
i=1

xix
⊤
i =

1

m
XX⊤,

Exi [yixi] =
1

m

m∑
i=1

yixi =
1

m
Xy.

(16)

According to the linearity of expectation, the independence

Algorithm 2 Large Scale Kernel LDM

Input: Data set X, λ1, λ2, C
Output: w̄
Initialize u = 0, T = 5;
for t = 1, . . . Tm do

Randomly sample two training examples (xi, yi) and
(xj , yj);
Compute ∇g(w,xi,xj) as in (15);
w ← w − ηt∇g(w,xi,xj);
w̄ ← w̄ + µt(w − w̄);

end for

between xi and xj , and with (16), we have

Exi,xj [∇g(w,xi,xj)]

= 4λ1Exi [xix
⊤
i ]w − 4λ1Exi [yixi]Exj [yjxj ]

⊤w +w

− λ2Exi [yixi]−mCExi [yixi | i ∈ I]

= 4λ1
1

m
XX⊤w − 4λ1

1

m
Xy

(
1

m
Xy

)⊤

w +w

− λ2
1

m
Xy −mC

1

m

m∑
i=1

yixi, i ∈ I

= Qw + p− C

m∑
i=1

yixi, i ∈ I

= ∇g(w).

It is shown that ∇g(w,xi,xj) is a noisy unbiased gradient
of g(w).

With Theorem 2, the stochastic gradient update can be
formed as

wt+1 = wt − ηt∇g(w,xi,xj), (17)

where ηt is a suitably chosen step-size parameter in the t-th
iteration.

In practice, we use averaged stochastic gradient descent
(ASGD) which is more robust than SGD [28]. At each it-
eration, besides performing the normal stochastic gradient
update (17), we also compute

w̄t =
1

t− t0

t∑
i=t0+1

wi,

where t0 determines when we engage the averaging process.
This average can be computed efficiently using a recursive
formula:

w̄t+1 = w̄t + µt(wt+1 − w̄t),

where µt = 1/max{1, t− t0}.
Algorithm 2 summarizes the pseudo-code of large scale

kernel LDM.

3.3 Analysis
In this section, we study the statistical property of LDM.

Specifically, we derive a bound on the expectation of error
for LDM according to the leave-one-out cross-validation es-
timate, which is an unbiased estimate of the probability of
test error.

Here we only consider the linear case (14) for simplicity,
however, the results are also applicable to any other feature

316



mapping ϕ. Following the same steps in Section 3.2.1, one
can have the dual problem of (14), i.e.,

min
α

f(α) =
1

2
α⊤Hα+

(
λ2

m
He− e

)⊤

α,

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m.

(18)

whereH = Y X⊤Q−1XY , Q = 4λ1
m2 (mXX⊤−Xy(Xy)⊤)+

I, e stands for the all-one vector and Q−1 refers to the in-
verse matrix of Q.

Theorem 3. Let α denote the optimal solution of (18),
and E[R(α)] be the expectation of the probability of error,
then we have

E[R(α)] ≤
E[h

∑
i∈I1

αi + |I2|]
m

, (19)

where I1 ≡ {i | 0 < αi < C}, I2 ≡ {i | αi = C} and
h = max{diag{H}}.

Proof. Suppose

α∗ = argmin
0≤α≤C

f(α),

αi = argmin
0≤α≤C,αi=0

f(α), i = 1, . . . ,m,
(20)

and the corresponding solution for the linear kernel LDM
are w∗ and wi, respectively.
As shown in [17],

E[R(α)] =
E[L((x1, y1), . . . , (xm, ym))]

m
, (21)

where L((x1, y1), . . . , (xm, ym)) is the number of errors in
the leave-one-out procedure. Note that if α∗

i = 0, (xi, yi)
will always be classified correctly in the leave-one-out proce-
dure according to the KKT conditions. So for any misclassi-
fied example (xi, yi), we only need to consider the following
two cases:
1) 0 < α∗

i < C, according to the definition in (20), we
have

f(αi)−min
t

f(αi + tei) ≤ f(αi)− f(α∗), (22)

f(αi)− f(α∗) ≤ f(α∗ − α∗
i ei)− f(α∗), (23)

where ei denotes a vector with 1 in the i-th coordinate and
0’s elsewhere. We can find that, the left-hand side of (22)
is equal to (1 − yix

⊤
i w

i)2/2hii, and the right-hand side of
(23) is equal to α∗

i
2hii/2. So by combining (22) and (23),

we have

(1− yix
⊤
i w

i)2/2hii ≤ α∗
i
2
hii/2.

Further note that yix
⊤
i w

i < 0, rearranging the above we
can obtain 1 ≤ α∗

i hii.
2) α∗

i = C, all these examples will be misclassified in the
leave-one-out procedure.
So we have

L((x1, y1), . . . , (xm, ym)) ≤ h
∑
i∈I1

α∗
i + |I2|,

where I1 ≡ {i | 0 < α∗
i < C}, I2 ≡ {i | α∗

i = C} and
h = max{hii, i = 1, . . . ,m}. Take expectation on both side
and with (21), we get that (19) holds.

4. EMPIRICAL STUDY
In this section, we empirically evaluate the effectiveness

of LDM on a broad range of data sets. We first introduce
the experimental settings in Section 4.1, and then compare
LDM with SVM and three state-of-the-art approaches2 in
Section 4.2 and Section 4.3. In addition, we also study the
cumulative margin distribution produced by LDM and SVM
in Section 4.4. The computational cost and parameter in-
fluence are presented in Section 4.5 and Section 4.6, respec-
tively.

4.1 Experimental Setup
We evaluate the effectiveness of our proposed LDMs on

twenty regular scale data sets and twelve large scale data
sets, including both UCI data sets and real-world data sets
like KDD20103. Table 1 summarizes the statistics of these
data sets. The data set size is ranged from 106 to more than
8,000,000, and the dimensionality is ranged from 2 to more
than 20,000,000, covering a broad range of properties. All
features are normalized into the interval [0, 1]. For each data
set, half of examples are randomly selected as the training
data, and the remaining examples are used as the testing
data. For regular scale data sets, both linear and RBF ker-
nels are evaluated. Experiments are repeated for 30 times
with random data partitions, and the average accuracies as
well as the standard deviations are recorded. For large s-
cale data sets, linear kernel is evaluated. Experiments are
repeated for 10 times with random data partitions, and the
average accuracies (with standard deviations) are recorded.

LDMs are compared with standard SVMs which ignore
the margin distribution, and three state-of-the-art method-
s, that is, Margin Distribution Optimization (MDO) [12],
Maximal Average Margin for Classifiers (MAMC) [18] and
Kernel Method for the direct Optimization of the Margin
Distribution (KM-OMD) [1]. For SVM, KM-OMD and LD-
M, the regularization parameter C is selected by 5-fold cross
validation from [10, 50, 100]. For MDO, the parameters are
set as the recommended parameters in [12]. For LDM, the
regularization parameters λ1, λ2 are selected by 5-fold cross
validation from the set of [2−8, . . . , 2−2], the parameters ηt
and t0 are set with the same setup in [28], and T is fixed to 5.
The width of the RBF kernel for SVM, MAMC, KM-OMD
and LDM are selected by 5-fold cross validation from the set
of [2−2δ, . . . , 22δ], where δ is the average distance between
instances. All selections are performed on training sets.

4.2 Results on Regular Scale Data Sets
Tables 2 and 3 summarize the results on twenty regular

scale data sets. As can be seen, the overall performance
of LDM is superior or highly competitive to SVM and oth-
er compared methods. Specifically, for linear kernel, LD-
M performs significantly better than SVM, MDO, MAMC,
KM-OMD on 12, 9, 17 and 10 over 20 data sets, respec-
tively, and achieves the best accuracy on 13 data sets; for
RBF kernel, LDM performs significantly better than SVM,
MAMC, KM-OMD on 10, 18 and 15 over 20 data sets, re-
spectively, and achieves the best accuracy on 15 data sets.
MDO is not compared since it is specified for the linear
kernel. In addition, as can be seen, in comparing with s-
tandard SVM which does not consider margin distribution,

2These approaches will be briefly introduced in Section 5.
3https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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Table 1: Characteristics of experimental data sets.

Scale Dataset #Instance #Feature Dataset #Instance #Feature

regular promoters 106 57 haberman 306 14
planning 182 12 vehicle 435 16
colic 188 13 clean1 476 166
parkinsons 195 22 wdbc 569 14
colic.ORIG 205 17 isolet 600 51
sonar 208 60 credit-a 653 15
vote 232 16 austra 690 15
house 232 16 australian 690 42
heart 270 9 fourclass 862 2
breast 277 9 german 1,000 59

large farm-ads 4,143 54,877 ijcnn1 141,691 22
news20 19,996 1,355,191 skin 245,057 3
adult-a 32,561 123 covtype 581,012 54
w8a 49,749 300 rcv1 697,641 47,236
cod-rna 59,535 8 url 2,396,130 3,231,961
real-sim 72,309 20,958 kdd2010 8,407,752 20,216,830

Table 2: Accuracy (mean±std.) comparison on regular scale data sets. Linear kernels are used. The best
accuracy on each data set is bolded. •/◦ indicates the performance is significantly better/worse than SVM
(paired t-tests at 95% significance level). The win/tie/loss counts are summarized in the last row.

Dataset SVM MDO MAMC KM-OMD LDM

promoters 0.723±0.071 0.713±0.067 0.520±0.096◦ 0.736±0.061 0.721±0.069
planning-relax 0.683±0.031 0.605±0.185◦ 0.706±0.034• 0.479±0.050◦ 0.706±0.034•
colic 0.814±0.035 0.781±0.154 0.661±0.062◦ 0.813±0.028 0.832±0.026•
parkinsons 0.846±0.038 0.732±0.270◦ 0.764±0.035◦ 0.814±0.024◦ 0.865±0.030•
colic.ORIG 0.618±0.027 0.624±0.040 0.623±0.027 0.635±0.045• 0.619±0.042
sonar 0.725±0.039 0.734±0.035 0.533±0.045◦ 0.766±0.033• 0.736±0.036
vote 0.934±0.022 0.587±0.435◦ 0.884±0.022◦ 0.957±0.013• 0.970±0.014•
house 0.942±0.015 0.943±0.015 0.883±0.029◦ 0.957±0.020• 0.968±0.011•
heart 0.799±0.029 0.826±0.026• 0.537±0.057◦ 0.836±0.026• 0.791±0.030
breast-cancer 0.717±0.033 0.710±0.031 0.706±0.027 0.696±0.031◦ 0.725±0.027•
haberman 0.734±0.030 0.728±0.029 0.738±0.020 0.667±0.040◦ 0.738±0.020
vehicle 0.959±0.012 0.956±0.012 0.566±0.160◦ 0.960±0.010 0.959±0.013
clean1 0.803±0.035 0.798±0.031 0.561±0.025◦ 0.821±0.027• 0.814±0.019•
wdbc 0.963±0.012 0.966±0.010 0.623±0.020◦ 0.968±0.009• 0.968±0.011•
isolet 0.995±0.003 0.501±0.503◦ 0.621±0.207◦ 0.995±0.003 0.997±0.002•
credit-a 0.861±0.014 0.862±0.013 0.596±0.063◦ 0.863±0.013 0.864±0.013•
austra 0.857±0.013 0.842±0.055 0.567±0.044◦ 0.858±0.013 0.859±0.015
australian 0.844±0.019 0.842±0.020 0.576±0.049◦ 0.858±0.016• 0.866±0.014•
fourclass 0.724±0.014 0.377±0.238◦ 0.641±0.020◦ 0.736±0.014• 0.723±0.014
german 0.711±0.030 0.737±0.014• 0.697±0.017◦ 0.729±0.017• 0.738±0.016•

Ave. accuracy 0.813 0.743 0.650 0.807 0.823

LDM: w/t/l 12/8/0 9/10/1 17/3/0 10/5/5

the win/tie/loss counts show that LDM is always better or
comparable, never worse than SVM.

4.3 Results on Large Scale Data Sets
Table 4 summarizes the results on twelve large scale data

sets. KM-OMD did not return results on all data sets and
MDO did not return results on KDD2010 in 48 hours due
to the high computational cost. As can be seen, the overal-
l performance of LDM is superior or highly competitive to
SVM and other compared methods. Specifically, LDM per-
forms significantly better than SVM, MDO, MAMC on 6, 7
and 12 over 12 data sets, respectively, and achieves the best

accuracy on 8 data sets. In addition, the win/tie/loss counts
show that LDM is always better or comparable, never worse
than SVM.

4.4 Margin Distributions
Figure 1 plots the cumulative margin distribution of SVM

and LDM on some representative regular scale data sets.
The curves for other data sets are similar. The point where
a curve and the x-axis crosses is the corresponding mini-
mum margin. As can be seen, LDM usually has a little
bit smaller minimum margin than SVM, whereas the LD-
M curve generally lies on the right side, showing that the
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Table 3: Accuracy (mean±std.) comparison on regular scale data sets. RBF kernels are used. The best
accuracy on each data set is bolded. •/◦ indicates the performance is significantly better/worse than SVM
(paired t-tests at 95% significance level). The win/tie/loss counts are summarized in the last row. MDO does
not have results since it is specified for the linear kernel.

Dataset SVM MDO MAMC KM-OMD LDM

promoters 0.684±0.100 N/A 0.638±0.121◦ 0.701±0.085 0.715±0.074•
planning-relax 0.708±0.035 N/A 0.706±0.034 0.683±0.031◦ 0.707±0.034
colic 0.822±0.033 N/A 0.623±0.037◦ 0.825±0.024 0.841±0.018•
parkinsons 0.929±0.029 N/A 0.852±0.036◦ 0.906±0.033◦ 0.927±0.029
colic.ORIG 0.638±0.043 N/A 0.623±0.027 0.621±0.039 0.641±0.044
sonar 0.842±0.034 N/A 0.753±0.052◦ 0.821±0.051◦ 0.846±0.032
vote 0.946±0.016 N/A 0.913±0.019◦ 0.930±0.029◦ 0.968±0.013•
house 0.953±0.020 N/A 0.561±0.139◦ 0.938±0.022◦ 0.964±0.013•
heart 0.808±0.025 N/A 0.540±0.043◦ 0.805±0.048 0.822±0.029•
breast-cancer 0.729±0.030 N/A 0.706±0.027◦ 0.691±0.024◦ 0.753±0.027•
haberman 0.727±0.024 N/A 0.742±0.021• 0.676±0.042◦ 0.731±0.027
vehicle 0.992±0.007 N/A 0.924±0.025◦ 0.988±0.008◦ 0.993±0.006
clean1 0.890±0.020 N/A 0.561±0.025◦ 0.772±0.043◦ 0.891±0.024
wdbc 0.951±0.011 N/A 0.740±0.042◦ 0.941±0.040 0.961±0.010•
isolet 0.998±0.002 N/A 0.994±0.004◦ 0.995±0.003◦ 0.998±0.002
credit-a 0.858±0.014 N/A 0.542±0.032◦ 0.845±0.029◦ 0.861±0.013
austra 0.853±0.013 N/A 0.560±0.018◦ 0.854±0.017 0.857±0.014•
australian 0.815±0.014 N/A 0.554±0.015◦ 0.860±0.014• 0.854±0.016•
fourclass 0.998±0.003 N/A 0.791±0.014◦ 0.838±0.014◦ 0.998±0.003
german 0.731±0.019 N/A 0.697±0.017◦ 0.742±0.017• 0.743±0.016•

Ave. accuracy 0.844 N/A 0.701 0.822 0.854

LDM: w/t/l 10/10/0 N/A 18/1/1 15/5/0

Table 4: Accuracy (mean±std.) comparison on large scale data sets. Linear kernels are used. The best
accuracy on each data set is bolded. •/◦ indicates the performance is significantly better/worse than SVM
(paired t-tests at 95% significance level). The win/tie/loss counts are summarized in the last row. KM-OMD
and MDO did not return results on some data sets in 48 hours.

Dataset SVM MDO MAMC KM-OMD LDM

farm-ads 0.880±0.007 0.880±0.007 0.759±0.038◦ N/A 0.890±0.008•
news20 0.954±0.002 0.948±0.002◦ 0.772±0.017◦ N/A 0.960±0.001•
adult-a 0.845±0.002 0.788±0.053◦ 0.759±0.002◦ N/A 0.846±0.003•
w8a 0.983±0.001 0.985±0.001• 0.971±0.001◦ N/A 0.983±0.001
cod-rna 0.899±0.001 0.774±0.203 0.667±0.001◦ N/A 0.899±0.001
real-sim 0.961±0.001 0.955±0.002◦ 0.744±0.004◦ N/A 0.971±0.001•
ijcnn1 0.921±0.003 0.921±0.002 0.904±0.001◦ N/A 0.921±0.002
skin 0.934±0.001 0.929±0.003◦ 0.792±0.000◦ N/A 0.934±0.001
covtype 0.762±0.001 0.760±0.003◦ 0.628±0.002◦ N/A 0.763±0.001
rcv1 0.969±0.000 0.959±0.000◦ 0.913±0.000◦ N/A 0.977±0.000•
url 0.993±0.006 0.993±0.006 0.670±0.000◦ N/A 0.993±0.006
kdd2010 0.852±0.001 N/A 0.853±0.000• N/A 0.881±0.001•

Ave. accuracy 0.913 0.899 0.786 N/A 0.919

LDM: w/t/l 6/6/0 7/3/1 12/0/0 N/A

margin distribution of LDM is generally better than that of
SVM. In other words, for most examples, LDM generally
produce a larger margin than SVM.

4.5 Time Cost
We compare the time cost of LDM and SVM on the twelve

large scale data sets. All the experiments are performed with
MATLAB 2012b on a machine with 8×2.60 GHz CPUs and
16GB main memory. The average CPU time (in seconds) on

each data set is shown in Figure 2. We denote SVM imple-
mented by the LIBLINEAR [9] package as SVMl and SVM
implemented by ASGD4 as SVMa, respectively. It can be
seen that, both SVMa and LDM are much faster than SVMl,
owing to the use of ASGD. LDM is just slightly slower than
SVMa on three data sets (news20, real-sim and skin) but
highly competitive with SVMa on the other nine data sets.
Note that both SVMl and SVMa are very fast implementa-

4http://leon.bottou.org/projects/sgd
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Figure 1: Cumulative frequency (y-axis) with respect to margin (x-axis) of SVM and LDM on some repre-
sentative regular scale data sets. The more right the curve, the larger the accumulated margin.

Figure 2: CPU time on the large scale data sets.

tions of SVMs; this shows that LDM is also computationally
efficient.

4.6 Parameter Influence
LDM has three regularization parameters, i.e., λ1, λ2 and

C. In previous empirical studies, they are set according
to cross validation. Figure 3 further studies the influence
of them on some representative regular scale data sets by
fixing other parameters. Specifically, Figure 3(a) shows the
influence of λ1 on the accuracy by varying it from 2−8 to
2−2 while fixing λ2 and C as the value suggested by the
cross validation described in Section 4.1. Figure 3(b) and
Figure 3(c) are obtained in the same way. It can be seen
that, the performance of LDM is not very sensitive to the
setting of the parameters, making LDM even more attractive
in practice.

5. RELATED WORK
There are a few studies considered margin distribution

in SVM-like algorithms [12, 18, 1]. Garg et al. [12] pro-

posed the Margin Distribution Optimization (MDO) algo-
rithm which minimizes the sum of the cost of each instance,
where the cost is a function which assigns larger values to
instances with smaller margins. MDO can be viewed as a
method of optimizing weighted margin combination, where
the weights are related to the margins. The objective func-
tion optimized by MDO, however, is non-convex, and thus,
it may get stuck in local minima. In addition, MDO can on-
ly be used for linear kernel. As our experiments in Section
4 disclosed, the performance of MDO is inferior to LDM.

Pelckmans et al. [18] proposed the Maximal Average Mar-
gin for Classifiers (MAMC) and it can be viewed as a spe-
cial case of LDM assuming that the margin variance is zero.
MAMC has a closed-form solution, however, it will degener-
ate to a trivial solution when the classes are not with equal
sizes. Our experiments in Section 4 showed that LDM is
clearly superior to MAMC.

Aiolli et al. [1] proposed a Kernel Method for the direct
Optimization of the Margin Distribution (KM-OMD) from a
game theoretical perspective. Similar to MDO, this method

320



Figure 3: Parameter influence on some representative regular scale data sets.

also directly optimizes a weighted combination of margin-
s over the training data, ignoring the influence of margin
variances. Besides, this method considers hard-margin only,
which may be another reason why it behaves worse than our
method. It is noteworthy that the computational cost pro-
hibits KM-OMD to be applied to large scale data, as shown
in Table 4.

6. CONCLUSIONS
Support vector machines work by maximizing the mini-

mum margin. Recent theoretical results suggested that the
margin distribution, rather than a single-point margin such
as the minimum margin, is more crucial to the generaliza-
tion performance. In this paper, we propose the large mar-
gin distribution machine (LDM) which tries to optimize the
margin distribution by maximizing the margin mean and
minimizing the margin variance simultaneously. The LDM
is a general learning approach which can be used in any place
where SVM can be applied. Comprehensive experiments on
twenty regular scale data sets and twelve large scale data
sets validate the superiority of LDM to SVMs and many
state-of-the-art methods. In the future it will be interest-
ing to generalize the idea of LDM to regression and other
learning settings.
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