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ABSTRACT
Kernel-based regression represents an important family of
learning techniques for solving challenging regression tasks
with non-linear patterns. Despite being studied extensively,
most of the existing work suffers from two major drawbacks:
(i) they are often designed for solving regression tasks in
a batch learning setting, making them not only computa-
tionally inefficient and but also poorly scalable in real-world
applications where data arrives sequentially; and (ii) they
usually assume a fixed kernel function is given prior to the
learning task, which could result in poor performance if the
chosen kernel is inappropriate. To overcome these draw-
backs, this paper presents a novel scheme of Online Multi-
ple Kernel Regression (OMKR), which sequentially learns
the kernel-based regressor in an online and scalable fash-
ion, and dynamically explore a pool of multiple diverse ker-
nels to avoid suffering from a single fixed poor kernel so as
to remedy the drawback of manual/heuristic kernel selec-
tion. The OMKR problem is more challenging than regular
kernel-based regression tasks since we have to on-the-fly de-
termine both the optimal kernel-based regressor for each in-
dividual kernel and the best combination of the multiple ker-
nel regressors. In this paper, we propose a family of OMKR
algorithms for regression and discuss their application to
time series prediction tasks. We also analyze the theoretical
bounds of the proposed OMKR method and conduct exten-
sive experiments to evaluate its empirical performance on
both real-world regression and times series prediction tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Theory, Algorithms, Experimentation

Keywords
Online Learning; Multiple Kernel Learning; Kernel Regres-
sion; Time Series Prediction
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1. INTRODUCTION
Kernel methods have been extensively studied for regres-

sion tasks and found successes in many real-world appli-
cations [29, 28]. In contrast to linear regression methods,
kernel-based regression methods are able to tackle challeng-
ing non-linear regression tasks using the kernel trick that im-
plicitly maps data from the original space to a high or even
infinite dimensional space by means of a kernel function.
Although a variety of kernel methods have been proposed
for regression tasks [28], most conventional kernel methods
suffer from two major drawbacks. First of all, they are of-
ten designed for solving regression tasks in a batch learning
setting. This often results in a high re-training cost when
there is any new training data, making them poorly scal-
able in many real-world applications where data arrives se-
quentially. Second, they usually assume that prior to the
learning task, a fixed kernel function is given either by man-
ual selection or via cross validation. This could result in
poor performance if the chosen kernel is inappropriate in a
new environment, which happens commonly for some real-
world applications, such as time series prediction where data
observations can be non-stationary and the optimal kernel
function may change over time.

To overcome the above drawbacks, this paper investigates
a novel scheme of Online Multiple Kernel Regression (OMKR),
which sequentially learns a kernel-based regressor with mul-
tiple kernels in an online fashion for regression tasks. On one
hand, the proposed OMKR technique, as an online learning
method that often makes simple incremental update for a
new training data example, avoids the expensive re-training
cost of conventional batch kernel methods, and thus sig-
nificantly improves the efficiency and scalability, especially
when handling data stream applications. On the other hand,
OMKR explores a pool of multiple diverse kernels to rem-
edy the drawback of using a single fixed kernel by existing
kernel-based regression methods that often suffer consider-
ably when the single kernel is inappropriate.

The proposed OMKR problem is however very challeng-
ing since we not only need to sequentially learn the opti-
mal kernel-based regressor for each individual kernel in the
pool, but also need to simultaneously decide the best way of
combining the multiple kernel regressors on the fly at every
learning round. We tackle the challenges by (i) exploring two
online kernel regression algorithms, Widrow-Hoff learning
[33] and NORMA learning [17], for online regression tasks
with each individual kernel; and (ii) determining the best
combination of the multiple kernel regressors by applying
two online learning techniques: Hedge algorithm [9] that
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can track the best kernel regressor, and Online Gradient
Descent(OGD)[38] that can find the optimal linear combi-
nation. We analyze the theoretical bound of OMKR, and
also discuss a natural extension of OMKR for the prediction
of Autoregressive (AR) time series. To validate the efficacy
of the proposed method, we conduct extensive experiments
by evaluating the proposed algorithms on both real-world
regression and time series datasets, in which our empirical
results show that OMKR significantly outperforms conven-
tional single kernel online regression approaches for most
cases, especially for time series prediction tasks.

The rest of the paper is organized as follows. Section 2
reviews the related work of both online learning and kernel
methods. Section 3 gives the problem formulation of on-
line learning with multiple kernels, and then presents the
OMKR algorithms followed by theoretical analysis. Sec-
tion 4 presents our experimental results and discussions, and
finally Section 5 concludes this paper.

2. RELATED WORK
In this section, we review some of major related work in

online learning and kernel learning in the context of OMKR.

2.1 Online Learning
Online learning algorithms have been extensively explored

in different contexts and applications [6, 35, 22]. For more
references please refer to [27, 5, 14]. Many online algorithms
have been proposed for extending kernel methods in an on-
line setting, in which several techniques have have been pro-
posed for online kernel regression, such as Naive Online Rreg
Minimization Algorithm (NORMA) [17], Online Passive Ag-
gressive Regression [6], Sparse Implicit Online Learning with
Kernels (ILK and SILK) [26] and Primal Online Algorithm
(PRIONA) [3].

In addition, some kernel-based online learning studies fo-
cus on the budget issue [7, 4]. These help to speed up com-
putation cost by bounding the number of support vectors.
Some well-known example algorithms include Forgetron [8],
Projectron [23], and the Bounded Online Gradient Descent
(BOGD) [36]. Further, our work is also related to online
prediction with expert advice [9, 20, 32]. One of the most
well-known algorithms is the Hedge Algorithm [9], which was
a direct generalization of Weighted Majority Algorithm [20].

2.2 Kernel Learning
Most kernel methods often assume that a predefined para-

metric kernel is given a priori, where the parameters are cho-
sen either manually or via cross validation. Kernel learn-
ing aims to learn an effective kernel from data automati-
cally. Some studies have attempted to learn kernel func-
tions or matrices from labeled and unlabeled data. Exam-
ples include marginalized kernels [16], idealized kernel learn-
ing [18], graph-based spectral kernel learning [2, 13], and
non-parametric kernel learning [11, 37]. These methods of-
ten follow a batch (and transductive) learning setting and
thus are difficult to be applied in an online learning scenario.

Another prevalent kernel learning technique is Multiple
Kernel Learning (MKL) [19], which aims to find the optimal
combination of multiple kernels. Unlike most existing MKL
techniques that are batch learning [19, 30, 10], our work
focuses on online regression tasks, and is related to existing
online MKL studies that focus on classification tasks [15, 12]
and that addresses structured prediction [21].

3. ONLINE MULTIPLE KERNEL
REGRESSION

3.1 Overview
In this section, we present the proposed Online Multiple

Kernel Regression (OMKR) scheme. We will first motivate
the problem by introducing the formulation of batch Mul-
tiple Kernel Learning (MKL). We then present our OMKR
framework, the detailed algorithms for addressing different
challenges, and finally theoretical analysis of OMKR.

Consider a set of training examplesD = (xi, yi), i = 1, . . . , T
where xi ∈ Rd, yi ∈ R and a collection of m kernel func-
tions K = {κi : χ× χ→ R, i = 1, . . . ,m}. Multiple Kernel
Learning aims to learn a kernel-based prediction model by
identifying the best linear combination of the m kernels, that
is, a weighted combination θ = (θ1, . . . , θm). The learning
task can be cast into the following optimization [19]:

min
θ∈∆

min
f∈HK(θ)

1

2
|f |2HK(θ)

+ C

n∑
i=1

`(f(xi), yi) (1)

where ∆ = {θ ∈ Rm+ |θT1m = 1}, K(θ)(·, ·) =
T∑
i=1

θiκi(·, ·)

and `(f(xi), yi) is a convex loss function.
The above convex optimization problem of regular batch

MKL can be solved by different schemes [30, 34, 10]. De-
spite being studied extensively, it remains very challenging
when solving the batch MKL for large-scale applications.
Besides, similar to most batch kernel methods, regular MKL
has some drawbacks: (i) the trained model, if it is not re-
trained with new data, may work poorly for non-stationary
data in a new environment; but (ii) the re-training cost is ex-
tremely expensive for data streams, making it non-scalable.

3.2 OMKR Framework
To overcome the limitations of MKL for a regression task,

we propose a new scheme of Online Multiple Kernel Re-
gression (OMKR) by applying the emerging online multiple
kernel learning principle [12] for tackling regression tasks,
which attempts to sequentially learn the online multiple-
kernel regressor given a new data example using a two-step
updating scheme: (i) update the set of kernel-based regres-
sors for each individual kernel; and (ii) update the weights
for combining the multiple kernel regressors. In the follow-
ing, we discuss the details of the proposed algorithms for
tackling online regression tasks at each of the two steps.

3.2.1 Learning Online Kernel-Based Regressors
The goal of this task is to learn a regression function

ft ∈ Hκ in an online setting, where Hκ a reproducing ker-
nel Hilbert space (RKHS) induced by a given specific kernel
κ ∈ K. We solve this task by exploring two online regres-
sion solutions: Kernel Widrow-Hoff [33] and NORMA [17],
which follows the same principle of Online Gradient Descent
(OGD) [38] for online convex optimization and but optimizes
two slightly different objective functions.

Kernel Widrow-Hoff Learning. Given a sequence of
data instances D = (xi, yi), i = 1, . . . , T , the goal of kernel-
ized Widrow-Hoff learning is to minimize the total cumula-
tive loss over the whole regression task L defined as follows:

L = ΣTt=1`(ft(xt), yt) , ΣTt=1Lt(ft) (2)

where ft(xt) is the prediction made by a kernel regressor on
the t-th instance, `(ft(xt), yt) denoted by Lt(ft) for short,
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is a convex loss function. Following OGD [38], we have the
following online update rule given a data instance (xt, yt):

ft+1 ← ft − ηt∇Lt(ft) (3)

where ηt > 0 is a learning rate parameter that can be either
a small constant ηt = η used in Widrow-Hoff [33] or a factor
depending on t. When choosing the squared loss for `:

`(ft(xt), yt) = (ft(xt)− yt)2,

we have the online updating rule expressed explicitly as

ft+1(·)← ft(·)− ηt(ft(xt)− yt)κ(xt, ·). (4)

NORMA. The above method has two potential draw-
backs. First, it may lead to overfitting when dealing with
noisy data. Second, due to the use of squared loss, almost
every training instance will be added as support vectors (un-
less ft(xt) is identical to yt), making the prediction function
computationally intensive when handling large-scale datasets.
To overcome these drawbacks, we explore another online re-
gression scheme by following the idea of NORMA [17], which
replaces Lt(ft) by the following regularized loss:

Lt(ft) =
λ

2
||f ||2Hκ + `(ft(xt), yt) (5)

By the OGD principle, we have the online updating rule as:

ft+1 ← (1− ηtλ)ft − ηt∇`(ft(xt), yt) (6)

where ηt > 0 is the learning rate parameter. Instead of using
the square loss, we exploit the ε-insensitive loss function
which is defined as

`(ft(xt), yt) = max (0, |yt − ft(xt)| − ε),

where ε represents the width of the insensitivity zone. We
can further modify the loss function by making ε as a vari-
able of the optimization:

`t(ft,xt) = max(0, |yt − ft(xt)| − ε) + νεt (7)

where ν > 0 is a parameter, and εt is a variable to be up-
dated in online learning process. Using the above loss func-
tion, we can derive the online updating rule for NORMA:

ft+1 ←

{
(1− ηtλ)ft + ηt ∗ sgn(d)κ(xt, ·) if |d| > εt

(1− ηtλ)ft otherwise
(8)

εt+1 ←

{
εt + (1− ν)ηt if |d| > εt

εt − ηtν otherwise
(9)

where we denote d = yt − f(xt).
Remark. For both of the above methods, at the end of

each online learning round, we can express the prediction
function of the regressor as a kernel expansion [25]:

ft+1(x) = Σti=1αiκ(xi,x)

where the αi coefficients are computed based on the updat-
ing rules in (4) or (8). When αi 6= 0, the i-th instance is
often called as a Support Vector (SV). Thus, the time com-
plexity for prediction is linear with respect to the number
of SV’s. When using the squared loss, we will have αi 6= 0
for almost every instance, leading to a large number of sup-
port vectors. By contrast, when using the ε-insensitive loss,
whenever the difference between the prediction on the i-th
instance fi(xi) and yi is small enough, i.e., within the ε tube,
we have αi = 0, which thus generates a much smaller SV
size and significantly improves the prediction efficiency.

3.2.2 Learning the Best Kernel Combination
The previous online kernel regression method allows us to

learn a set of kernel regressors f it ∈ Hκi , i = 1, . . . ,m with
respect to the pool of multiple diverse kernels K. The idea of
OMKR is to learn an effective regressor Ft(x) by combining
the set of multiple kernel regressors:

Ft(x) =

m∑
i=1

witf
i
t (x) (10)

where wit ∈ R denotes the combination weight for the i-th
kernel regressor. The remaining problem then is to deter-
mine the appropriate combination weights wt for the set of
kernels. We note that this is a very challenging task since we
may not have prior knowledge for empirical performance of
each kernel, and the optimal combination weights may even
change over time in the online learning process especially
when dealing with non-stationary data.

One naive solution is to simply adopt a uniform combi-
nation for all the kernels, i.e., wit = 1/m, which does ex-
plore all the kernels, but often results in sub-optimal perfor-
mance, as observed in our empirical studies. In this section,
we attempt to learn the best kernel combination weights
by exploring two different online learning algorithms: the
Hedge algorithm [9] and the OGD algorithm [38]. We will
first present each algorithm in detail and finally discuss their
strengths and weaknesses for different scenarios.

Hedge Algorithm: The Hedge algorithm is the most
popular online algorithm for solving the problem of decision-
theoretic online learning or known as prediction with expert
advice [32, 5]. Specifically, by treating each online kernel re-
gressor as an expert, the Hedge algorithm aims to minimize
the regret of the learner for the regression task, which is the
difference between the learner’s cumulative loss and the cu-
mulative loss of the best kernel regressor. In theory, Hedge
can achieve an optimal upper bound of regret O(T lnm)
with T learning rounds and m kernel regressor experts. It is
thus an ideal online learning algorithm for tracking the best
online kernel regressor especially when there is some kernel
regressor significantly dominates the rest.

Specifically, the Hedge algorithm runs in a fairly simple
way. Consider the OMKR problem, at the beginning, the
combination weights wt are initialized as a uniform distri-
bution, i.e., wi1 = 1/m, i = 1, . . . ,m. At the end of each
learning round, according to the performance of the multi-
ple kernel regressors, the weights are updated by:

wit+1 = witβ
`it , i = 1, . . . ,m (11)

where β ∈ (0, 1) is a discounting (learning rate) parameter,
and `it denotes the loss suffered by the i-th kernel regressor
at round t, i.e., `it = `(f it (xt), yt). Finally, we normalize all
wit+1’s to ensure the combination weights as a distribution.

We refer to the proposed OMKR algorithm that adopts
the Hedge algorithm as the Deterministic OMKR (Hedge)
algorithm, as shown in Algorithm 1. In the algorithm, we
can update each kernel regressor f it+1 by adopting either the
Widrow-Hoff learning in (4) or NORMA in (8).

Although Hedge is ideal for tracking the best kernel regres-
sor, it is not always perfect for solving a practical OMKR
problem since our goal is to learn the best combination of
multiple kernels. In the following, we present an online gra-
dient descent (OGD) based algorithm that attempts to learn
the optimal linear combination of multiple kernel regressors.
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Algorithm 1 Deterministic OMKR (Hedge)

INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Discounting Parameter: β ∈ (0, 1)
- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 = 1
m

1

for t = 1,. . . ,T do
Receive instance: xt

Predict ŷt =
m∑
i=1

witf
i
t (xt)

Reveal true value yt
for i = 1,. . . ,m do

Set `it = `(f it (xt), yt);
Update f it+1 = Eq. (4) OR (8)

Update wit+1 = witβ
`∗it where `∗it = (f it (xt)− yt)2;

end for

Set wit+1 =
wit
Wt

where Wt =
m∑
i=1

wit, i = 1, . . . ,m

end for

OGD Algorithm: Our goal is to learn the optimal com-
bination weight vector wt ∈ Rm for combining the multiple
kernel regressors. It can be cast into the following online
optimization

wt+1 ← arg min
w

`(w>ft(xt), yt) , (w>ft(xt)− yt)2 (12)

where ft(xt) is a vector representing the predictions made
by all the kernel regressors on instance xt, and ` is a loss
function denoting the loss suffered by the OMKR. We simply
adopt the squared loss in our solution (though it may also
include a regularizer). Following the OGD, we can derive
the updating rule as follows:

wt+1 ← wt − ηw(ŷt − yt)ft(xt) (13)

where ηw is a learning rate parameter, and ŷt = w>ft(xt).
Using the above OGD algorithm for learning the optimal

combination weights, we propose another OMKR scheme,
called Deterministic OMKR(OGD), as shown in Algorithm
2. Like in OMKR(Hedge), we can also update each kernel
regressor by either Widrow-Hoff in (4) or NORMA in (8).

Algorithm 2 Deterministic OMKR (OGD)

INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Learning rate parameter: ηw
- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 = 0

for t = 1,. . . ,T do
Receive instance: xt

Predict ŷt =
m∑
i=1

witf
i
t (xt)

Reveal true value yt
for i = 1,. . . ,m do

Set `it = `(f it (xt), yt);
Update f it+1 = Eq. (4) OR (8)

end for
Update wt+1 = wt − ηw(ŷt − yt)ft(xt)

end for

Remark. In online MKL work related to classification
[15, 12], Hedge algorithm was used to combine multiple pre-
dictions. In contrast, our proposed OGD approach inter-
prets the kernel predictions as new rich features which can
be combined linearly. In terms of update rules, Hedge makes
multiplicative updates while OGD makes additive updates.
Further, for the combination weight vector wt, Hedge al-
ways keep wt a distribution (wit ≥ 0 and

∑
i w

i
t = 1) while

OGD is able to learn any real-valued vector for wt. In
general, both Hedge and OGD have their different merits.
Hedge is good at tracking the best kernel regressor, while
OGD is good at learning the optimal combination of multi-
ple kernel regressors. However, OGD often suffers from slow
convergence rate. In practice, the empirical performance of
OMKR(Hedge) and OMKR(OGD) may vary a lot in differ-
ent scenarios. Due to the nature of multiplicative update of
Hedge, it converges quickly, and in an online setting, may
tend to achieve better performance than OGD, if the dataset
is small, or if the pattern changes due to non-stationarity.
We conduct more in-depth analysis through our extensive
experimental studies in Section 4.

3.3 Application to Time Series Prediction
OMKR can be applied a variety of online regression tasks,

especially for mining data streams. A natural application of
OMKR is Time Series Prediction, which is the task of pre-
dicting the future value based on given past values. Kernel
methods have been commonly used for solving such prob-
lems [31, 24]. We first introduce the popular time series
prediction model known as Autoregressive (AR) model, and
then present a kernelized AR model, followed by showing
the application of OMKR for time series prediction.

Autoregressive(AR) model is used for a univariate time
series where the value of the series at a particular time is
linearly dependent on its own previous values. An AR(p)
model denotes an autoregressive process of order p, i.e., yt is
described by a noisy linear combination of [yt−1yt−2 . . . yt−p]:

yt = c+ Σpi=1ζiyt−i + εt (14)

where c is a constant, εt is white noise, and ζi are the pa-
rameters describing the dependency. A simple AR(p) model
assumes linear dependency on the previous p values. This
may not be true. We use kernels to explore nonlinear de-
pendencies. The kernelized AR(p) model is given by:

yt = c+ f(yt−1, yt−2, . . . , yt−p) + εt = c+ f(Y pt−1) + εt

where f(Y pt−1) ∈ Hκ is the prediction of the regression func-
tion using a kernel κ. Here, a new challenge arises, i.e., to
choose the appropriate kernel function. In addition, another
issue is how to choose the appropriate parameter p.

To solve these two issues, we propose to construct a pool
of multiple kernels for varying values of parameter p. For
example, for p ∈ [p1, p2, . . . , pk], and m kinds of diverse ker-
nels, we can create the following pool of mk kernel functions:

K =
{
κi(Y p1t , ·), . . . , κi(Y pkt , ·) for i = 1, . . . ,m.

}
The above can now be directly plugged into the OMKR
framework for solving time series prediction tasks. In com-
parison to existing kernel methods for times series predic-
tion, the proposed OMKR solution enjoys the important
advantages of avoiding tedious kernel selection and parame-
ter selection (e.g., p) and exploiting the power of combining
multiple kernels for more accurate prediction.

296



3.4 Theoretical Analysis
Without loss of generality we assume that ∀ i, ∀ t, κi(xt ·

xt) ≤ 1, and `t(f
i
t (xt), yt) ≤ 1 We define the optimal kernel

regressor with respect to the squared loss (Widrow-Hoff) as:

F (κi, `,D) = min
f∈Hκ

[
ΣTt=1(f(xt)− yt)2

1− η +
||f ||2

η

]
(15)

where D is a sequence of instances.

Theorem 1. After receiving a sequence of T instances,
the cumulative loss suffered by OMKR (Hedge) using the
Widrow-Hoff Algorithm is bounded as

LOMKR ≤
ln( 1

β
)

1− β min
1≤i≤m

F (κi, `,D) +
ln(m)

1− β (16)

Here LOMKR is the total loss suffered at each prediction,
and due to the convexity of the loss function, we have

LOMKR = ΣTt=1`(Σ
m
i=1w

i
tf
i
t (xt), yt) ≤ ΣTt=1Σmi=1w

i
t`(f

i
t (xt), yt)

and by choosing β =
√
T√

T+
√

lnm
, we get:

LOMKR ≤ (1 +

√
lnm

T
min

1≤i≤m
F (κi, `,D) + lnm+

√
T lnm)

Proof. The proof follows from combining the proof of
Hedge Algorithm and the Widrow-Hoff Regression. Let φit =
||f it−f ||22 for any f ∈ Hκi . Also, let ∆t denote the change in
f during each update, such that ∆t = η(ft(xt)− yt)κ(xt, ·).
We also define `t = ft(xt) − yt as the signed error suffered
by ft, and `∗t = f(xt)− yt be the signed error suffered by f .

φit+1 − φit = ||f it+1 − f ||22 − ||f it − f ||22
= ||∆t||22 − 2(f it − f) ·∆t

= η2`i2t κ(xt · xt)− 2η`tκ(xt, ·) · (f it − f)

≤ η2`i2t − 2η`2t + 2η`t`
∗
t

= η2`i2t − 2η`i2t + 2η

[
(`it
√

1− η)(
`∗t√
1− η

)

]
The inequality follows from the assumption κ(xt · xt) ≤ 1.

φit+1 − φit ≤ η2`i2t − 2η`i2t + η(1− η)`i2t +
η

1− η `
∗2
t

= −η`i2t +
η

1− η `
∗2
t

(17)

In the above equation we use the algebraic inequality ab ≤
(a2 + b2)/2. From this, by assuming f1 = 0, and using a
telescoping sum, it is very simple to prove that

LiWH ≤ min
f∈Hκ

[
ΣTt=1(f(xt)− yt)2

1− η +
||f ||2

η

]
(18)

where LiWH is the cumulative loss suffered by the regres-
sion function learnt by the the Widrow-Hoff Algorithm in
the RKHS by the ith kernel. Plugging this into the Hedge
Algorithm gives us the bound. The choice of β maybe over-
estimated because of the assumption that the loss suffered
by the algorithm is T .

Similarly, bounds can be derived for any generic convex
loss function by using online gradient descent for learning
each regression function. For a decaying ηt = 1√

t
, OGD

can achieve a sublinear regret bound of O(
√
T ) with respect

to the best linear combination of multiple kernel predic-
tions. For a fixed η, the bound is weaker and may indi-
cate poor learning. However, a fixed η is more suitable in a
non-stationary environment, as it can adapt to a changing
pattern faster.

3.5 Stochastic and Budget OMKR
In the worst case, all the instances become support vectors

for each kernel in the OMKR framework(which is invariably
the case when using squared loss). For the tth instance, the
time taken for a prediction to be made by a single kernel
is in O(t), and for m predictions to be made by m kernels
is in O(mt). However, not all kernels are good candidates
for prediction, especially when their weights are low. In
addition, not all the historical instances are good candidates
for making the prediction, particularly in a non-stationary
setting. With this motivation, we propose stochastic update
and budget online kernel learning strategies.

3.5.1 Stochastic Update for OMKR
An update to a kernel regressor involves adding a new sup-

port vector. If SVs are not added to less important kernels,
the time taken for prediction by these kernels is significantly
reduced. The intuition is if there is only one good kernel or
a small subset of good performing kernels, it is only these
should be given more data to learn the function, and the
poor kernels are still allowed to make predictions (but with
limited data), which takes much lesser computational time.
We define a probability sampling denoted by qit, which deter-
mines the probability of a kernel being selected for updates.

qit =
|wit|

max1≤j≤m |wjt |
(19)

This indicates that higher the absolute weight, the higher
is the probability, and the best kernel has a probability of
1. When OMKR(Hedge) is used the weights can never be
negative. In case of OGD updates in weights, there is a
theoretical possibility for the weights to become negative,
and hence we take absolute values to compute qit, so as to
account for weights having the maximum impact on the pre-
diction. To prevent kernels with low weights, that do not
have a significant impact to the prediction, from completely
losing out, we introduce a smoothing parameter δ ∈ (0, 1).
The idea is to add a small component of uniform weights.
The new probability of a kernel being selected for update is
denoted by:

pit = (1− δ)qit +
δ

m
(20)

Here δ is a small value. A similar idea was used in [1], to
tradeoff between exploration and exploitation. Using p we
sample a subset of kernels based on Bernoulli Sampling, i.e.,
mi
t = Bernoulli(pit). Only those kernels that are selected

will be chosen for an update. The steps are described in
Algorithm 3.

Theorem 2. After receiving a sequence of T instances
the expected loss of the Stochastic Update OMKR (Hedge)
denoted by E[L] = E[ΣTt=1`(Σ

m
i=1θ

i
tf
i
t (xt), yt)] is bounded as:

E[L] ≤
ln( 1

β
)

δ(1− β)
min

1≤i≤m
F (κi, `,D) +

ln(m)

δ(1− β)
(21)
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Algorithm 3 Stochastic OMKR scheme

INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Update Parameter: β ∈ (0, 1) if Hedge or ηw for OGD
- Smoothing Parameter: δ ∈ (0, 1)
- Step Size Parameter for each kernel: η
- Regression parameters:λ, ν for OMKR(NORMA)
NORMA)

Initialization: f1 = 0, w1 = 1
m

1

for t = 1,. . . ,T do
Receive instance: xt
Predict ŷt based on Hedge or OGD combination
Reveal true value yt

qit =
|wit|

max
1≤j≤m

|wjt |
, i = 1, . . . ,m

pit = (1− δ)qit + δ
m
, i = 1, . . . ,m

Sample mi
t = BernoulliSampling(qit), i = 1, . . . ,m

for i = 1,. . . ,m do
Set `it = `(f it (xt), yt)
if mi

t == 1 then
Update f it+1 = Eq. (3) OR (6)

end if
end for
Update wt+1 based on Hedge or OGD

end for

and by choosing β =
√
T√

T+
√

lnm
, we get:

E[L] ≤ 1

δ
(1 +

√
lnm

T
min

1≤i≤m
F (κi, `,D) + lnm+

√
T lnm)

The proof is similar to the proof of OMKR(Hedge). We omit
the details.

3.5.2 Budget OMKR
Often, a subset of instances can explain the data as well

as the entire data. Further, in a non-stationary time series
setting, it is common to introduce a sliding window so as to
give importance to only the most recent instances. In our
case, we have a sliding window of the most recent support
vectors that explain the data. This is also particularly help-
ful in the case of NORMA, where in each iteration, the old
support vectors get reduced by a factor of (1 − ηλ). As t
grows, the α values of the old support vectors get reduced
to almost zero. Such support vectors can be ignored with-
out any significant impact to the prediction. Therefore, we
propose a parameter τ which restricts the total number of
support vectors that are allowed to be stored by each regres-
sor. The older support vectors are deleted.

3.5.3 Comparison between Stochastic and Budget
Stochastic OMKR improves efficiency by reducing the num-

ber of support vectors of poor performing kernels. However,
if all kernels are equally good, there is no reduction in com-
putational time. The budget strategy restricts the number
of support vectors of each kernel, and has a worst case com-
plexity of O(mτ) in each iteration to make the prediction.
Both address non-stationarity in different ways. Stochastic
approach trades off between exploration and exploitation to
determine if another kernel has become more suitable for
the changing pattern, and the budget approach gives more
importance to the most recent data.

4. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the performance of

all OMKR variants on regression data and time series data.

4.1 Experimental Setup

4.1.1 Data
We use five regular regression datasets and seven time se-

ries datasets. The data is from different applications, with
a wide range of data size and dimensionality. All data at-
tributes including the target were scaled to [0, 1]. The algo-
rithms were run on ten random permutations of the regular
regression datasets to establish robustness. Such permuta-
tions are not applicable in the case of time series. The details
of the datasets used can be seen in Table 1.

Table 1: List of Datasets
ID Name # Instances # Attributes

Regression Datasets
D1 Abalone 4177 8
D2 Parkinsons 5875 20
D3 Spacega 3107 6
D4 Cadata 20640 8
D5 Add10 9792 11

Time Series Datasets
D6 Laser 10073 20|10
D7 Physiological 17000 2
D8 Currency Exch. 1 3000 20|10
D9 Currency Exch. 2 3000 20|10
D10 Astrophysical 598 20|10

Large Time Series Datasets
D11 Santafe Computer 100000 20|10
D12 Twitter 583250 77

Datasets D1, D2 and D12 were taken from the UCI repos-
itory1, D3-D4 from StatLib2, D5 is a synthetic dataset ob-
tained from Delve3. D6-D11 are datasets from the Santa
Fe Time Series Competition Data4. D6 is stationary, D7
is non-stationary, and unlike other time series data, is not
univariate, but is dependent on 2 attributes, D8 and D9’s
stationarity property is unknown, and D10 is characterized
by noise. D11 is non-stationary with a slow drift. D12 is
about predicting buzz in social media. For univariate time
series data the attribute column having 20|10 indicates the
choice of 2 kernelized AR(p) process with p = 10, 20 each
having its own m kernel functions.

4.1.2 Kernels
We evaluate the performance of OMKR by using a pool

of 24 predefined kernels. These include 4 polynomial ker-
nels κ(x, y) = (xT y)p of degree parameter p = 1, 2, 3, 4,

13 RBF kernels (κ(x, y) = e
(
−||x−y||2

2σ2
)
) of kernel width pa-

rameter σ in [2−6, 2−5, . . . , 26], 5 Cauchy kernels (κ(x, y) =
1

1+
||x−y||2
σ2

) with parameter σ in [2−2, 2−1, . . . , 22], one sig-

moid kernel(κ(x, y) = tanh(xy)) and a Chi-Square Kernel

1http://archive.ics.uci.edu/ml/
2http://lib.stat.cmu.edu/
3http://www.cs.toronto.edu/~delve/data/datasets.
html
4http://www-psych.stanford.edu/~andreas/
Time-Series/SantaFe.html
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(κ(x, y) = 1 − Σni=1
(xi−yi)2
1
2

(xi+yi)
). Since all our data is scaled

to [0, 1], we clip the kernel prediction to this range, i.e.,
ŷt = max(0,min(1, ŷt)).

4.1.3 Comparison and Performance Metrics
We compare the algorithms based on Mean Squared Er-

ror (MSE), time taken, and the weight distribution. The
algorithms compared are - (i) Regression(V): Best Kernel
by validation; (ii) Regression(H): Best Kernel in hindsight;
(iii) Uniform OMKR: Uniform weight distribution over ker-
nels (to see if this can eliminate the impact of a poor kernel
choice); (iv) Deterministic OMKR (Hedge); and (v) De-
terministic OMKR (OGD). We then analyze the perfor-
mance of efficiency enhancing variants of OMKR and study
the tradeoff between accuracy and efficiency. For the large
datasets (D11 and D12), we compare only the budget ver-
sions of all algorithms.

4.1.4 Parameter Setting
All parameters for the regression tasks (if any), and the

best kernel for Regression(V) were chosen by online valida-
tion technique. We performed a grid search and evaluated
the performance of the parameters on the of first 100 in-
stances or first 10% of the instances, whichever was lesser.
The value of Hedge parameter β was fixed to 0.5 in all cases,
and the learning rate ηw was fixed to 0.025 for OGD update
of weights). We also conducted sensitivity analysis for the
weight update parameters. The learning rate η for each
kernel regression was fixed at 0.1. Since η is the same for
both single kernel and multi kernel versions, its choice does
not affect the comparison between Single Kernel Regression
and OMKR. For budget strategies, we fixed the budget size
τ = 500 support vectors. In stochastic OMKR, the smooth-
ing parameter δ was set to 0.05 in all cases.

4.2 Experimental Results and Analysis

4.2.1 Evaluation of Deterministic OMKR
The detailed results of single kernel regression against

OMKR can be seen in Table 2. Columns Reg(V) and Reg(H)
represent single kernel regression by validation and in hind-
sight. Columns Uniform, Hedge, OGD represent OMKR
with uniform weights, weight updated by Hedge, and weight
updated by OGD respectively.

With almost no exception both our proposed methods
OMKR (Hedge and OGD) outperform Reg(V) very signifi-
cantly, at times achieving as low as 1% of error of Reg(V).
We should note that in a real world setting, it is hard to
choose a better kernel for unseen data than by a valida-
tion method. Reg(H) is the best kernel in hindsight, and is
not known prior to running the experiments. Despite this,
OMKR algorithms significantly outperform Reg(H) in most
cases. In cases, where it OMKR does not beat Reg(H),
their performance is very closely matched. Thus, without
any a priori knowledge, OMKR is able to outperform even
the best kernel in hindsight. This is because OMKR is able
to identify a linear combination of kernels, which provide
complementary information to each other in order to give
a weighted prediction which beats any single best kernel.
Uniform OMKR is affected by the usage of certain poor ker-
nels and its performance is very inconsistent across datasets.
It never beats OMKR(OGD), and beats OMKR(Hedge) in
only one case (D1-Norma). This however is probably an

exception, in which the optimal linear combination is close
to a uniform distribution, because of which uniform weights
are probably just a lucky guess. The difference in perfor-
mance by Reg(V) and Reg(H), and the poor performance
by Uniform(OMKR) highlight the difficulty of choosing the
best kernel function for a given task. In terms of efficiency,
Deterministic OMKR takes roughly m times the amount of
time take by single kernel regression.

Hedge and OGD are suitable in different scenarios. Due
to a multiplicative update, Hedge converges very quickly, by
identifying the single kernel that best represents the data,
which is often the case. However, since Hedge only offers
a linear combination of the best kernel(s), we expect the
optimal linear combination determined by OGD to outper-
form Hedge. This does not happen if the the data is not
large enough for OGD to converge to optimal linear com-
bination, or the data is non-stationary such that the ap-
propriate kernel function changes too frequently for OGD
to be able to learn the optimal combination. We plot the
cumulative mean squared error against time for some rep-
resentative datasets in Figures 1 and 2. It can be seen,
that in most cases, OMKR(Hedge) attains a very low MSE
from the beginning and does not improve much further,
whereas, OMKR(OGD) starts with a relatively higher MSE,
but it is continuously improving its performance. Refer-
ring back to Table 2, it can be seen that in general that
OMKR(OGD) has relative advantage in larger datasets, and
OMKR(Hedge) in smaller ones. Additionally, we also look at
the weight distribution attained by the algorithms, which is
shown in Figure 3. The weight distribution by OMKR(Hedge)
concentrates largely on the best kernel in hindsight, and oth-
erwise has weights over certain reasonably good perform-
ing kernels. Unlike OMKR(Hedge), OMKR(OGD) does not
have a concentrated distribution of weights over few kernels.

4.2.2 Evaluation of OMKR Efficiency Enhancers
The MSE and the time taken by Deterministic, Stochastic

and Budget OMKR are detailed in Tables 3 and 4. Clearly
the time taken by both stochastic and budget techniques
is significantly lower than Deterministic OMKR. Despite
this, in most cases, the efficiency enhancers give compara-
ble MSEs with respect to Deterministic OMKR. In many
cases, particularly time series, the variants are able to out-
perform the deterministic version. This shows their ability
to retain important information from the data, and adapt to
changes in the pattern. Stochastic is faster than budget in
smaller datasets, but in larger datasets, the number of SVs
in stochastic start dominating even if only for a few kernels,
and hence Budget is faster.

Using Budget OMKR, we run the algorithm on two large
datasets (D11 and D12). In this case, we use a budget for
all 5 algorithms. The details are shown in Table 5. The
results are consistent with our previous findings of OMKR
outperforming single kernel regression.

4.2.3 Effect of weight update parameters β and ηw

OMKR(Hedge) is not very sensitive to the value of the dis-
count rate parameter β. There is a reasonably large range of
values of β in which OMKR(Hedge)’s relative performance
to other algorithms remains the same. OMKR(OGD)’s sen-
sitivity to the learning rate ηw shows a tradeoff between
large and small learning rates. This behavior is typical of
all gradient descent algorithms.
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Table 2: Single Kernel Regression vs Multiple Kernel Regression:

Each field is the ratio
MSEalgorithm
MSEReg(V )

. Lower ratio implies lower MSE. Best ratios are in bold. The results for the regression datasets

are averaged over 10 different permutations. The standard deviation is significantly lower in OMKR versions.
Widrow Hoff Norma

ID Reg(V) Reg(H) Uniform Hedge OGD Reg(V) Reg(H) Uniform Hedge OGD
Regression Datasets

D1 1.00 0.85 1.06 0.89 0.98 1.00 0.36 0.29 0.31 0.26
D2 1.00 0.39 0.79 0.39 0.45 1.00 0.40 0.49 0.40 0.39
D3 1.00 0.69 3.90 0.69 0.82 1.00 0.87 1.55 0.52 0.60
D4 1.00 0.79 1.13 0.79 0.85 1.00 0.77 0.93 0.74 0.67
D5 1.00 0.53 2.85 0.56 0.62 1.00 0.21 0.53 0.21 0.22

Time Series Datasets
D6 1.00 0.13 0.50 0.14 0.14 1.00 0.96 1.68 0.70 0.57
D7 1.00 0.96 1.61 0.93 0.37 1.00 0.98 0.69 0.23 0.15
D8 1.00 0.96 12.40 1.65 1.67 1.00 0.73 0.30 0.15 0.18
D9 1.00 0.01 0.07 0.01 0.01 1.00 0.79 0.65 0.18 0.17
D10 1.00 0.83 2.90 0.84 0.66 1.00 0.67 1.60 0.45 0.54
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Figure 1: Cumulative Mean Squared Error with time (when Widrow-Hoff is used for regression):
All results are displayed for data after the validation stage during which the parameters were determined.
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Figure 2: Cumulative Mean Squared Error with time (when Norma is used for regression):
All results are displayed for data after the validation stage during which the parameters were determined.
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Figure 3: Weight distribution attained by all algorithms
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Table 3: OMKR (Hedge) vs Stochastic and Budget Strategies:
Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

Widrow Hoff Norma
ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME
Regression Datasets

D1 0.0075 348 0.0079 39 0.0096 74 0.0121 220 0.0113 45 0.0122 68
D2 0.0209 707 0.0488 32 0.0436 109 0.0451 537 0.0544 45 0.0467 102
D3 0.0028 193 0.0035 22 0.0058 54 0.0049 159 0.0050 37 0.0049 53
D4 0.0245 8496 0.0243 376 0.0354 385 0.0477 6397 0.0416 354 0.0413 388
D5 0.0054 1950 0.0096 64 0.0122 183 0.0108 1338 0.0151 112 0.0116 171

Time Series Datasets
D6 0.0022 4062 0.0034 146 0.0066 427 0.0058 2611 0.0034 182 0.0059 413
D7 0.0025 5728 0.0030 831 0.0088 312 0.0008 5101 0.0017 1118 0.0008 322
D8 0.0003 346 0.0002 15 0.0007 117 0.0005 274 0.0002 136 0.0005 111
D9 0.0009 352 0.0010 56 0.0011 118 0.0006 280 0.0010 119 0.0006 114

D10 0.0074 16 0.0086 3 0.0089 15 0.0047 12 0.0086 6 0.0047 12

Table 4: OMKR (OGD) vs Stochastic and Budget Strategies:
Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

Widrow Hoff Norma
ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME
Regression Datasets

D1 0.0082 348 0.0086 43 0.0097 76 0.0105 220 0.0095 48 0.0105 69
D2 0.0230 707 0.0488 35 0.0432 111 0.0442 537 0.0521 49 0.0466 105
D3 0.0034 193 0.0045 24 0.0043 55 0.0055 159 0.0044 40 0.0056 54
D4 0.0261 8496 0.0260 414 0.0311 393 0.0006 6397 0.0322 382 0.0363 396
D5 0.0060 1950 0.0109 70 0.0108 187 0.0115 1338 0.0115 121 0.0121 174

Time Series Datasets
D6 0.0021 4062 0.0039 160 0.0055 427 0.0048 2611 0.0048 200 0.0048 413
D7 0.0010 5728 0.0011 914 0.0023 318 0.0005 5101 0.0008 1230 0.0006 328
D8 0.0003 346 0.0002 17 0.0004 117 0.0006 274 0.0002 149 0.0006 111
D9 0.0004 352 0.0005 62 0.0005 118 0.0006 280 0.0004 130 0.0006 114

D10 0.0058 16 0.0113 3 0.0066 15 0.0056 12 0.0063 6 0.0056 12

Table 5: Budget OMKR on large time series datasets:
The comparison is against the budget version of all algorithms. All values are MSE achieved by each algorithm. Runtime of D11 was

4000 seconds, and of D12 was 12000 seconds.
Widrow Hoff Norma

ID Reg(V) Reg(H) Uniform Hedge OGD Reg(V) Reg(H) Uniform Hedge OGD
Large Time Series Datasets

D11 0.074807 0.015779 0.040779 0.015709 0.007766 0.017452 0.012429 0.028378 0.011465 0.006457
D12 0.000327 0.000026 0.001580 0.000027 0.000028 0.000915 0.000637 0.020063 0.000605 0.000031
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Figure 4: Sensitivity of OMKR(Hedge) to discount rate parameterβ:

We vary β keeping the performance of all other algorithms fixed.
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Figure 5: Sensitivity of OMKR(OGD) to learning rate ηw:
We vary ηw keeping the performance of all other algorithms fixed.

301



5. CONCLUSION
This paper proposes a family of OMKR algorithms for ker-

nel based regression using a pool of predefined kernels. They
overcome the challenges of existing work which are largely
designed for a batch setting and assume that the appropri-
ate kernel function is known. OMKR sequentially learns the
kernel based regressor in an online and scalable fashion, and
dynamically explores a pool of multiple diverse kernels to
avoid problems of poor kernel choice by manual or heuristic
selection. Further, OMKR is particularly useful in a time
series setting, where the appropriate window size p of an
AR(p) process is not known. Varying values of p, each with
its own set of predefined kernels, are plugged into the OMKR
framework, thus exploring and identifying the best kernel
based regressor dynamically. We evaluate the performance
of OMKR based on two types of loss functions. Any kernel
based regression task can be plugged into the generic OMKR
framework, and is likely to achieve a better result than any
single kernel. We also propose stochastic and budget tech-
niques to enhance efficiency. Our empirical evaluations show
the excellent performance of OMKR, often beating the best
prediction function determined in hindsight.
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ŞTheŤ MIT Press, 2002.

[26] L. C. S. V. D. Schuurmans and S. W. Caelli. Implicit
online learning with kernels. In NIPS, volume 19, page
249. MIT Press, 2007.

[27] S. Shalev-Shwartz. Online learning: Theory,
algorithms, and applications. 2007.

[28] J. Shawe-Taylor and N. Cristianini. Kernel methods
for pattern analysis. Cambridge university press, 2004.

[29] A. J. Smola and B. Schölkopf. A tutorial on support
vector regression. Statistics and computing,
14(3):199–222, 2004.

[30] S. Sonnenburg, G. Rätsch, C. Schäfer, and
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