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ABSTRACT
Linear regression is a widely used tool in data mining and
machine learning. In many applications, fitting a regression
model with only linear effects may not be sufficient for pre-
dictive or explanatory purposes. One strategy which has
recently received increasing attention in statistics is to in-
clude feature interactions to capture the nonlinearity in the
regression model. Such model has been applied successfully
in many biomedical applications. One major challenge in
the use of such model is that the data dimensionality is
significantly higher than the original data, resulting in the
small sample size large dimension problem. Recently, weak
hierarchical Lasso, a sparse interaction regression model, is
proposed that produces sparse and hierarchical structured
estimator by exploiting the Lasso penalty and a set of hi-
erarchical constraints. However, the hierarchical constraints
make it a non-convex problem and the existing method finds
the solution of its convex relaxation, which needs additional
conditions to guarantee the hierarchical structure. In this
paper, we propose to directly solve the non-convex weak
hierarchical Lasso by making use of the GIST (General Iter-
ative Shrinkage and Thresholding) optimization framework
which has been shown to be efficient for solving non-convex
sparse formulations. The key step in GIST is to compute
a sequence of proximal operators. One of our key technical
contributions is to show that the proximal operator associ-
ated with the non-convex weak hierarchical Lasso admits a
closed form solution. However, a naive approach for solv-
ing each subproblem of the proximal operator leads to a
quadratic time complexity, which is not desirable for large-
size problems. To this end, we further develop an efficient al-
gorithm for computing the subproblems with a linearithmic
time complexity. We have conducted extensive experiments
on both synthetic and real data sets. Results show that our
proposed algorithm is much more efficient and effective than
its convex relaxation.
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1. INTRODUCTION
Consider a linear regression model with the outcome vari-

able y and d predictors x1, . . . , xd:

y = w0 +

d∑
i=1

xiwi + ε, (1)

where w0 is the bias term, wi, i = 1 . . . , d is the coefficient
and ε ∼ N(0, σ2) is the noise term. In many applications, a
simple linear regression model is not sufficient for predictive
or explanatory purposes. One strategy which has recently
received increasing attention in statistics is to include inter-
action terms into the model to capture the nonlinearity of
the data [17, 22]. For example, the linear model including
terms of order-2 and lower has the following form:

y = w0 +

d∑
i=1

xiwi +
1

2

d∑
i=1

d∑
j=1

xixjQi,j + ε, (2)

where the cross-product term xixj , i 6= j refers to as the in-
teraction variable (one may view x2

i as a special interaction
variable), and w′

is and Q ∈ Rd×d are the main effect and in-
teraction effect coefficients respectively. Applications with
interaction regression models are omnipresent. For exam-
ple, in psychological study, the effectiveness of using 3-way
interactions was demonstrated in testing psychological hy-
pothesis [9]; there are strong evidences found in [4] that
genetic-environment interactions have significant effects on
conduct disorders; the research in [11] found a couple of
evidences of gene-environment interactions in predicting de-
pression status; in [26], the interaction between continuance
commitment and affective commitment was found signifi-
cant in predicting job withdraw intentions and absenteeism;
[13] discovered that brain-derived neurotrophic factor inter-
acts with early life stress in predicting cognitive features of
depression and anxiety.
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However, the use of higher order terms leads to data of
high dimensionality. For instance, for regression model (1),
if one wants to add all terms of order-k and lower, then there
will be a total of O(dk) variables, which is computationally
demanding for parameter estimation even when k and d are
fairly small. Thus, an efficient approach that is able to deal
with huge dimensionality is desired in such cases, and the
sparse learning methodology is one promising approach for
tackling such problem [27, 18, 7, 5, 32]. In this paper, we
focus on the model (2) with pairwise interactions, i.e., two-
factor interactions. Note that the analysis can be extended
to the model with higher-order interactions.

In general, not all of the main effects and interactions are
of interest, thus it is critical to select the variables of great
significance. One simple approach for high dimensional in-
teraction regression is to directly apply the Lasso [27], also
known as the “all-pairs Lasso” [2] in the case of two-factor
interactions. However, the all-pairs Lasso estimator does
not account for any structural information which has been
shown to be important for prediction and interpretation of
the high dimensional interaction regression model [2, 30, 25,
29, 6]. In statistics, a hierarchical structure between main
effects and interaction effects has been shown to be very ef-
fective in constraining the search space and identifying im-
portant individual features and interactions [2, 30, 25, 29,
6]. Specifically, the hierarchical constraint requires that an
interaction term xixj is selected in the model only if the
main effects xi and/or xj are included. Strong theoretical
properties have been established for such hierarchical model
[29, 30]. The hierarchical structure is supported by the ar-
gument that large main effects may result in interaction of
more importance, and it is desired in a wide range of appli-
cations in engineering and underlying science. Traditional
approaches to fit such a model typically follow the following
two-step procedures [22]:

(i) Fit a linear regression model that only includes the
main effects and then select the significant features;

(ii) Fit the reformulated model with the identified indi-
vidual features and the interactions constructed via
domain knowledge.

Since even a small d may lead to a huge amount of interac-
tion variables, the two-step procedure is still time-consuming
in many applications. Recently, there have been growing re-
search efforts on imposing the hierarchical structure on main
effects and interactions in the regression model with novel
sparse learning methods. In [2], in order to enable feature se-
lection and impose heredity structures, the authors proposed
strong hierarchical Lasso which adds a set of constraints to
the Lasso formulation to achieve the strong hierarchy where
the interaction effects are non-zero only if the corresponding
main effects are non-zero. In [25], a Lasso-type penalized
least square formulation called VANISH was proposed to
achieve the strong hierarchy between the interaction effects
and main effects. In [29], a type of non-negative garrote
method was proposed to achieve the heredity structures. In
[30], the Composite Absolute Penalties were proposed to
achieve heredity structures for interaction models. In con-
trast to the above works which fulfill the hierarchical struc-
ture via solving convex problems, Choi et al. in [6] formu-
lated a non-convex problem to achieve the strong hierarchy
by assuming that the coefficient of an interaction term is a

product of a scalar and main effect coefficients. Different
from the strong hierarchy, the weak hierarchy between the
main effects and the interaction effects requires that an in-
teraction is included in the model only if at least one of the
main effects is included in the model. In mathematical form,
Qi,j 6= 0 only if wi 6= 0 OR wj 6= 0. The weak hierarchy can
be considered as a structure in between the strong hierarchy
and no hierarchical structure [2, 29, 30]. Specifically, weak
hierarchy allows those interactions with only one significant
“parent” (main effect) to be included in the model. Several
existing empirical studies have demonstrated the stronger
predictive power of weak hierarchical model [19]. In our
study, we mainly focus on the interaction regression model
with weak hierarchical structure.

We follow the weak hierarchical Lasso approach recently
proposed by [2] to fit the pairwise interaction regression
model with the weak hierarchy. By imposing restrictions
of the weak hierarchy and taking advantage of the Lasso
penalty [27] that leads to sparse coefficients, the weak hier-
archical Lasso is able to simultaneously attain a hierarchical
solution and identify important main effects and interac-
tions. However, the set of constraints restricting hierarchi-
cal constraints make the problem non-convex; the algorithm
proposed in [2] aims to solve a convex relaxation. The con-
vex relaxation, however, requires additional conditions to
guarantee the weak hierarchy, which is not desirable.

In this paper, we propose to directly solve the weak hi-
erarchical Lasso using the GIST (General Iterative Shrink-
age and Thresholding) optimization framework recently pro-
posed by [15]. The GIST framework has been shown to be
highly efficient for solving large-scale non-convex problems.
The most critical step in GIST is to compute a sequence of
proximal operators [23]. In this paper, we first show that
the proximal operator related to weak hierarchical Lasso
admits an analytical form solution by factorizing unknown
coefficients into sign matrices and non-negative coefficients.
However, a naive method of computing the subproblem of
the proximal operator leads to a quadratic time complex-
ity, which is not desirable for large-size problems. To this
end, we further develop an efficient algorithm for solving the
subproblems, which achieves a linearithmic time complexity.
We evaluate the efficiency and effectiveness of the proposed
algorithm and compare it with the convex relaxation in [2]
and other state-of-the-art methods using synthetic and real
data sets. Our empirical study demonstrates the high effi-
ciency of our algorithm and the superior predictive perfor-
mance of weak hierarchical Lasso over the competing meth-
ods.

The remaining of the paper is organized as follows: we give
a brief review of the weak hierarchical Lasso and its convex
relaxation in Section 2. In Section 3, we derive the closed
form solution to the proximal operator of the original weak
hierarchical Lasso by decomposing the unknown coefficients
into signs and the non-negative coefficients. Then, we show
how the associated proximal operator can be computed ef-
ficiently. We report the experimental results in Section 4.
We conclude this paper in Section 5.

2. THE WEAK HIERARCHICAL LASSO
In this section, we briefly review the weak hierarchical

Lasso and its corresponding convex relaxed formulation [2].
Suppose we are given n pairs of data points {(xi, yi)}ni=1 ⊂
Rd × R. Let Y ∈ Rn×1 be the vector of outcome and X ∈
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Rn×d be the design matrix. Let Z ∈ Rn×(d·d) be the matrix
of interactions where

Z =
[
Z(1), Z(2), . . . , Z(d)

]
,

Z(i) ∈ Rn×d and each column of Z(i), i = 1, . . . d is an inter-

action, i.e., Z
(i)
·,j = X·,i�X·,j (� is the operator of element-

wise product). Thus, Z(i) captures the pairwise interactions
between the i-th feature and all d features. Note that, we
include the quadratic terms x2

i in the interaction model for
clearer presentation, however our analysis is still applicable
if they are not included in the model. By assuming that
Y is centered and X,Z are column-wise normalized to zero
mean and unit standard deviation, we can set the bias term
w0 = 0. Thus, in matrix form, the pairwise interaction re-
gression model can be expressed as

Y = Xw +
1

2
Z · vec(Q) + ε, (3)

where ε ∼ N(0, σ2I) and “vec” is the vectorization operator
that transforms a matrix to a column vector by stacking the
columns of the matrix. Thus, the least square loss function
of (3) is given by:

L (w,Q) =
1

2

∥∥∥∥Y −Xw − 1

2
Z · vec(Q)

∥∥∥∥2
2

. (4)

Then, the weak hierarchical Lasso formulation takes the
form of [2]:

min
x,Q
L (w,Q) + λ‖w‖1 +

λ

2
‖Q‖1

s.t. ‖Q·,j‖1 ≤ |wj | for j = 1, . . . , d,

(5)

where ‖Q‖1 =
∑

i,j |Qi,j | and λ is the Lasso penalty param-
eter.

Note that the constraints in (5) guarantee the weak hi-
erarchical structure since the coefficient Qi,j of interaction
xixj is non-zero only if at least one of its main effects is
included in the model, i.e., wi 6= 0 or wj 6= 0. However,
the imposed hierarchical constraints make problem (5) non-
convex. Instead of solving (5), Bien et al. in [2] proposed to
solve the following relaxed version:

min
w,Q

L
(
w+ − w−, Q

)
+ λ1T (w+ + w−) +

λ

2
‖Q‖1

s.t. ‖Q·,j‖1 ≤ w+
j + w−

j

w+
j ≥ 0

w−
j ≥ 0

 for j = 1, . . . , d,

(6)

where 1 represents a column vector of all ones. In view of
(6), we can see that ‖w‖1 is relaxed to w+ + w−. Problem
(6) is convex and can be solved by many efficient solvers
such as FISTA [1]. However, Bien et al. in [2] showed that
problem (6) needs an additional ridge penalty to guarantee
the weak hierarchical structure of the estimator. In this pa-
per, we propose an efficient algorithm which directly solves
the non-convex weak hierarchical Lasso formulation in (5).

3. THE PROPOSED ALGORITHM
In this section, we propose an efficient algorithm named

“eWHL”, which stands for“efficientWeakHierarchical Lasso”,
to directly solve the weak hierarchical Lasso. eWHL makes

use of the optimization framework of GIST (General Itera-
tive Shrinkage and Thresholding) due to its high efficiency
and effectiveness for solving non-convex sparse formulations.
One of the critical steps in GIST is to compute the proxi-
mal operator associated with the penalty functions. As one
of our major contributions, we first factorize the unknown
coefficients into the product of their signs and magnitudes;
and then show that the proximal operator of (5) admits a
closed form solution in Section 3.1. Another major contribu-
tion is that we present an efficient algorithm for computing
the proximal operator associated with the non-convex weak
hierarchical Lasso in Section 3.2. The time complexity of
solving each subproblem of the proximal operator can be
reduced from quadratic to linearithmic. We then summa-
rize our algorithm for computing the proximal operator in
Section 3.2.

3.1 The Closed Form Solution to the Proximal
Operator

In this section, we show how to derive the closed form so-
lution of the proximal operator associated with (5) in detail.
Let

P =
{
(a,B), a ∈ Rd, B ∈ Rd×d

∣∣∣ ‖B·,j‖1 ≤ |aj |, j = 1, . . . , d
}

and the indicator function be defined by

R(w,Q) =

 λ‖w‖1 +
λ

2
‖Q‖1 , if (w,Q) ∈ P

+∞, if (w,Q) /∈ P
. (7)

Given a sequence
{(

w(k), Q(k)
)}

, the proximal operator as-

sociated with weak hierarchical Lasso is:(
w(k+1), Q(k+1)

)
= argmin

w, Q
L
(
w(k), Q(k)

)
+
〈
∇wL

(
w(k), Q(k)

)
, w − w(k)

〉
+
〈
∇QL

(
w(k), Q(k)

)
, Q−Q(k)

〉
+

t(k)

2

∥∥∥w − w(k)
∥∥∥2
2

+
t(k)

2

∥∥∥Q−Q(k)
∥∥∥2
F
+R(w,Q),

(8)

where t(k) > 0.
Simple algebraic manipulation leads to(
w(k+1), Q(k+1)

)
= argmin

w, Q

1

2

∥∥∥w − v(k)
∥∥∥2
2
+

1

2

∥∥∥Q− U (k)
∥∥∥2
2

+
1

t(k)
R(w,Q),

(9)

where

v(k) =w(k) −∇wL
(
w(k), Q(k)

)
/t(k),

U (k) =U (k) −∇QL
(
w(k), Q(k)

)
/t(k).

Thus, problem (5) can be solved by iteratively solving the
proximal operator in (9). Because R(w,Q) is an indicator
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function, we can rewrite the proximal operator (9) as

argmin
w, Q

1

2
‖w − v‖22 +

1

2
‖Q− U‖2F +

λ

t
‖w‖1 +

λ

2t
‖Q‖1

s.t. ‖Q·,j‖1 ≤ |wj | for j = 1, . . . , d.

(10)

We omit the superscripts for notational simplicity.
The vector of main effect coefficients can be written as

w = S0w̃,

where w̃j = |wj |, j = 1, . . . , d and S0 ∈ Rd×d is a diagonal
matrix whose j-th diagonal element is the sign of wj , i.e.,
S0
j,j = sign(wj). We define

sign(w) =


1 if w > 0

−1 if w < 0

0 if w = 0

, (11)

and we assume in this paper that the sign operator is applied
on vectors or matrices elementwise. Similarly, we factorize
each column of the interaction coefficient matrix as Q·,j =

SjQ̃·,j , j = 1 . . . , d, where Q̃i,j = |Qi,j | and Sj ∈ Rd×d is
the diagonal sign matrix. Then, the proximal operator (10)
is equivalent to

argmin
w, Q

1

2
‖w − v‖22 +

1

2
‖Q− U‖2F +

λ

t
‖w‖1 +

λ

2t
‖Q‖1

s.t. ‖Q·,j‖1 ≤ |wj |
wj = S0

j,jw̃j

Q·,j = SjQ̃·,j

w̃j ≥ 0

Q̃·,j � 0


for j = 1, . . . , d,

(12)

where Q̃, w̃ and Sj , j = 0, . . . , d are the unknown vari-
ables, � is defined as the element-wise“greater than or equal
to” comparison operator, i.e., for V, U ∈ Rd×1, V � U ⇔
Vi ≥ Ui, i = 1 . . . , d. Therefore, the solutions of the origi-
nal weak hierarchical Lasso can be obtained by iteratively
solving (12). Note that the amounts of l1 penalties on w
and Q can be different. Here we use the same penalty pa-
rameter λ for notational simplicity and consistency with the
original formulation of weak hierarchical Lasso (5) studied
in [2]. Though the factorization introduces more variables
and constraints, we show that the resulting proximal oper-
ator admits a closed form solution. More importantly, we
show that each sub-problem of the proximal operator can
be solved by the proposed eWHL algorithm in linearithmic
time. Indeed, the factorization of w and Q into their signs
and magnitudes is the first key to directly solve the original
weak hierarchical Lasso.

It is clear that the proximal operator in (12) can be de-
coupled into d subproblems:

argmin
w̃j ,S

0
jj ,Q̃·,j ,Sj

1

2

∥∥S0
jjw̃j − vj

∥∥2
2
+

1

2

∥∥∥SjQ̃·,j − U·,j

∥∥∥2
2

+
λ

t
w̃j +

λ

2t
1T Q̃·,j

s.t.
1T Q̃·,j ≤ w̃j

Q̃·,j � 0

}
, for j = 1, . . . , d.

(13)

Next, we show that (13) has a closed form solution. Since

1

2
(wj − vj)

2 =
1

2

(
S0
jjw̃j − vj

)2
=
1

2

(
S0
jj

(
S0
jjw̃j − vj

))2
=

1

2

(
w̃j − S0

jjvj
)2

and w̃j ≥ 0, S0
j,j must have the same sign as vj , that

is, wj has the same sign as vj . Otherwise, the value of
1
2

(
w̃j − S0

jjvj
)2

will not achieve the minimum. Similarly,

one can show that Sj
i,i, i.e., the sign of Qi,j , must be the

same as the sign of Ui,j . Thus, the diagonal elements diag(S0)
= sign(v), diag(Sj) = sign(U·,j), j = 1, . . . , d. Next, we

show how to compute w̃ and Q̃.

By letting ṽj = S0
jjvj and Ũj = SjU·,j , each subproblem

(13) is equivalent to

argmin
w̃j ,Q̃·,j

1

2
‖w̃j − ṽj‖22 +

1

2

∥∥∥Q̃·,j − Ũ·,j

∥∥∥2
2
+

λ

t
w̃j +

λ

2t
1T Q̃·,j

s.t.
1T Q̃·,j ≤ w̃j

Q̃·,j � 0
.

(14)

After rearrangement, problem (14) can be expressed as:

min
w̃j ,Q̃·,j

1

2
‖w̃j − v̌j‖22 +

1

2

∥∥∥Q̃·,j − qU·,j

∥∥∥2
2

s.t.
1T Q̃·,j ≤ w̃j

Q̃·,j � 0
,

(15)

where v̌j = ṽj − λ
t
1 and qU·,j = Ũ·,j − λ

2t
1.

We solve (15) by deriving its dual problem. Let γ ≥ 0 be
the Lagrangian multiplier dual variable of the first inequality
constraint. Define the Lagrangian function of (15) as:

l(γ, w̃, Q̃) =
1

2
(w̃ − v̌)2 +

1

2

∥∥∥Q̃− qU
∥∥∥2
2
+ γ

(
1T Q̃− w̃

)
where we omit the subscripts for simplicity with a little

abuse of notation. Since the constraint 1T Q̃ ≤ w̃ is affine,
the strong duality holds for the minimization problem (15).
Thus, the dual problem of (15) is:

max
γ≥0

min
w̃,Q̃�0

1

2
(w̃ − v̌)2 +

1

2

∥∥∥Q̃− qU
∥∥∥2
2
+γ

(
1T Q̃− w̃

)
. (16)

By rearranging the terms, (16) is equivalent to:

max
γ≥0

min
w̃,Q̃�0

1

2
(w̃ − (v̌ + γ))2+

1

2

∥∥∥Q̃− (qU − γ1
)∥∥∥2

2
+h(γ), (17)

where h(γ) = −v̌γ − 1
2
γ2 + γ1T

qU − 1
2
γ21T1.

For fixed γ, in order to obtain the minimum of the objec-
tive function in (17), we conclude that

v̌ + γ ≥ 0 ⇒ w̃ = v̌ + γ

v̌ + γ < 0 ⇒ w̃ = 0

qUi − γ ≥ 0 ⇒ Q̃i = qUi − γ

qUi − γ < 0 ⇒ Q̃i = 0

(18)

due to the constraints w̃ ≥ 0 and Q̃ � 0. Therefore, if
we obtain a dual optimal solution γ∗ that maximizes the
dual problem (17), then we can readily compute the closed
form solution to (13) and thus to (12). That is, w∗ =
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S0w̃∗, Q∗
·,j = SjQ̃∗

·,j where diag(S0) = sign(vj), diag(S
j) =

sign(U·,j), j = 1, . . . , d and w̃∗, Q̃∗ are obtained via (18) at
the optimal dual solution γ∗.

3.2 The Dual Optimal Solution
Next, we show how to efficiently compute the dual opti-

mal solution γ∗. First, we sort −v̌ and qUi, i = 1, . . . , d in
ascending order. Without loss of generality, we assume:

qU1 ≤ . . . ≤ qUL ≤ −qv ≤ qUL+1 ≤ . . . ≤ qUd. (19)

There are four possible cases about the locations of γ. We
discuss how to identify the optimal dual solution γ∗ in each
of the four cases.

Case 1 :
When . . . ≤ qUG ≤ γ ≤ qUG+1 ≤ . . . ≤ −v̌ ≤ . . ., the objective
in (17) at γ∗ becomes

1

2

G∑
i=1

(
qUi − γ

)2
+

1

2
(v̌ + γ)2 + h(γ)

=
1

2

G∑
i=1

qU2
i +

d∑
i=G+1

γ qUi −
d−G

2
γ2 +

1

2
v̌2.

(20)

Function (20) is a quadratic function with respect to γ and
the unconstrained maximum is achieved at the axis of sym-

metry point
∑d

i=G+1
qUi

d−G
≥ qUG+1. Since γ falls in the interval[

qUG, qUG+1

]
, we set

γ = qUG+1

to achieve the maximum objective value of (17). It can be
further concluded that, in Case 1, among all the intervals
on the left of −v̌, the maximum objective value of (17) is

achieved at the qUG.

Case 2:
When . . . ≤ qUL ≤ γ ≤ −v̌ ≤ qUL+1 ≤ . . ., it turns out that
the objective value in (17) at γ is similar to (20):

1

2

L∑
i=1

qU2
i +

d∑
i=L+1

γ qUi −
d− L

2
γ2 +

1

2
v̌2. (21)

By a similar argument, we can set γ = −v̌ to achieve the
maximum. Combining the results of Case 1 and Case
2, we conclude that, we may only consider γ in the range

[max (−v̌, 0) ,+∞]. Note that when L = d, that is qUd ≤ γ ≤
−v̌, (21) is a constant 1

2

∑d
i=1

qU2
i + 1

2
v̌2, and thus γ can be

any value in the interval
[

qUd,−v̌
]
.

Case 3:
When . . . ≤ qUL ≤ −v̌ ≤ γ ≤ qUL+1 ≤ . . ., the value of the
objective function in (17) at γ∗ becomes

1

2

L∑
i=1

(
qUi − γ

)2
+ h(γ)

=
1

2

L∑
i=1

qU2
i + γ

(
d∑

i=L+1

qUi − v̌

)
− d+ 1− L

2
γ2.

(22)

Again, (22) is a quadratic function of γ and
∑d

i=L+1
qUi−v̌

d+1−L
≥

−v̌. If
∑d

i=L+1
qUi−v̌

d+1−L
≥ qUL+1, the maximum is achieved at

γ = qUL+1,

otherwise the maximum is achieved at

γ =

∑d
i=L+1

qUi − v̌

d+ 1− L
.

Case 4:
When . . . ≤ −v̌ ≤ . . . ≤ qUG ≤ γ ≤ qUG+1 ≤ . . ., the objective
value in (17) is similar to (22):

1

2

G∑
i=1

qU2
i + γ

(
d∑

i=G+1

qUi − v̌

)
− p+ 1−G

2
γ2. (23)

If
∑d

i=G+1
qUi−v̌

d+1−G
≥ qUG+1, then the maximum is achieved at

γ = qUG+1;

If
∑d

i=G+1
qUi−v̌

d+1−G
≤ qUG, then the maximum is achieved at

γ = qUG;

If qUG ≤
∑d

i=G+1
qUi−qv

d+1−G
≤ qUG+1, the maximum is achieved at

γ =

∑d
i=G+1

qUi − v̌

d+ 1−G
.

Since we know exactly the value of γ for all the four cases,
one naive way to find the optimal γ∗ is to enumerate all
the possible locations and pick the one that maximizes the
objective function value in (17). However, evaluating the

objectives for all possible locations from max(−v̌, 0) to qUd

leads to a quadratic time algorithm for solving (17). Inter-
estingly, we show below that the time complexity of solving
(17) can be reduced to O(d log(d)).

Let us first list some useful properties as follows:
Given the ordered sequence (19):

• Property 1:
The maximum objective value of (17) in Case 3 is
larger than the one in Cases 1 & 2;

• Property 2:

In Case 4, for a pair of adjacent intervals
[

qUG−1, qUG

]
and

[
qUG, qUG+1

]
, if

∑d
i=G+1

qUi−qv

d+1−G
≥ qUG+1 for [qUG, qUG+1],

then
∑d

i=G
qUi−qv

d+1−(G−1)
≥ qUG for [qUG−1, qUG];

• Property 3:

In Case 4, if
∑d

i=G+1
qUi−v̌

d+1−G
≥ qUG+1 for

[
qUG, qUG+1

]
,

the maximum objective value of (17) in
[

qUG, qUG+1

]
is

larger than or equal to the one in
[

qUG−1, qUG

]
.

• Property 4:

In Case 4, for a pair of adjacent intervals
[

qUG−1, qUG

]
and

[
qUG, qUG+1

]
, if we have

∑d
i=G

qUi−qv

d+1−(G−1)
≤ qUG−1 for[

qUG−1, qUG

]
, then

∑d
i=G+1

qUi−qv

d+1−G
≤ qUG for

[
qUG, qUG+1

]
.
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• Property 5:

In Case 4, if
∑d

i=G
qUi−qv

d+1−(G−1)
≤ qUG−1 for

[
qUG−1, qUG

]
, the

maximum objective value of (17) in
[

qUG−1, qUG

]
, is

larger than or equal to the one in
[

qUG, qUG+1

]
.

• Property 6:

In Case 4, if qUG ≤
∑d

i=G+1
qUi−qv

d+1−G
≤ qUG+1 for

[
qUG, qUG+1

]
,

then
∑d

i=G
qUi−qv

d+1−(G−1)
≥ qUG for

[
qUG−1, qUG

]
and

∑d
i=G+2

qUi−qv

d+1−(G+1)

≤ qUG+1 for
[

qUG+1, qUG+2

]
, and the maximum value of

(17) in the interval
[

qUG, qUG+1

]
is larger than or equal

to the ones in its neighbor intervals.

Properties 2-6 also apply for adjacent intervals
[
−v̌, qUL+1

]
and

[
qUL+1, qUL+2

]
in Case 3.

We omit the proof of Properties 1-6 since they are direct
applications of 1-D quadratic optimization. Property 1 indi-
cates that it is sufficient for the algorithm to start searching
γ∗ from Case 3. Properties 2 & 3 imply that, for some in-
terval, if the axis of symmetry is on the right hand side of
the interval, then one only needs to consider the intervals to
the right. Similarly, Properties 4 & 5 indicate that, for some
interval, if the axis of symmetry is on the left hand side of
the interval, then one only needs to consider the intervals
to the left. Property 6 combined with Properties 1-5 imply
that, for certain interval, if it contains the axis of symmetry,
then γ∗ is the axis of symmetry point. Thus, we can draw

the following conclusion: (1) if max
(

qUd,−v
)
< 0, then

γ∗ = 0;

(2) if −v̌ > qUd, then

γ∗ = max(−v̌, 0);

(3) if qUG ≤
∑d

i=G+1
qUi−v̌

d+1−G
≤ qUG+1 for a certain interval[

qUG, qUG+1

]
, then

γ∗ =

∑d
i=G+1 Ǔi − v̌

d+ 1−G
.

At each move, the axis of symmetry
∑d

i=G+1
qUi−v̌

d+1−G
can be cal-

culated by a constant operation based on the value from the
last step, and the time complexity of searching γ∗ reduces
from quadratic to O(d log(d)) as the computation is domi-
nated by the sorting operation. Once γ∗ is determined, we

can compute w̃ and Q̃ by (18). Note that, the subproblem
of the proximal operator associated with the convex relax-
ation in [2] is solved by searching for the dual variable in a
different way with time complexity O(d2).

In summary, we reformulate the proximal operator for the
original weak hierarchical Lasso by factorizing the unknown
coefficients. The reformulated proximal operator is shown
to admit a closed form solution, which enables directly solv-
ing the weak hierarchical Lasso problem. Moreover, the
subproblem of the proximal operator can be computed effi-
ciently with a time complexity of O(d log(d)). The detailed
algorithm for solving the proximal operator (12) is described
in Algorithm 1. We give the details of eWHL algorithm in

Algorithm 1 Computation of the Proximal Operator of
Weak Hierarchical Lasso

Input: v ∈ Rd×1, U ∈ Rd×d, t ∈ R+, λ ∈ R+

Output: w ∈ Rd×1, Q ∈ Rd×d

1: v̌ = sign(v)� v − λ
t
1;

qU = sign(U)� U − λ
2t
11T ;

2: for j = 1 : d do
3: c = −v̌j ;
4: Sort qU·,j to get a sequence S in ascending order where

S1 ≤ S1 ≤ . . . ≤ Sd;
5: if Sd < 0 and c < 0 then
6: w̃j = 0;

qQ·,j = 0;
7: else
8: if Sd < c then
9: γ = max(c, 0);
10: else
11: k = d;
12: while 1 do
13: c = c+ Sk;
14: k = k − 1;
15: if c/(d+ 1− k) ≥ Sk then
16: γ = c;
17: break;
18: end if
19: end while
20: end if
21: w̃j = max(v̌j + γ,0);

Q̃·,j = max
(

qU·,j − γ,0
)
;

22: end if
23: end for
24: w = sign(v)� w̃;

Q = sign(U)� Q̃;

Algorithm 2. Following [15], we choose the step size t(k) by
the Barzilai-Borwein (BB) Rule.

4. EXPERIMENTS
In this section, we evaluate the efficiency and effective-

ness of the proposed algorithm on both synthetic and real
data sets. In our first experiment, we compare the effi-
ciency of our proposed algorithm and the convex relaxation
of weak hierarchical Lasso [2] on synthetic data sets where
the weak hierarchical structure holds between main effects
and interaction effects. In our second experiment, we com-
pare the classification performance of the weak hierarchical
Lasso with other classifiers and sparse learning techniques on
the data collected from Alzheimer’s Disease Neuroimaging
Initiative (ADNI)1.

4.1 Efficiency and Effectiveness Comparison
on Synthetic Data Sets

In this experiment, we compare the efficiency of the pro-
posed eWHL algorithm with the convex relaxation on syn-
thetic data sets. Our algorithm is built upon the GIST
framework which is available online [16]. The source code of
the convex relaxed weak hierarchical Lasso (cvxWHL) was
available in the R package “hierNet” [3] where the optimiza-

1http://www.adni-info.org/
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Algorithm 2 The Efficient Weak Hierarchical Lasso Algo-
rithm (eWHL)

Input: X ∈ Rn×d, Z ∈ Rn×(d·d), λ ∈ R+, η > 1
Output: w ∈ Rd×1, Q ∈ Rd×d

Initialize k ← 0 and starting points w(0) and Q(0);
2: repeat

Choose the step size t(k) by the BB Rule
4: repeat

v(k) = w(k) −∇wL
(
w(k), Q(k)

)
/t(k);

U (k) = U (k) −∇QL
(
w(k), Q(k)

)
/t(k);

Solve
(
w(k+1), Q(k+1)

)
by Algorithm 1 with input(

v(k), U (k), t(k), λ
)
;

t(k) ← ηt(k);
6: until line search criterion is satisfied

k ← k + 1
8: until stop criterion is satisfied

tion procedure was implemented by C. Since the proposed
algorithm in this paper directly solves the non-convex weak
hierarchical Lasso (5), and the eventual goal of the convex
relaxed weak hierarchical Lasso is also to find a good “re-
laxed” solution to the original problem, we compare the two
algorithms in terms of the objective function in (5). In the
experiment, entries of X ∈ Rn×d are i.i.d generated from
the standard normal distribution, i.e., Xi,j ∼ N(0, 1). The
matrix of interactions, Z, is then generated via the nor-

malized X where Z =
[
Z(1), Z(2), . . . , Z(d)

]
, Z(i) ∈ Rn×d,

Z
(i)
·,j = X·,i � X·,j . The ground truths w ∈ Rd×1 and

Q ∈ Rd×d are generated based on the weak hierarchical
structure ‖Q·,j‖1 ≤ |wj |, j = 1, . . . , d. In addition, we vary
the ratio of coefficient sparsity, i.e., the portion of zero en-
tries in w and Q, from 30% to 85%. Then, the outcome
vector Y is constructed as Y = Xw+ 1

2
Z · vec(Q) + ε where

X and Z are normalized to zero mean and unit standard
deviation and ε ∼ N(0, 0.01 ·I). We use sample size n = 100
and 200 and we choose the number of main effects d from
{100, 200, 300, 400, 500, 600}. The parameter of the l1
penalty, λ, is chosen from {1, 3, 5, 10, 20}. All algorithms
are executed on a 64-bit machine with Intel(R) Core(TM)
quad-core processor (i7-3770 CPU @ 3.40 GHz) and 16.0 GB
memory. We terminate the algorithm when the maximum
relative difference of the coefficients between two consecu-
tive iterations is less than 1e−5. We run 20 trials for each
setting and report the average execution time. The detailed
results are shown in Table 1.

From Table 1, we observe that eWHL is significantly faster
than cvxWHL. Our algorithm is up to 25 times faster than
the competing algorithm. As the dimension increases, the
running time of cvxWHL increases much faster than our pro-
posed algorithm. Specifically, when the number of individ-
ual features increases to 400 (corresponds to 80200 interac-
tions), cvxWHL may take more than one thousand seconds,
while the proposed eWHL is reasonably fast even when the
number of total variables is around two hundred thousands.

To make further comparisons of efficiency, we randomly
generate three synthetic data sets where the weak hierarchi-
cal structure between main effects and interactions holds.
The three data sets are of the same sample size n = 100 and

Figure 1: Comparison of the running time and the
number of iterations by the two algorithms. Three
synthetic data sets are generated where the portions
of zeros in the ground truth are 85%, 60%, 30% re-
spectively. The plots in the same row correspond
to the same data set. The plots in the left column
present the running time and those in the right col-
umn show the number of iterations.

the number of individual features is d = 300. The ratios
of zero entries in the ground truth are 85%, 60% and 30%
respectively. The regularization parameters are chosen from
{0.5, 1, 2, 4, 6, 8, 16, 32, 64}. On each data set, we first
run cvxWHL, and then the objective value of (5) in the fi-
nal step is recorded. Then, we run the proposed eWHL and
terminate the algorithm when the objective value of (5) is
less than the one obtained by cvxWHL. The running time
and the number of iterations needed to achieve the same
objective value of both algorithms are reported in Figure 1.
We can observe from Figure 1 that the proposed eWHL is
much faster than cvxWHL.

Moreover, we also conduct an experiment to compare the
recovery performance of eWHL and cvxWHL. We gener-
ate synthetic data sets with sample size n = 100 and the
number of individual features is d = 50 (1225 cross inter-
actions). The number of non-zero main effects varies from
{3, 4, 5, 6, 7} and the number of non-zero interaction effects
is from {2, 4, 5, 8, 10}, respectively. For each setting, ten syn-
thetic data sets are generated with noise ε ∼ N(0, 0.01 · I).
We run both eWHL and cvxWHL with parameter selected
via 5-fold cross-validation. Then we compute the sensitivity
and specificity of recovery (where non-zero entries are posi-
tive and zero entries are negative). The means of sensitivity
and specificity are plotted in Figure 2. We can observe that
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Table 1: Comparison of execution time (second) of the proposed algorithm for the non-convex weak hier-
archical Lasso (eWHL) and the one for the convex relaxed formulation (cvxWHL) on synthetic data. The
penalty parameters used in the experiment are from {1, 3, 5, 10, 20}. The data is generated under the weak
hierarchical constraints where the portion of sparse coefficients is controlled to 85%, 60% and 30%. Two sample
sizes, n = 100 and n = 200, are used and we vary the number of individual features from {200, 300, 400, 500, 600}
corresponding to {20100, 45150, 80200, 125250, 180300} interactions (including the self product terms).

n = 100 n = 200

85% Ground Truth Sparsity

d Methods 1 3 5 10 20 1 3 5 10 20

200
cvxWHL 196.5536 54.8801 43.3018 27.2806 15.7909 116.8207 24.6601 17.8850 9.1765 4.7783

eWHL 15.9318 10.7613 7.2212 5.6287 2.6236 16.4134 9.5164 8.3827 5.4922 3.9255
speedup 12.3 5.1 6.0 4.8 6.0 7.1 2.6 2.1 1.7 1.2

300
cvxWHL 336.7086 213.7712 186.7997 109.7893 54.9521 319.6003 147.5044 112.5928 59.0820 36.2484

eWHL 35.6846 23.3044 17.9931 11.5569 10.8269 38.5045 20.0161 16.4566 10.3588 6.9153
speedup 9.4 9.2 10.4 9.5 5.1 8.3 7.4 6.8 5.7 5.2

400
cvxWHL 547.0450 280.6981 207.8486 170.4894 85.1425 921.7651 376.4949 256.8054 144.3066 81.4817

eWHL 52.8138 35.0482 29.5107 18.1944 13.8530 80.4882 54.1618 39.1673 26.6412 14.7667
speedup 10.4 8.0 7.0 9.4 6.1 11.5 7.0 6.6 5.4 5.5

500
cvxWHL 1018.9779 757.2096 524.9644 333.0070 204.2017 1405.9651 1142.2343 964.0598 286.2120 165.2558

eWHL 88.0526 66.0113 59.7805 42.2917 18.6453 127.0921 89.1293 70.0550 42.0014 29.0936
speedup 11.6 11.5 8.8 7.9 11.0 11.1 12.8 13.8 6.8 5.7

600
cvxWHL 2543.5021 1594.9729 1517.9605 887.8254 462.2604 2826.0083 1558.1431 1332.3515 873.6990 261.6806

eWHL 161.7944 100.3758 82.7961 71.1211 40.9529 197.5593 132.2163 107.5831 76.1834 45.0594
speedup 15.7 15.9 18.3 12.5 11.3 14.3 11.8 12.4 11.5 5.8

60% Ground Truth Sparsity

200
cvxWHL 106.6262 40.3105 29.1357 20.8624 10.3064 113.3342 44.1169 27.2844 18.7616 11.9756

eWHL 15.1405 9.6837 6.9516 5.4949 3.3569 18.3514 10.5571 8.1777 5.1257 4.1127
speedup 7.0 4.2 4.2 3.8 3.1 6.2 4.2 3.3 3.7 2.9

300
cvxWHL 187.7983 131.7578 106.2882 61.3653 38.3189 290.0877 155.0435 131.7942 85.8886 44.4029

eWHL 33.3861 22.2763 16.3251 12.3395 9.2993 47.8122 26.1554 21.9835 13.7322 10.5702
speedup 5.6 5.9 6.5 5.0 4.1 6.1 5.9 6.0 6.3 4.2

400
cvxWHL 418.9647 276.2089 169.4631 131.9086 84.4169 686.8900 297.7161 226.6632 166.2235 85.4570

eWHL 66.8376 43.0676 35.7516 20.5413 11.9166 69.1413 41.3634 37.3495 25.9975 16.0270
speedup 6.3 6.4 4.7 6.4 7.1 9.9 7.2 6.1 6.4 5.3

500
cvxWHL 1501.3934 801.0146 548.8402 362.7110 206.0816 1333.8803 861.6311 729.1297 310.6121 202.0412

eWHL 112.5519 80.5276 60.2488 38.6862 25.5497 114.5243 73.6990 63.4899 47.9597 31.5058
speedup 13.3 9.9 9.1 9.4 8.1 11.6 11.7 11.5 6.5 6.4

600
cvxWHL 1976.0945 1733.8494 1814.1974 815.4298 323.4841 1622.9061 1205.8489 987.4595 1063.2823 333.8406

eWHL 159.8307 112.8232 80.3703 50.8628 34.4373 175.9730 140.7086 96.3447 73.7633 52.2213
speedup 12.4 15.4 22.6 16.0 9.4 9.2 8.6 10.2 14.4 6.4

30% Ground Truth Sparsity

200
cvxWHL 139.4226 116.3866 85.1606 50.2425 23.8680 223.2468 165.9219 52.1613 40.8929 25.3084

eWHL 18.5023 13.6312 8.7261 7.1346 4.4546 20.8344 15.0214 9.7081 6.8616 4.0905
speedup 7.5 8.5 9.8 7.0 5.4 10.7 11.0 5.4 6.0 6.2

300
cvxWHL 275.4393 162.5627 139.4590 79.0609 41.2985 575.3758 223.1688 205.4368 142.9171 97.5106

eWHL 41.4815 27.6094 23.3748 14.2635 7.9047 52.3714 33.1059 25.5594 15.9962 10.6426
speedup 6.6 5.9 6.0 5.5 5.2 11.0 6.7 8.0 8.9 9.2

400
cvxWHL 916.5276 510.0533 342.0358 208.9260 104.5098 1688.7030 814.6646 560.1970 332.3118 204.4852

eWHL 75.6108 47.3789 38.8362 23.9130 17.6649 92.1627 60.4650 45.9561 34.6420 23.9751
speedup 12.1 10.8 8.8 8.7 5.9 18.3 13.5 12.2 9.6 8.5

500
cvxWHL 1460.8334 900.1424 767.7501 576.6498 242.9080 2003.7611 2040.7488 1632.3245 584.2366 313.8258

eWHL 114.9244 71.4278 58.4604 37.5124 25.9513 154.1934 102.7105 84.2729 63.9484 35.2531
speedup 12.7 12.6 13.1 15.4 9.4 13.0 19.9 19.4 9.1 8.9

600
cvxWHL 2799.5549 2842.9022 2076.6074 1148.0632 460.4660 4067.0519 2795.7589 2128.9981 1946.2750 1140.4244

eWHL 186.1483 119.8450 85.9816 65.2515 41.2607 165.9264 179.4403 146.7908 102.6978 71.8432
speedup 15.0 23.7 24.2 17.6 11.2 24.5 15.6 14.5 19.0 15.9

both algorithms achieve high recovery rate while directly
solving the original weak hierarchical Lasso leads to slightly
better performance in recovering the non-zero effects.

4.2 Classification Comparison on ADNI Data
In this experiment, we compare the weak hierarchical Lasso

with its convex relaxation as well as other classifiers on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set.

In Alzheimer’s Disease (AD) research, Mild Cognitive Im-
pairment (MCI) is an intermediate state between normal el-
derly people and AD patients [24]. The MCI patients are
considered to be at high risk of progression to AD. Many
recent work focus on how to accurately predict the MCI-
AD conversion and identifying significant bio-markers for
the prediction [8, 10, 12, 19, 21, 28, 31, 14].

In this experiment, we compare the classification perfor-
mance of the proposed eWHL with the convex relaxation
and other classifiers on the task of discriminating the MCI

Figure 2: Comparison of eWHL and cvxWHL in
terms of recovery on synthetic data sets.
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Table 2: The performance of MCI converter vs. MCI non-converter classification achieved by random
forest (RF), Support Vector Machine (SVM), Sparse Logistic Regression (spsLog), the convex relaxed weak
hierarchical Lasso (cvxWHL) and the proposed algorithm (eWHL). Classifiers are performed on main effects
only (top) and on both the main effects and interactions (bottom). The average and standard deviation of
accuracy, sensitivity and specificity obtained from 10-fold cross-validation are reported.

Main Effects Only

RF SVM spsLog cvxWHL eWHL
Accuracy (%) 74.23± 8.67 75.22± 8.72 74.34± 9.56 NA NA
Sensitivity (%) 78.75± 14.00 80.18± 13.89 80.18± 13.88 NA NA
Specificity (%) 69.29± 11.63 69.76± 12.80 69.52± 13.74 NA NA

Main Effects + Interactions
RF SVM spsLog cvxWHL eWHL

Accuracy (%) 71.26± 10.22 59.45± 14.43 73.57± 10.30 75.22± 11.02 77.42± 8.50
Sensitivity (%) 83.04± 13.18 59.29± 17.83 74.29± 16.22 75.71± 19.11 77.14± 12.05
Specificity (%) 58.10± 23.23 60.00± 15.42 72.86± 12.46 74.52± 16.84 77.62± 15.02

subjects who convert to dementia (i.e.,MCI converter) within
a three-year period from the MCI subjects who remain at
MCI (i.e., MCI non-converter). The features used in the
experiment (provided by our clinical collaborators) involve
demographic information such as age, gender, years of ed-
ucation, clinical information such as scores of mini men-
tal state examination (MMSE), Auditory Verbal Learning
Test (A.V.L.T.), and the bio-markers including status of
Apolipoprotein E, volume of hippocampus, thickness of Mid
Temporal Gray Matter. There are 133 samples in total and
the number of individual features is 36 (corresponds to 630
two way interactions). The interactions are generated by
the normalized individual features and are normalized before
entering the model. Since this is a classification task with
binary labels, we replace the least square loss with logistic
loss in the weak hierarchical Lasso. Besides the non-convex
and convex weak hierarchical Lasso, we apply random for-
est (RF), Support Vector Machine (SVM) and sparse logistic
regression on main effects, and on both main effects and in-
teractions, respectively. We report the means and standard
deviations of accuracy, sensitivity and specificity obtained
from 10-fold cross-validation. The penalty parameters are
tuned via 5-fold cross-validation in the training procedure.
The sample statistics are shown in Table 3 and the classifi-
cation performance is reported in Table 2.

Table 3: The statistics of the ADNI data set used
in our experiment. The MCI converters (MCI-cvt)
are characterized as positive samples and the MCI
non-converters (MCI non-cvt) are used as negative
samples.

Total (+) MCI-cvt (-) MCI non-cvt

# of samples 133 71 62
# of main effects 36
# of interactions 630

From Table 2, we can observe that, if we only use indi-
vidual features for classification, then all the classifiers are
biased towards the positive class, i.e., MCI converter. When
interactions are included, we observe that the performances
of random forest and SVM become worse. One possible rea-
son is that the large number of variables brought by the
interactions weakens their discriminative power. This is not

the case for sparse logistic regression, which demonstrates
the importance of feature selection. We can observe from
the table that the convex relaxed weak hierarchical Lasso
and the non-convex weak hierarchical Lasso achieve much
better classification performance than the competitors. The
improvement of the classification performance demonstrates
the effectiveness of imposing hierarchical structures in inter-
action models. In addition, the superior classification per-
formance (around 77% accuracy, sensitivity and specificity)
of the proposed eWHL demonstrates that directly solving
the non-convex weak hierarchical Lasso leads to solutions of
higher quality than the convex relaxation.

5. CONCLUSIONS
In this paper, we propose an efficient algorithm, eWHL, to

directly solve the non-convex weak hierarchical Lasso. One
critical step in eWHL is to compute the proximal operator
associated with the non-convex penalty functions. As one
of our major contributions, we show that the proximal op-
erator associated with the regularization function in weak
hierarchical Lasso admits a closed form solution. Further-
more, we develop an efficient algorithm which computes each
subproblem of the proximal operator with a time complexity
of O(d log d). Extensive experiments on both synthetic and
real data sets demonstrate the superior performance of the
proposed algorithm in terms of efficiency and accuracy.

In the future, we plan to apply the non-convex weak hi-
erarchical Lasso to other important and challenging appli-
cations such as depression study [20]. In addition, we plan
to extend the proposed techniques to solve the non-convex
strong hierarchical Lasso formulation.
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