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ABSTRACT

We present a direct multi-class boosting (DMCBoost) method
for classification with the following properties: (i) instead
of reducing the multi-class classification task to a set of
binary classification tasks, DMCBoost directly solves the
multi-class classification problem, and only requires very
weak base classifiers; (ii) DMCBoost builds an ensemble
classifier by directly optimizing the non-convex performance
measures, including the empirical classification error and
margin functions, without resorting to any upper bounds
or approximations. As a non-convex optimization method,
DMCBoost shows competitive or better results than state-
of-the-art convex relaxation boosting methods, and it per-
forms especially well on the noisy cases.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Boosting is a machine learning and data mining approach

[34] that combines a set of weak classifiers to produce a
single strong classifier. Most boosting methods were de-
signed for binary classification tasks, while many real-world
applications involve multiple classes, such as handwritten
digit recognition, image segmentation, and automatic speech
recognition. To effectively extend well-studied binary boost-
ing algorithms to solve multi-class problems is still an on-
going research topic.

Multi-class boosting methods can be roughly divided into
two categories. The first is to reduce the multi-class problem
to multiple binary classification problems. Methods in this
category include “one-vs-all”, “all-vs-all”, and other general
output coding based approaches [2, 8, 10, 12, 13, 17, 18,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623689.

27]. Binary classification is well-studied, but there are some
problems with the binary reduction, including (i) it may
produce imbalanced data distributions, which are known to
have a negative effect on the classifier performance [30, 16],
(ii) a lack of guarantees of an optimal joint predictor [25], or
(iii) using binary boosting scores that do not represent true
class probabilities [21].

The second category is to build a multi-class classifier
directly by using multi-class base classifiers, such as deci-
sion trees. Boosting methods of this category include Ad-
aBoost.M1, SAMME, AdaBoost.MM, GD-MCBoost, et al.
[10, 22, 25, 36, 37]. Usually, these methods require strong
base classifiers which substantially increase complexity and
have a high potential for overfitting [25]. Moreover, all of
these methods formulate multi-class tasks as a convex opti-
mization problem by using surrogates, and it has been shown
that all boosting algorithms based on convex optimization
are susceptible to random classification noise [19]. In addi-
tion, none are designed to directly maximize the multi-class
margin, although some of them have the effects of margin
enforcing.

In this paper, we introduce a new direct multi-class boost-
ing algorithm named DMCBoost that extends the work of
DirectBoost in [35] from binary classification to multi-class
classification. DMCBoost uses multi-class decision trees as
base classifiers to build an ensemble classifier by directly op-
timizing the performance measures, without reducing them
to binary classification problems. The process of DMCBoost
includes two phases: it first directly minimizes the empiri-
cal classification error by iteratively adding base classifiers to
the ensemble classifier. Once the classification error reaches
a coordinatewise local minimum1, it continuously adds base
classifiers by directly maximizing the average margin of a
certain set of bottom samples.

Both DMCBoost and DirectBoost [35] can be viewed as a
coordinate optimization in the hypothesis space, and in each
iteration only one coordinate is chosen and the correspond-
ing parameter is computed by line search approaches. How-
ever, DMCBoost is a non-trivial extension of DirectBoost in
[35] to multi-class classification, where we have to mathe-
matically re-formulate the multi-class classification problem
and identify the scenarios that lead to efficient computation
of the empirical error of a weak classifier in the first phase,
and identify the scenarios that lead to efficient computa-
tion of the margin curve of a weak classifier in the second
phase. Thus DMCBoost uses very different optimization

1See the definition of coordinatewise minimum/maximum
on page 479 in [31].
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techniques: since the objectives are more complex and more
difficult to optimize, we propose new efficient line search al-
gorithms that can find the parameter with the optimal ob-
jective value along one coordinate; moreover, constructing
decision trees for DMCBoost is more challenging, while it is
straightforward in [35].

DMCBoost is a non-convex optimization method. In gen-
eral, non-convex problems are very difficult to solve. How-
ever, for the special 0-1 loss minimization and margin max-
imization problems, we propose efficient algorithms to find
a local optima. In many real applications, it is possible that
the local optima of non-convex optimization is less serious
than the inconsistencies [20]. The computational cost of
DMCBoost is K times larger than the computational cost
of AdaBoost.M1 and SAMME, where K is the number of
classes. Nevertheless, we will show that DMCBoost per-
forms better than the convex relaxation algorithms such as
AdaBoost.M1, SAMME, AdaBoost.MH, and GD-MCBoost
in terms of accuracy under a bearable time limitation on a
number of UCI datasets and it is more robust in noisy cases.
Furthemore, DMCBoost only requires very weak base clas-
sifiers, and it is more efficient in driving down the empiri-
cal classification error than other multi-class boosting algo-
rithms when the same depth trees are used as weak learners,
as shown in our experimental results.

2. DMCBOOST ALGORITHM
In a multi-class classification, we want to predict the labels

of examples lying in an instance space X . Let D denote a
distribution over X × Y, where Y = {1, · · · ,K} be the set
of all the labels. We are provided a training set of labeled
examples S = {(x1, y1), · · · , (xn, yn)}, where each example
xi ∈ X has a unique label yi in the set Y. Denoting H =
{h1, ..., h|H|} as the set of all possible weak classifiers that
can be produced by the weak learning algorithm, where a
weak classifier hj ∈ H is a mapping from an instance space
X to Y.

Boosting combines weak classifiers to form a highly accu-
rate ensemble classifier for multi-class classification by mak-
ing a prediction according to the weighted plurality vote of
the classifiers:

F (x) = argmaxy∈{1,··· ,K}f(x, y), (1)

where f(x, y) =
∑

h∈H αh1(h(x) = y), αh ∈ R is the infer-
ence function which is used to infer the predicted label, and
1(·) is the indicator function. Our goal is to find an ensemble
classifier F that generalizes well on any unseen dataset in
X . To this end, we design a boosting approach through the
following two phases: we first directly minimize the 0-1 loss
on training data, and then directly maximize the average
margin of a certain set of bottom samples. Phase I, which is
very efficient in minimizing the empirical 0-1 loss, serves as
an initialization method of phase II. The motivation is that
phase II often performs better when it starts with a low
training error. In phase II, a margin objective is optimized,
which leads to a further improvement of generalization.

2.1 Phase I: Minimizing Multi-class Classifi-
cation Errors

In multi-class classification, the empirical error is given by

0
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Figure 1: Three scenarios to compute the empiri-
cal error of a weak learner ht over an example pair
(xi, yi), where l denotes the incorrect label with the
highest score, and q denotes the intersection point
that results in an empirical error change. The red
bold line for each scenario represents the inference
function of example xi and its true label yi.

Algorithm 1 0-1 loss minimization algorithm.

1: Initialize: t = 0
2: repeat
3: t← t+ 1.
4: Select a weak classifier ht by Algorithm 1.2.
5: Get the interval that has the minimum classification

error by calling Algorithm 1.1 with ht, and let αt be the
value within this interval.

6: Update: ft(xi, y) = ft−1(xi, y) + αt1(ht(xi) = y).
7: until the training error reaches the local coordinatewise

minimum.
8: Output: ft(xi, y).

error(F,S) =
1

n

n
∑

i=1

1(F (xi) 6= yi) (2)

Due to the nonconvexity, nondifferentiability, and disconti-
nuity of the classification error function (2), many previous
multi-class boosting algorithms optimize the convex upper
bounds of (2). While the convex surrogate losses are compu-
tationally efficient to globally optimize [3], they are sensitive
to outliers [19, 23] and inconsistent under some conditions
[20]. In contrast, our approach is to directly optimize 0-1
loss (2).

We use a greedy coordinate descent algorithm to directly
minimize the empirical error (2) by constructing an ensemble
classifier. Consider the tth iteration, the inference function
is ft(x, y) =

∑t

k=1 αk1(hk(x) = y), ∀y ∈ Y, where previous
t − 1 weak classifiers hk(x) and corresponding weights αk,
k = 1, · · · , t−1 have been selected and determined, and our
goal is to select a weak classifier ht and its weight αt such
that (2) is minimized. Algorithm 1 outlines the greedy co-
ordinate descent algorithm that sequentially minimizes 0-1
loss of (2), we will introduce the line search algorithm and
the weak learning algorithm later. On each round, we first
select a weak classifier ht by Algorithm 1.2 (line 4), then
the 0-1 loss (2) is a stepwise function w.r.t αt. Next we can
compute the interval that has the minimum classification er-
ror by using the line search algorithm (Algorithm 1.1) along
the ht coordinate. Since any value of αt within this inter-
val will lead to the largest error reduction, we can simply
choose the middle point of the interval (line 5). In the end
of each iteration, the inference function is updated (line 6).
We repeat this procedure until the training error reaches a
local coordinatewise minimum (line 7).
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Algorithm 1.1 Line search algorithm to find the interval
with the minimum 0-1 loss.
1: Input: a weak classifier ht ∈ H.
2: Let e : R→ Q. ⊲ e map intersection points to error

updates.
3: for i = 1, · · · , n do
4: if ht(xi) = yi then ⊲ scenario 1
5: q = a(xi, l)− a(xi, yi).
6: error update = −1.
7: else if ht(xi) = y, y 6= yi, and a(xi, yi) > a(xi, y)

then ⊲ scenario 2
8: q = a(xi, y)− a(xi, yi).
9: error update = 1.
10: end if
11: e[q] = e[q] + error update. ⊲ e[q] = 0 if q is not in e
12: end for
13: Sort e by the keys in an increasing order.
14: Incrementally calculate classification error on each in-

terval.
15: Output: the interval with minimum 0-1 loss.

The line search algorithm describes how to find the op-
timal value of α for any given hypothesis h ∈ H such that
(2) is minimized. The key idea is how to find the points
that lead the 0-1 loss changes efficiently. Let a(xi, y) =
∑t−1

k=1 αk1(hk(x) = y), then let the inference functions for
example xi be

ft(xi, y) = a(xi, y) + αt1(ht(x) = y), (3)

which is a linear function of αt with intercept a(xi, y) and
slope 1(hk(x) = y). Obviously, the inference function is
either a line with slope 1 or a horizontal line. The infer-
ence functions are used to compute the empirical error (2).
More specifically, given a weak learner ht ∈ H, for each
example pair (xi, yi), there are 3 scenarios to compute the
empirical error, see Figure 1. Scenario 1 is the case that
ht(xi) = yi. ft(xi, yi) is a line with slope 1, and assume
that l = argmaxy∈Y,y 6=yi a(xi, y), then ft(xi, l) is a line
with slope 0. The intersection of ft(xi, yi) and ft(xi, l) is
at αt = a(xi, l) − a(xi, yi). Thus when αt is set on the left
side of the intersection point, there is an error for exam-
ple xi, otherwise there is no error. Scenario 2 is the case
that ht(xi) = y, y 6= yi, and a(xi, yi) > a(xi, y) ∀y ∈ Y,
y 6= yi. Then ft(xi, y) is a line with slope 1, and ft(xi, yi) is
a line with slope 0. The intersection point of ft(xi, y) and
ft(xi, yi) is at αt = a(xi, y)− a(xi, yi). Thus when αt is set
on the right side of the intersection point, there is an error
for example xi, otherwise there is no error. Scenario 3 is the
case that ht(xi) = y, and y 6= yi, and ∃l ∈ Y, l 6= yi such
that a(xi, l) > a(xi, yi), in this case there is always an error
no matter what value αt has.

Formally, Algorithm 1.1 describes the line search proce-
dure. We use e (bold letter denotes a vector valued function
or variable) to record all the intersection points and their
corresponding error updates on the right-hand side (line 2).
More specifically, for each training example, we first catego-
rize it into the three scenarios. For an example in Scenario
1, the intersection point is at q = a(xi, l)−a(xi, yi), and the
error update on the right-hand side of q is −1 (line 4-6). In
Scenario 2, the intersection point is at q = a(xi, y)−a(xi, yi)
and the error update on the right-hand side of q is 1 (line
7-9). We add the intersection points as the keys and their

Algorithm 1.2 Constructing tree algorithm.

1: Input: a training set S , current tree depth dep.
2: Let dep← dep+ 1.
3: if dep ≤ max dep then
4: for a binary split do
5: Split S into Sleft and Sright.
6: if |Sleft| = 0 or |Sright| = 0 then continue.
7: ℓleft = arg min

ℓ∈1,··· ,K
{0-1 loss that compute by

Algorithm 1.1, while setting the input ht(x) = ℓ if
x ∈ Sleft}.

8: Let ht(x) = ℓleft if x ∈ Sleft.
9: ℓright = arg min

ℓ∈1,··· ,K
{0-1 loss that compute by

Algorithm 1.1, while setting the input ht(x) = ℓ if
x ∈ Sright}.

10: Let ht(x) = ℓright if x ∈ Sright.
11: end for
12: end if
13: Choose the optimal binary split which splits S into S∗

left

and S∗
right with the corresponding ℓ∗left and ℓ∗right.

14: Let ht(x) = ℓ∗left if x ∈ S∗
left, and ht(x) = ℓ∗right if

x ∈ S∗
right.

15: Call constructing tree algorithm with input S∗
left and

dep+ 1.
16: Call constructing tree algorithm with input S∗

right and
dep+ 1.

17: Output: a weak classifier ht ∈ H.

corresponding error updates as the values into e (line 11).
We only care about the examples in Scenario 1 and 2 since
the examples in Scenario 3 do not lead to an error update no
matter what value αt has. Once all the intersection points
are added into e, we sort e by the keys in an increasing or-
der (line 13). These intersections divide the coordinate to
(at most) |e| + 1 intervals, the classification error on each
interval can be incrementally calculated by the values of e
(line 14), and hence the interval which gives the minimum
error is easy to obtain.

The weak learning algorithm is described in Algorithm
1.2. Here we only consider the decision trees algorithm with
binary splits. The binary splits are preferred [15] since (i)
multiway splits fragment the data too quickly, leaving in-
sufficient data at the next level down; and (ii) multiway
splits can be achieved by a series of binary splits. For a
binary splitting node that splits the training examples into
two subsets, we denote them as Sleft and Sright (line 5). We
first enumerate all the possible labels from 1 to K on Sleft,
that produce K hypotheses that belong to H. We choose
the optimal label which leads to the minimum value of (2)
by running the line search algorithm (Algorithm 1.1) with
these K hypotheses (line 7). We then fix the selected label
for Sleft (line 8), and apply the same process on Sright (line
9). We simply choose the attribute to split by minimizing
the 0-1 loss (line 13), and use a top-down, greedy search
approach to build trees. If the problem involves real-valued
variables, they are first binned into intervals, each interval
being treated as an ordinal attribute. Note that since the
historical information ft−1(xi, yi) is used in Algorithm 1.1
through building trees, Algorithm 1.2 will not end up with
the same tree on each iteration t though DMCBoost does
not maintain a distribution over training samples.
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Figure 2: Three scenarios of margin curve of a weak
learner ht over an example pair (xi, yi), where l de-
notes the incorrect label with the highest score.

The computational cost of Algorithm 1 is O(nMK) on
each round when decision stumps2 are used as weak learners,
where M is the number of binary splits. It has the same
computational cost as AdaBoost.MH, and is K times larger
than the computational costs of AdaBoost.M1 and SAMME.
Algorithm 1 may trap a coordinatewise local minimum of 0-
1 loss. Nevertheless, we switch to the algorithm that directly
maximizes various margins.

2.2 Phase II: Maximizing a Margin Objective
For boosting, the minimization of the training error is

only one side of the story. To explain why boosting works,
Schapire et al. [26] introduced the margin theory, which
suggested that boosting is especially effective at maximiz-
ing the margins of training data. In multi-class classifica-
tion, the most direct generalization of the margin is simply
the difference between the score (weighted fraction of votes)
obtained by the correct label and the score of the highest
scoring incorrect label. We denote the (normalized) margin
of an example (xi, yi) with respect to an inference function
ft(xi, y) =

∑t

k=1 αk1(hk(xi) = y), ∀y ∈ Y by Mi. For-
mally,

Mi =
ft(xi, yi)
∑t

k=1 |αk|
− max

y∈Y,y 6=yi

ft(xi, y)
∑t

k=1 |αk|
(4)

This definition of margin (4) is given in some earlier stud-
ies [2, 26]. A large margin implies the ensemble classifier
confidently classifies the corresponding training sample.

While boosting’s success can be ascribed to maximizing
the margins, most boosting methods were not designed to
specially optimize any margin functions [28]. Some excep-
tions, such as LPBoost [7], SoftBoost [33], and DirectBoost
[35], explicitly maximize a relaxed minimum margin objec-
tive, but they are designed for binary classification prob-
lems. For the well-known multi-class boosting algorithms
AdaBoost.M1 [10], SAMME [36], and AdaBoost.MM [22],
none of them has been shown to maximize the multi-class
margin [25]. The recently proposed algorithms CD-MCBoost
and GD-MCBoost [25] optimize a margin enforcing loss func-
tion, but actually this objective is not related to the margin
in the sense that one can minimize the loss function while
simultaneously achieving a bad margin even for binary prob-
lems [24]. In this section, we introduce a coordinate ascent
algorithm that directly maximizes the predefined margin ob-
jective functions for multi-class classification.

2Decision stumps are the special decision trees with a depth
of 1. When more powerful trees are used, the complexity of
Algorithm 1 has the same increasing rate as other boosting
algorithms.

We first introduce the objective function that we are work-
ing on in this section. We can sortMi in an increasing order,
and consider n′ worst training examples n′ ≤ n that have
smaller margins, then define the average margin over those
n′ labeled examples by gavg n′ . Formally,

gavg n′ =
1

n′

∑

i∈Bn′

Mi (5)

where Bn′ denotes the set of n′ labeled examples having
the smallest margins. The minimum margin (hard mar-
gin) gmin = mini∈{1,··· ,n}Mi and average margin gavg =
1
n

∑n

i=1Mi are special cases for n′ = 1 and n′ = n respec-
tively. The parameter n′ indicates how much we relax the
hard margin on training examples, and we set n′ based on
knowledge of the number of noise examples in training data.
The higher the noise rate, the larger the n′ that should be
used.

The following theorem shows the objective function (5) is
equivalent to the soft margin, this conclusion is also given in
[29] for binary classification, here we propose a general proof
for multi-class classification and use different proof skills.

Theorem 1. Maximizing the average margin of the bot-
tom n′ examples (5) is equivalent to solving the soft margin
maximization problem

max
α∈R+,ξ∈R+,ρ∈R

ρ− 1
n′

∑n

i=1 ξi (6)

s.t. Mi + ξi ≥ ρ, i = 1, · · · , n

where ξ are slack variables.

Due to the max operator in the definition of margin (4),
the soft margin optimization problem (6) is very difficult
to solve, unlike its binary counterpart. To the best of our
knowledge, there is no multi-class boosting designed to solve
this soft margin optimization problem. Thus, one of the
reasons for using (5) as objective is to solve the soft margin
problem but from another point of view.

Another motivation of optimizing (5) is that the average
of the bottom n′ margins can be used to measure the gener-
alization performance of a combined classifier, as shown in
the following theorem.

Theorem 2. If the set of possible base classifiers H is
finite, and θ = 1

n′

∑

i∈B{n′|f}
Mi >

8
|H|

, then for any δ > 0

and n′ ∈ {1, · · · , n}, with the probability at least 1− δ over
the random choice of the training set S with size n, each
inference function f ∈ C(H) satisfies the following bound:

Pr
D
[M(f, x, y) < 0] ≤ (K−1)

log |H|

2n
+

√

log |H|

2n2
+D−1(

n′ − 1

n
,
1

n
u)

where PrD[M(f, x, y) < 0] denotes the generalization error
of the ensemble classifier F , M(f, x, y) denotes the margin
of an example (x, y) associated with f , D−1(v1, v2) denotes
the inverse of K-L divergence between v1 and v2 when v1 is
fixed [32], and

u =
8

θ2
log

2n2

log |H|
log 2|H| + log |H|+ log

1

δ

The outline of the greedy coordinate ascent algorithm that
sequentially maximizes the average margin of bottom n′ ex-
amples is described in Algorithm 2. Similar to the 0-1 loss
minimization algorithm, we intend to select a weak classifier
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Algorithm 2 Margin maximization algorithm.

1: Initialize: t and α from 0-1 loss minimization algo-
rithm.

2: repeat
3: t← t+ 1.
4: Select a weak learner ht by weak learning algorithm.
5: Compute q∗ by Algorithm 2.1 which maximizes (5)

along the coordinate ht. Set αt = q∗.
6: Update:ft(xi, y) = ft−1(xi, y) + αt1(ht(xi) = y)
7: until the average margin of bottom n′ examples reaches

local coordinatewise maximum.
8: Output: ft(xi, y).

ht (line 4) and its weight αt (line 5) on round t, but this time
our target is maximizing (5). This procedure terminates if
there is no increment in the average margin over the bottom
n′ examples over ht (line 8). Its convergence can be proved
in the same way as for the binary classification given in [35].

The key step is the line search algorithm which finds the
value of αt that maximizes (5) for a given weak classifier
ht ∈ H. At tth iteration, let c =

∑t−1
k=1 |αk|, then the margin

on the example (xi, yi) can be rewritten as,

Mi =
a(xi, yi) + αt1(ht(xi) = yi)

c+ |αt|

− max
y∈Y,y 6=yi

a(xi, y) + αt1(ht(xi) = y)

c+ |αt|
(7)

Consider the case that αt ≥ 0. For each example pair
(xi, yi), there are three scenarios of the margin (7) to con-
sider, as shown in Figure 2. Scenario 1 is the case that
ht(xi) = yi, and assume that l = argmaxy∈Y,y 6=yi a(xi, y),

thenMi =
a(xi,yi)−a(xi,l)+αt

c+αt
. This corresponds to the curve

which is monotonically increasing in Figure 2. Scenario 2 is
the case that ht(xi) = l, y 6= yi, and a(xi, l) > a(xi, y),

∀y ∈ Y, y 6= yi, then Mi = a(xi,yi)−a(xi,l)−αt

c+αt
. This cor-

responds to the curve which is monotonically decreasing
in Figure 2. Scenario 3 is the case that ht(xi) = y, and
y 6= yi, and ∃l ∈ Y, l 6= yi such that a(xi, l) > a(xi, y), in
this case the margin curve of Mi has two pieces. When

αt < a(xi, y) − a(xi, l), Mi = a(xi,yi)−a(xi,l)
c+αt

and when

αt > a(xi, y) − a(xi, l), Mi = a(xi,yi)−a(xi,y)−αt

c+αt
. The sce-

narios for the case that αt < 0 can be similarly identified.
Finding the exact solution of optimal αt along the ht co-

ordinate is computationally difficult since the examples in
Scenario 3 can either intersect with the examples in Sce-
nario 1 or intersect with the examples in Scenario 2. Fortu-
nately, we can prove that (5) is a quasi-concave function [4,
6], this property allows us to design an efficient line search
algorithm.

Theorem 3. Denote the average margin of the bottom n’
examples with respect to the set of weak classifiers H and
their weights α as

gavg n′(α) =
1

n′

∑

i∈{Bn′ |α}

∑|H|
j=1 αj1(hj(xi) = y)

∑|H|
j=1 |αj |

− max
y∈Y,y 6=yi

∑|H|
j=1 αj1(hj(xi) = y)

∑|H|
j=1 |αj |

(8)

Algorithm 2.1 Line search algorithm to find the solution
q∗ that maximizes (5).

1: Input: a weak classifier ht ∈ H, an interval [begin, end],
and a small number th.

2: repeat

3: Set q = begin+end

2
, calculate the value of

∂gavg n′

∂q
as

equation (9).

4: if
∂Mavg n′

∂q
> 0 then

5: begin = q.
6: else
7: end = q.
8: end if
9: until end− begin < th.
10: Output: q∗ = begin+end

2
.

where {Bn′ |α} denotes the set of n′ examples whose margins
are at the bottom for fixed α. Then gavg n′(α) is a quasi-
concave function for any α.

Therefore, we can design an algorithm that maximizes (5)
efficiently by checking the derivative of (5) as

∂gavg n′

∂αt

=
1

n′

∑

i∈Bn′

∂Mi

∂αt

, (9)

where ∂Mi

∂αt
denotes the derivative ofMi with respect to αt,

which is calculated as,

∂Mi

∂αt

=











c−(a(xi,yi)−a(xi,l))

(c+αt)2
Scenario 1

−c−(a(xi,yi)−a(xi,l))

(c+αt)2
Scenario 2

− a(xi,yi)−a(xi,l)

(c+αt)2
Scenario 3

(10)

Assume q∗ is the optimal value of αt that maximizes (5),
then (5) is monotonically increasing at αt < q∗, otherwise
it is monotonically decreasing. Thus, (9) is less than 0 at
αt < q∗, and (9) is greater than 0 at αt > q∗. Formally,
the line search algorithm to calculate the value of q∗ with a
small deviation threshold th is described in Algorithm 2.1.

To select the weak classifier, we use a similar procedure
as in Algorithm 1.2 and replace the measure to the average
margin of the bottom n′ examples. Again, we only consider
the decision trees algorithm with binary splits, and apply
Algorithm 2.1 on the two subsets respectively. We choose
the attributes to split by maximizing the average margin of
the bottom n′ examples, and use a top-down, greedy search
approach to build trees. Same as Algorithm 1, the computa-
tional cost of Algorithm 2 is O(nMK) on each round when
decision stumps are used as weak learners, where M is the
number of binary splits.

Since (5) is non-differentiable at turning points, the co-
ordinate ascent algorithm may get stuck at a corner from
which it is impossible to make progress along any coordinate
direction. To overcome this difficulty, we use an ǫ-relaxation
method [5], which allows a single coordinate to change even
if this worsens the objective value. When a coordinate is
changed, it is set to ǫ plus (or ǫ minus) the value that max-
imizes the objective function along that coordinate, where
ǫ is a small positive number. If ǫ is small enough, the algo-
rithm can eventually approach a small neighborhood of the
optimal solution.
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Table 1: Description of 13 UCI datasets

Data # Examples K # Variables Error Estimation
Abalone 4177 28 8 5-CV

Car 1728 4 6 5-CV
CNAE-9 1080 9 856 5-CV
Glass 214 6 10 5-CV
Krkopt 28056 18 6 5-CV
Letter 20000 26 16 5-CV
Nursery 12960 5 8 5-CV

Poker525k 525010/500000 10 11 test error
Segmentation 210/2100 7 19 test error

Vowel 990 11 10 5-CV
Waveform 5000 3 21 5-CV

Wine 178 3 13 5-CV
Yeast 1484 10 8 5-CV

3. EXPERIMENTS
To evaluate the performance of the DMCBoost algorithm,

we first conduct experiments with 13 datasets from the UCI
repository [9], then examine its noise robustness on two
datasets with random label noise. For comparison, we also
report the results of AdaBoost.M1 [11], AdaBoost.MH [27],
SAMME [36], and GD-MCBoost [25]. All these algorithms
use multi-class base classifiers except AdaBoost.MH, which
essentially reduces the multi-class problem to a set of bi-
nary classification problems. The classification error is esti-
mated either by a test error or five-fold cross-validation. The
datasets which come with pre-specified training and testing
sets are evaluated by the test error, where n′ is set to n

4
for

DMCBoost and the number of rounds is set to the maximum
of 5000 for each method. For datasets which are evaluated
by cross-validation, we partition them into five parts evenly
for 5-fold. In each fold, we use three parts for training, one
part for validation, and the remaining part for testing. We
use the validation data to choose the optimal model for each
algorithm. For AdaBoost.M1, AdaBoost.MH, SAMME, and
GD-MCBoost the validation data is used to perform early
stopping. We run these algorithms with a maximum of 5000
iterations, and then choose the ensemble classifier from the
round with minimal error on the validation data. For DM-
CBoost, the parameter n′ is chosen on the values {1, n

10
, n

5
,

n
4
, n

3
, n

2
, 2n

3
} by the validation set. The stopping criterion of

DMCBoost is defined as line 7 in Algorithm 2 where DMC-
Boost terminates at the margin maximization solution, thus
we need not to apply early stopping. In all the experiments,
the value of ǫ is set to be 0.01 and the value of th is set to
be 1e-5.

An overview of these 13 UCI datasets is shown in Table
1. The datasets have different numbers of input variables
(6-856), classes (3-26), and instances (178-1,025,010), and
represent a wide area of types of problems. In the # Exam-
ples column, the number of training/test examples are listed
for datasets coming with pre-specified training and testing
sets, and the entire number of examples is given for the rest
datasets. The original Poker dataset has 25,010 training ex-
amples and 1,000,000 examples for testing. Since the test
data is very large, same as the way Li did in [17, 18], we
randomly divide it equally into two parts, and add them to
training and testing sets respectively, thus its training size
becomes 525,010 and the test size becomes 500,000. There-

Table 2: Test error (and standard deviation)
of multi-class boosting methods AdaBoost.M1,
SAMME, GD-MCBoost, and DMCBoost on 13 UCI
datasets, using multi-class decision trees with a
depth of 3.

Data AdaBoost.M1 SAMMEGD-MCBoost DMCBoost
Abalone - 74.20(1.8) 74.62(1.5) 74.03(2.0)

Car 10.96(2.5) 4.75(1.0) 3.60(1.1) 2.78(0.8)
CNAE-9 - 14.91(2.4) 11.4(1.9) 7.59(1.2)
Glass 29.52(10.7) 31.9(8.0) 27.0(7.4) 26.19(10.8)
Krkopt - 64.33(0.9) 26.55(0.4) 22.76(0.7)
Letter - 24.94(0.9) 5.40(1.3) 4.89(0.3)
Nursery 9.70(1.5) 3.26(0.7) 0.2(0.0) 0.02(0.0)

Poker525k 49.16 69.09 - 30.09
Segmentation 8.29 6.43 6.0 5.1

Vowel - 19.19(2.6) 9.2(2.6) 5.66(1.9)
Waveform 17.8(1.2) 16.96(1.2) 16.2(1.1) 14.38(1.1)

Wine 8.57(4.9) 7.43(4.8) 7.54(5.3) 3.43(4.7)
Yeast 43.65(2.6) 44.73(4.5) 43.6(3.5) 42.43(2.8)

fore, the datasets we selected include fairly large datasets
(Poker525k) as well as datasets of moderate sizes (Krkopt,
Letter and Nursery).

3.1 Experimental Results on UCI Datasets
We compare all multi-class boosting algorithms on 13 UCI

datasets. First, we restrict the base classifiers to smaller
trees to test the performance of each algorithm when the
base classifiers are very weak. We exclude the results of Ad-
aBoost.MH as all the rest algorithms use multi-class base
classifiers, and we want to compare the performance of each
algorithm with the same hypothesis space H. Table 2 shows
the results of different methods when multi-class decision
trees with a depth of 3 are used as weak learners3. With
small trees, DMCBoost gives the best results on all datasets
indicating that DMCBoost only requires very weak base
classifiers even if there is no exact weak learner condition
for DMCBoost. GD-MCBoost achieves the second best ac-
curacy, this algorithm also requires weaker base classifiers
since it is able to boost any type of weak learners with non-
zero directional derivatives [25]. We do not report its re-
sults on the Poker525k dataset since its one iteration takes
more than 12 hours to run by the authors’ matlab code. For
SAMME, the weak learner conditions can be satisfied easily,
but it couldn’t drive down the training error when the base
classifier is very weak, and its performance is much worse.
AdaBoost.M1 gives the worst results, and it is not able to
boost the base classifiers for 5 of 13 datasets, as shown in
Table 2.

With the same hypothesis space H (trees with a depth of
3), 0-1 loss minimization algorithm (Algorithm 1) usually
achieves a lower training classification error rate. The left
panel of Figure 3 shows a typical training error curve on the

3Whether a base classifier is weak or not often depends on
the properties of the datasets, such as number of classes,
examples and input variables. For the most multi-class
datasets in Table 1, decision trees with a depth of 3 is weak
enough. The previous multi-class boosting [10, 22, 36] stud-
ies often use much larger trees in the experiments.
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Figure 3: Left: Training errors of AdaBoost.M1, SAMME, and DMCBoost with 0-1 loss minimization
algorithm on the Car dataset. Middle: Test errors of AdaBoost.M1, SAMME, and DMCBoost with 0-1 loss
minimization algorithm on Car dataset. Right: Training and test error of DMCBoost when it switches to
the margin maximization algorithm on the Car dataset.

Table 3: Test error (and standard deviation) of multi-class boosting methods AdaBoost.M1, AdaBoost.MH,
SAMME, GD-MCBoost, and DMCBoost on 13 UCI datasets, using decision trees with a maximum depth of
12.

Data AdaBoost.M1 AdaBoost.MH SAMME GD-MCBoost DMCBoost
Abalone 76.41(1.4) 75.33(1.2) 73.70(1.7) 74.62(1.5) 73.44(1.8)

Car 3.36(0.8) 2.84(0.6) 3.65(0.9) 2.8(0.8) 2.67(0.8)
CNAE-9 20.9(2.7) 8.43(1.3) 13.43(1.3) 10.6(2.1) 7.5(1.2)
Glass 27.14(9.3) 29.52(9.2) 24.76(8.7) 24.0(6.8) 24.76(9.9)
Krkopt 14.3(0.3) 11.68(0.3) 12.71(0.2) 12.20(0.3) 11.04(0.2)
Letter 3.48(0.3) 3.1(0.1) 4.88(0.3) 3.37(0.2) 3.1(0.2)
Nursery 0.12(0.1) 0.03(0.0) 0.16(0.1) 0.0(0.0) 0.0(0.0)

Poker525k 30.19 2.01 18.74 - 2.77
Segmentation 4.86 6.14 5.1 6.0 4.52

Vowel 5.96(2.9) 7.68(1.8) 6.25(2.3) 5.6(3.0) 5.66(1.9)
Waveform 15.2(1.4) 14.56(1.4) 15.08(1.0) 15.2(0.8) 14.26(1.1)

Wine 8.57(4.9) 9.16(5.3) 7.43(4.8) 7.54(5.3) 3.43(4.7)
Yeast 41.69(1.8) 41.82(2.1) 41.22(3.1) 43.2(3.6) 40.23(2.5)

Car dataset, and the middle panel shows the corresponding
test error curve. Once the 0-1 loss minimization algorithm
terminates at a coordinatewise local minimum, DMCBoost
switches to the margin maximization algorithm (Algorithm
2), and it can still drive down the test error even when the
training error does not decrease, as shown in the right panel
of Figure 3.

We now analyze the running time of AdaBoost.M1, SAMME,
and DMCBoost on the Poker525k dataset, which has 525,000
training examples. We implemented each algorithm by C++,
and test them on a PC with Core2 Duo 2.6GHz. We left
GD-MCBoost out of the comparison since it is unfair to
compare a matlab implementation with C++ implementa-
tions, and GD-MCBoost runs too slow to record the run-
ning time. AdaBoost.M1 and SAMME are very efficient in
terms of running time, they take about 10s on each round.
For DMCBoost, it takes about 90s on each round, which is
slower than AdaBoost.M1 and SAMME but it is bearable
on such a scale as the dataset.

We next investigate how these algorithms perform with
more powerful base classifiers. We tried all tree depths in
the candidate set {3,5,8,12} for each dataset. This time we
compare the algorithms not restricted in the same hypothe-
sis spaceH, so we also add AdaBoost.MH in the comparison.

As shown in Table 3, among all the methods, DMCBoost
gives the most accurate results in 10 of the 13 datasets, and
its results are close to the best results produced by the other
methods for the remaining 3 datasets.

3.2 Evaluation of Noise Robustness
In many real-world applications, training samples are ob-

tained through manual labeling and there will be unavoid-
able human errors that provoke wrong labels. Hence, it is
desirable that the designed classification algorithm is robust
to noise. In the experiments conducted below, we check
the noise robustness of each boosting algorithm on Car and
Nursery datasets with additional label noise. We randomly
change the labels on training and validation data at the rates
of 5% and 20% respectively, and keep the the test data clean.
Again, the tree depths are chosen from the candidate set
{3,5,8,12}. The results via 5-fold cross-validation (as de-
scribed in the begining of section 3) are reported in Table
4. The affection of label noise to the performance of DM-
CBoost is very limited, especially for the Nursery dataset,
the test error only increases from 0 to 1.6% when 20% of the
training examples have wrong labels. Similar to AdaBoost
in binary cases, AdaBoost.M1 and SAMME are quite sen-
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Table 4: Test error (and standard deviation) of multi-class boosting methods AdaBoost.M1, AdaBoost.MH,
SAMME, GD-MCBoost, and DMCBoost on the two UCI datasets with random noise, using decision trees
with a maximum depth of 12.

Data Noise rate AdaBoost.M1 AdaBoost.MH SAMME GD-MCBoost DMCBoost
Car 0 3.36(0.8) 2.84(0.6) 3.65(0.9) 3.6(1.1) 2.67(0.8)

0.05 9.22(1.5) 6.09(1.0) 7.94(2.0) 5.8(1.1) 3.54(1.2)
0.2 14.55(2.4) 9.1(1.0) 14.2(1.9) 9.6(1.1) 6.55(1.6)

Nursery 0 0.12(0.1) 0.03(0.0) 0.16(0.1) 0.0(0.0) 0.0(0.0)
0.05 3.93(1.3) 1.82(0.5) 2.29(0.2) 2.4(0.5) 0.37(0.2)
0.2 6.61(0.9) 3.47(0.6) 6.61(0.9) 4.4(0.9) 1.61(0.5)

sitive to noise, their performance is hurt badly even with a
5% noise rate.

DMCBoost achieves good performance by varying the pa-
rameter n′, the higher the noise rate, the larger n′ should
be used. Consider the Car dataset as an example, for the
case that the training set is clean (noise rate is 0), the op-
timal n′ via cross-validation is n

10
and the training error is

1.5%, thus the algorithm focus on the difficult examples. For
the case that the noise rate is 5%, the optimal n′ is n

4
and

the training error is 7.1%, indicating that DMCBoost allows
some misclassification to achieve a better performance. For
a noise rate of 20%, DMCBoost considers more examples in
the bottom set, the optimal n′ via cross-validation is n

2
. In

this case, DMCBoost further allows more misclassification
(the training error is 22.2%), but its corresponding test error
is only 6.55%.

4. CONCLUSION AND FUTURE WORKS
In this paper we have proposed a multi-class boosting ap-

proach that directly optimizes the 0-1 loss and the targeted
margins. Experiments show that our method gives better
results in the case of restricting the weak learning algorithm
to small decision trees, and performs highly competitively
with the existing boosting algorithms in the case of deeper
decision trees. More importantly, our method is more robust
on the noisy data.

In this study we restrict the weak learners to multi-class
decision trees as the combination of boosting with a decision
trees is the state-of-the-art classification method [1]. For
future works, we will consider more weak learning algorithms
and the case that |H| is infinite, such as k-Nearest Neighbors,
Naive Bayes, and Neural Networks.
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APPENDIX

A. PROOF OF THEOREM 1

Proof. : (i) We first show that when the optimal solution
of soft margin optimization is achieved,Mi + ξi = ρ always
holds for those ξi > 0. Suppose when the optimal solution
is achieved, there exists an example such that Mi + ξi > ρ
and ξi > 0. The slack variable ξi > 0 indicates Mi < ρ,
then we can always find a ξ′i < ξ such thatMi+ ξ′i = ρ, and
therefore replace ξ to ξ′ in objective function that produce
a greater objective value, a contradiction.

(ii) We next prove under the optimal solution, there are at
most n′ examples that are allowed to lie below (or equal) ρ,
that is, |{xi|Mi ≤ ρ}| ≤ n′. Suppose we arrived a optimal
solution and n′ < |{xi|Mi ≤ ρ}| ≤ m′, with the correspond-
ing slack variable ξ. Then we can always find a ρ′ < ρ such

that |{xi|Mi ≤ ρ′}| ≤ n′, with the slack variable ξ′. We de-
note δ = ρ−ρ′, then by (i) ξ′i = ξi− δ for the examples with
ξ′i > 0. We use Bm′ to denote the set of m′ examples having
the smallest margins, then Bn′ ⊂ Bm′ and Bc

n′ ∩ Bm′ 6= ∅.
We have

ρ −
1

n′

n∑

i=1

ξi = ρ
′ −

1

n′
(

∑

i∈B
m′

ξi − n
′
δ)

= ρ
′ −

1

n′

∑

i∈B
n′

ξ
′
i −

1

n′

∑

i∈Bc
n′ ∩B

m′

ξi

≤ ρ
′ −

1

n′

∑

i∈B
n′

ξ
′
i

which is a contradiction.
(iii) We further show that |{xi|Mi ≤ ρ}| ≥ n′ under the

optimal solution. Suppose there is an optimal solution with
|{xi|Mi ≤ ρ}| ≤ m′ < n′ and slack variable ξ, then there
must exist a ρ′ > ρ such that m′ < |{xi|Mi ≤ ρ}| ≤ n′ and
corresponding ξ′. We denote δ = ρ′ − ρ and we have

ρ −
1

n′

n∑

i=1

ξi = ρ
′
−

1

n′
(

∑

i∈B
m′

ξi + n
′
δ)

≤ ρ
′ −

1

n′
(

∑

i∈B
m′

ξ
′
i +

∑

i∈Bc
m′ ∩B

n′

ξ
′
i)

= ρ
′ −

1

n′

∑

i∈B
n′

ξ
′
i

where the inequation holds since ξ′i ≤ δ if xi ∈ Bc
m′ ∩ Bn′ .

A contradiction.
(iv) Combine the results (ii) and (iii), we have |{xi|Mi ≤

ρ}| = n′, and therefore
∑

i∈Bn′
(Mi + ξi) = n′ρ, it follows

that
∑

i∈Bn′
Mi = n′ρ−

∑

i∈Bn′
ξi = n′ρ−

∑n

i=1 ξi. Divid-

ing by n′ on both sides of the equation, we get 1
n′

∑

i∈Bn′
Mi =

ρ− 1
n′

∑n

i=1 ξi.

B. PROOF OF THEOREM 2

Proof. : Our proof is inspired by the works in [14, 26,
32]. Let C(H) denote the convex hull of H, and let CN(H)
denote the set of unweighted averages over N elements from
H. Formally,

C(H) = {f : f =
∑

k

αk1(hk(x) = y),
∑

k

αk = 1, αk ≥ 0, hk ∈ H}

CN (H) = {g : g =
1

N

N∑

j=1

1(hj(x) = y), hj ∈ H}

We denote the distribution over H by the coefficients {αk}
to be Q(f). Let B{n′|f} be the set of n′ examples having
the smallest margins associate with the inference function
f . By [26] we know that for any fixed β > 0

Pr
D

[M(f, x, y) < 0] ≤ Pr
D,g∼Q(f)

[M(g, x, y) < β] + exp(
−Nβ2

2
)

(11)

Let M(g, x(k), y(k)) denote the k-th smallest margin with
respect to g. For any n′ ∈ {1, · · · , n} and ǫN > 0, we
consider the following probability:

Pr
S
[Pr
D

[M(g, x, y) < β] > 1(M(g, x(n′), y(n′)) ≤ β) + ǫN ]

≤

n′−1∑

i=0

(
n
i

)
ǫ
i
N (1 − ǫN )n−i ≤ exp(−nD(

n′

n

∣∣ǫ))

by using the relative entropy Chernoff bound.
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Let Z = {i/|H| : i = 1, · · · , |H|}, we only consider β
at the values in Z. By the fact that |CN (H)| ≤ |H|N and
applying the union bound, for any n′ ∈ {1, · · · , n},

Pr
S,g∼Q(f)

[
∃g ∈ CN (H), ∃β ∈ Z,Pr

D
[M(g, x, y) < β]

> 1[M(g, x(n′), y(n′)) ≤ β] + ǫN
]

≤|H|N+1 exp(−nD(
n′

n

∣∣ǫ))

Let δN = |H|N+1 exp(−nD(n
′

n

∣

∣ǫ)), then

ǫN = D
−1

(
n′ − 1

n
,
1

n
log

|H|N+1

δN
)

Thus, with a probability at least 1 − δN over the training
sample S, for all f ∈ C(H), all β ∈ Z, and all fixed n′, we
have

Pr
D

[M(g, x, y) < β] ≤ 1[M(g, x(n′), y(n′)) ≤ β]

+ D
−1(

n′ − 1

n
,
1

n
log

|H|N+1

δN
)

Since

Pr
D,g∼Q(f)

[M(g, x, y) ≤ β] = Eg∼Q(f)[Pr
D

[M(g, x, y) < β]]

≤ Pr
g∼Q(f)

[M(g, x(n′), y(n′)) ≤ β] + D
−1(

n′ − 1

n
,
1

n
log

|H|N+1

δN
)

And for any θ > β,

Pr
g∼Q(f)

[M(g, x(n′), y(n′)) ≤ β]

≤1[
1

n′

∑

i∈B
{n′|f}

M(f, xi, yi) < θ]

+ Pr
g∼Q(f)

[M(f, x(n′), y(n′)) ≥ θ,M(g, x(n′), y(n′)) ≤ β]

Thus, we have

Pr
D,g∼Q(f)

[M(g, x, y) ≤ β]

≤1[
1

n′

∑

i∈B
{n′|f}

M(f, xi, yi) < θ] + D
−1(

n′ − 1

n
,
1

n
log

|H|N+1

δN
)

+ Pr
g∼Q(f)

[M(f, x(n′), y(n′)) ≥ θ,M(g, x(n′), y(n′)) ≤ β] (12)

We now prove ifM(f, x(n′), y(n′)) ≥ θ andM(g, x(n′), y(n′)) ≤
β with θ > β, there always exists an example (xi, yi) such
thatM(f, xi, yi) ≥ θ andM(g, xi, yi) ≤ β. Since there ex-
ists a bijection between {M(f, x(1), y(1)), · · · ,M(f, x(n), y(n))}
and {M(g, x(1), y(1)), · · · ,M(g, x(n), y(n))}, we can assume
M(f, x(n′), y(n′)) corresponding toM(g, x(ñ), y(ñ)) for some
ñ ≤ n. If ñ ≤ n′, then (x(n′), y(n′)) of M(f, x(n′), y(n′)) is
desired. On the other hand, if ñ > n′, then there are at least
n−n′ examples greater than or equal to θ in {M(f, xi, yi) :
i 6= n′} but at most n − n′ − 1 examples greater than β in
{M(g, xi, yi) : i 6= ñ}. Thus,

Pr
g∼Q(f)

[M(f, x(n′), y(n′)) ≥ θ,M(g, x(n′), y(n′)) ≤ β]

≤ Pr
g∼Q(f)

[∃(xi, yi) : M(f, xi, yi) ≥ θ,M(g, xi, yi) ≤ β]

≤ Pr
g∼Q(f)

[∃(xi, yi) : ∀ỹ : f(xi, yi) − f(xi, ỹ) ≥ θ, ∃ỹ : g(xi, yi) − g(xi, ỹ) ≤ β]

≤n(K − 1) exp(
−N(θ − β)2

2
)

By combining (11) and (12), we obtain that with probability
at least 1− δN over the training sample S, for all f ∈ C(H),
all β ∈ Z and all θ > β and all n′ = {1, · · · , n}, but fixed

N ,

Pr
D

[M(f, x, y) < 0]

≤1[
1

n′

∑

i∈B
{n′|f}

M(f, xi, yi) < θ] + exp(
−Nβ2

2
)

+ n(K − 1) exp(
−N(θ − β)2

2
) + D

−1(
n′ − 1

n
,
1

n
log

|H|N+1

δN
)

To let β takes values only in Z, we set β = θ
2
− η

|H|
with

0 ≤ η < 1 and N =
⌈

8
θ2

log 2n2

log |H|

⌉

, the following inequality

holds for θ ≥ 8
|H|

exp(
−Nβ2

2
) + n(K − 1) exp(

−N(θ − β)2

2
)

≤(K − 1)
log |H|

2n
+

√
log |H|

2n2

Setting δ = 2NδN . Thus, with probability at least 1−δ over
the random choice of the training data S of n examples, for
all f ∈ C(H) and all n′ = {1, · · · , n}, we obtain

Pr
D

[M(f, x, y) < 0] ≤ 1[
1

n′

∑

i∈B
{n′|f}

M(f, xi, yi) < θ]

+ (K − 1)
log |H|

2n
+

√
log |H|

2n2
+ D

−1(
n′ − 1

n
,
1

n
u)

where

u =
8

θ2
log

2n2

log |H|
log 2|H|+ log |H|+ log

1

δ

C. PROOF OF THEOREM 3

Proof. : By definition of quasiconcave, gavg n′(α) is
quasiconcave if and only if its upper contour sets are convex
sets. The γ-upper-contour set Sγ of gavg n′(α) is denoted
as

Sγ =

{
α :

∑

i∈{B
n′ |α}

( |H|∑

j=1

αj1(hj(xi) = yi)

− max
y∈Y,y 6=yi

|H|∑

j=1

αj1(hj(xi) = y)

)
≥ γ

|H|∑

j=1

|αj|

}

We now prove that Sγ is a convex set. For ∀α(1), α(2) ∈
Sγ , ∀λ ∈ [0, 1], we have

∑

i∈{B
n′ |(1−λ)α(1)+λα

(2)}

(

|H|∑

j=1

((1 − λ)α
(1)
j + λα

(2)
j )1(hj(xi) = yi)

− max
y∈Y,y 6=yi

|H|∑

j=1

((1 − λ)α
(1)
j + λα

(2)
j )1(hj(xi) = y))

≥(1 − λ)
∑

i∈{B
n′ |α

(1)}

(

|H|∑

j=1

α
(1)
j 1(hj(xi) = yi) − max

y∈Y,y 6=yi

|H|∑

j=1

α
(1)
j 1(hj(xi) = y))

+ λ
∑

i∈{B
n′ |α

(2)}

(

|H|∑

j=1

α
(2)
j 1(hj(xi) = yi) − max

y∈Y,y 6=yi

|H|∑

j=1

α
(2)
j 1(hj(xi) = y))

≥(1 − λ)γ

|H|∑

j=1

|α
(1)
j |+ λγ

|H|∑

j=1

|α
(2)
j | ≥ γ

|H|∑

j=1

|(1 − λ)α
(1)
j + λα

(2)
j |

Therefore, (1− λ)α(1) + λα(2) ∈ Sγ . gavg n′(α) is quasi-
concave.
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