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ABSTRACT
Since data is often multi-faceted in its very nature, it might
not adequately be summarized by just a single clustering. To
better capture the data’s complexity, methods aiming at the
detection of multiple, alternative clusterings have been pro-
posed. Independent of this research area, semi-supervised
clustering techniques have shown to substantially improve
clustering results for single-view clustering by integrating
prior knowledge. In this paper, we join both research areas
and present a solution for integrating prior knowledge in the
process of detecting multiple clusterings.

We propose a Bayesian framework modeling multiple clus-
terings of the data by multiple mixture distributions, each
responsible for an individual set of relevant dimensions. In
addition, our model is able to handle prior knowledge in the
form of instance-level constraints indicating which objects
should or should not be grouped together. Since a priori the
assignment of constraints to specific views is not necessarily
known, our technique automatically determines their mem-
bership. For efficient learning, we propose the algorithm
SMVC using variational Bayesian methods. With experi-
ments on various real-world data, we demonstrate SMVC’s
potential to detect multiple clustering views and its capabil-
ity to improve the result by exploiting prior knowledge.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
—Data mining ; I.2.6 [Artificial Intelligence]: Learning

Keywords
semi-supervised learning; subspace clustering; constraints

1. INTRODUCTION
Clustering aims at grouping data instances based on their

similarity. For complex data, however, the similarity often
depends on the point of view. In a customer database, for
example, users might be grouped according to their demo-
graphic profile or according to their buying patterns. In a
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document database, different groups might reflect the doc-
uments’ subjects or their writing style. Thus, depending on
the application and the user’s preferences, a single grouping
does not capture all aspects but multiple, alternative clus-
tering solutions are required. The emerging research field of
multi-view or alternative clustering [27] addresses this chal-
lenge by finding multiple high quality clusterings.

On the other hand, semi-supervised clustering techniques
[8] try to incorporate the user’s preferences by exploiting
prior knowledge during the clustering process. For tradi-
tional single-view clustering, these techniques have shown
to substantially increase the clustering results. Motivated
by the success of both research areas, we propose a semi-
supervised multi-view clustering technique. Our goal is to
exploit user provided prior knowledge to enhance the results
of multiple, alternative clusterings.

For semi-supervised clustering, it is crucial that the user
can provide supervision in an easy and understandable way.
While cluster level constraints, such as the clusters’ sizes, po-
sitions, or distributions, usually require an abstract under-
standing of the desired clustering structure, instance level
constraints which, e.g., indicate partial information about
cluster memberships, are much more intuitive. A popular
way of modeling such prior information is via equivalence
constraints, which indicate for pairs of instances whether
they should belong to the same cluster (must-link constraint)
or to different clusters (cannot-link). Even though lacking a
full understanding of the clustering structure, this allows the
user to partly specify her intuition by indicating for selected
object pairs their pairwise cluster relation. Since in many
cases these user constraints express a belief rather than cer-
tainty, we use the concept of soft constraints, where mistakes
are possible and a complete fulfillment is not enforced.

The transfer of the semi-supervised clustering principle
to the multi-view case poses a severe challenge, particularly
regarding the multi-faceted nature of the data. One user
might for example see the similarity of two movies based on
their cast, while another user might foreground their dissim-
ilarity based on differing genres. It, therefore, might remain
unclear to which view specific constraints refer to. In par-
ticular, when naively assigning all constraints to a single
view, a large proportion of the constraints might be con-
flicting such that even a relaxation to soft constraints will
not be sufficient anymore. Therefore, the challenge in semi-
supervised multi-view clustering is not only to optimize the
clustering such that constraints are optimally fulfilled but
also to learn the affiliation of constraints to views.

It has to be highlighted that some of the sequentially work-
ing multi-view clustering approaches (which iteratively find
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Fig. 1: Example for the multi-view scenario

one clustering at a time) (e.g. [4, 30]) already work based
on instance level constraints to incorporate the feedback of
rejected prior clusterings via cannot-link constraints. These
constraints, however, are used for a different goal: they guide
the clustering method to find a single new clustering. Thus,
all constraints need to refer to this single clustering, and
none of the previous clusterings can be affected by these
constraints. In contrast, our aim is to incorporate instance
level constraints which might improve the overall result of
all clusterings. It becomes apparent, that in this case we
have to rely on a multi-view clustering technique which de-
tects all clusterings simultaneously.

Only few approaches for simultaneous multi-view cluster-
ing have been proposed (e.g. [28, 23, 22, 21]). Here, the
inevitable connection of multi-view clustering and subspace
clustering has been observed first [28, 22, 21], which later
also influenced sequentially working approaches like [15].
Subspace clustering assumes each cluster to have an individ-
ual set of relevant data attributes, which corresponds well
with the motivation of multi-view clustering that different
views on the data (i.e. considering different characteristics
of the data) might reveal different clustering structures.

In this work we join the three paradigms of simultaneous
multi-view clustering, subspace clustering, and constraint-
based clustering. We present a Bayesian framework that
models the different clustering views via several multivari-
ate mixture distributions located in subspace projections
(cf. Figure 1). Each object follows multiple components,
each in a different mixture model, each defining a distribu-
tion only for a certain view (i.e. subspace) of the data, and
each representing a different role of the object. We integrate
the optimal fulfillment of user provided instance level con-
straints into the Bayesian learning process, where we tackle
the challenge of automatically learning the responsibility of
views for specific constraints. Our contributions are:

• Multiple clusterings: We propose a sound Bayesian model
which represents multiple clusterings via individual mix-
ture models, each representing a distinct view.

• Semi-supervision: Our model incorporates prior knowl-
edge in form of (soft) must-link and cannot-link instance
level constraints. Our method automatically learns the
assignment of these constraints to specific views if their
responsibility is not explicitly specified.

• Algorithm design: We present an efficient algorithm based
on the principle of variational inference for learning our
model.

• Effectiveness: We analyze the effectiveness of our meth-
od on various datasets and show its potential to increase
the clustering result by using prior knowledge.
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Fig. 2: Graphical model of our method. Rectangles
denote discrete random variables, circles continuous
random variables, and black dots (deterministic) hy-
perparameters of the prior distributions.

2. BAYESIAN FRAMEWORK
In this section, we introduce a Bayesian framework for

semi-supervised multi-view clustering. An overview of our
framework is given by the graphical model depicted in Fig. 2.
While this section introduces the generative process of our
model, we describe in Section 3 how to learn the model’s pa-
rameters given a set of observations. Following convention,
we do not distinguish between a random variable x and its
realization x = x if it is clear from the context. As an abbre-
viation, we denote sets of random variables with the index
∗, e.g. y∗,d is the set of random variables {yi,d} with i in the
corresponding index domain, and Y is an abbreviation for
the set y∗,∗.

The number of objects is denoted with N , the number of
dimensions with D, the number of clusters/components with
K, and the number of alternative views/clusterings with M .
We write k ∈ K, as a shortcut for k ∈ {1, . . . ,K}.

Multiple Mixture Models. The general idea of our
method is to represent the multiple clusterings of the data
by multiple mixture models, each located in a different sub-
space projection (cf. Figure 1). In this work, we focus on
Gaussian mixture models; extensions to other distributions
are straightforward. Following standard principles, each of
the M mixture models is based on K components, where
each of these components is associated with a mean and a
covariance/precision matrix. To reduce the number of pa-
rameters to be estimated, we focus on diagonal precision
matrices. Thus, for a Bayesian treatment, we introduce the
random variables

(µm,k,d, τm,k,d) ∼ NG(µ̊d, κ̊d, α̊d, β̊d) (1)

where µm,k,d is the mean of component k in dimensions d
for clustering m, and τm,k,d the corresponding precision. We
select the normal-gamma distribution NG as a prior since
it represents the variables’ conjugate prior. The hyperpa-
rameters denoted by ∗̊ can be used to control the mixture
models’ components if some prior knowledge is available.
Per default, we choose least informative priors by selecting
κ̊d, α̊d → 0 and setting µ̊d/β̊d to be the sample mean/sum
of squared deviations in dimension d.

Besides the components parameters, each mixture model
is associated with a corresponding random variable repre-
senting the mixture weights. Obviously, since we want to
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find multiple different clusterings, these weights can be dif-
ferent for each view. We use the random variable

~πm ∼ Dir(̊λ) (2)

where πm,k is the weight of component k in clustering m.
Due to conjugate properties, we use a Dirichlet distribution
as its prior. Again, in our study, we use a non-informative
prior by selecting λ̊ = 1 since a priori no knowledge about
the cluster sizes is given.

Integrating Subspaces. To detect the data’s multiple
views, we refer to the principle of subspace clustering. Our
goal is to assign each mixture model to a specific subspace
projection, which it describes well. Since the relevant di-
mensions of the mixtures are a priori not known, we learn
them with our method. Therefore, we introduce the random
variable

vd ∼ Categorical(~rd) (3)

to indicate which of the M clusterings is responsible for
a specific dimension d. The vector ~rd ∈ [0 . . . 1]M (with∑
rk,m = 1) can be used to give some prior knowledge which

dimension belongs to which view. Again, we use a constant
non-informative prior, i.e. rk,m = 1/M .

Knowing about the subspaces as well as the mixture mod-
els’ parameters, we are now able to generate observations
which show multiple clustering structures: We denote with
zm,i the random variable indicating to which cluster an ob-
ject i belongs to in clustering m, i.e.

zm,i ∼ Categorical(~πm) (4)

Note that for each viewm, the object might follow a different
cluster, i.e. zm,i 6= zm′,i is possible. Thus, in each view
the object might be grouped together with different objects.
This idea is illustrated in Figure 1: the grouping on the left
differs from the one on the right. Given zm,i, the attribute
value of object i in dimension d is drawn according to

xi,d ∼ N (µm,k,d, τ
−1
m,k,d) with m = vd and k = zm,i (5)

That is, we use the clustering m which is responsible for
dimensions d and the corresponding component k the object
belongs to in this view.

Integrating User Constraints. So far, our model cor-
responds to a completely unsupervised technique for finding
multiple clusterings. As a major advancement, we now inte-
grate user provided prior-knowledge. As discussed, we aim
to support the concept of instance level constraints. More
precisely, we support the idea of soft constraints between
pairs of objects that indicate whether the objects should or
should not be grouped together. We selected this type of
semi-supervision since it reflects an intuitive understanding
of clustering and is easy to specify for the user.

The user can provide a constraint between the objects
i and j via a weight wi,j . If the weight is positive, the
user indicates that there should exist a clustering where the
objects are grouped together. If the weight is negative, the
user indicates that there should exist a clustering where i
and j are not grouped together. Different magnitudes of the
weights can be used to indicate the different importance or
relevance of the constraints.

At this point it is crucial to keep in mind that we are in-
terested in finding multiple, alternative clusterings: A con-
straint between i and j means that there exists a view where
the constraint is fulfilled. We do not require that i and
j are grouped together in all views, which actually would

contradict the fundamental assumption for multi-view sce-
narios that clusterings of different views differ and contain
alternative knowledge. Forcing constraints to be valid for all
views would be too restrictive. Furthermore, we argue that
the user is generally not aware of the details of all possible
groupings. Thus, the user should not define constraints re-
stricting views that he does not understand. Accordingly,
for each constraint, we are interested in finding (at least)
one clustering fulfilling this constraint.

Resulting from this principle, another challenge of our
method becomes apparent: we have to determine the clus-
tering which is responsible for a specific constraint. In the
following, we show how to model all these aspects.

As mentioned, the constraints are modeled via weights.
In our model, we represent them via a symmetric matrix W
of size N × N , where entries with weight zero indicate no
prior knowledge about the corresponding pairs of objects.
In practice, we can use a sparse representation of the ma-
trix which only encodes the given constraints and allows for
an efficient processing. Interesting to note is that the (ob-
served) matrix W appears in our grapical model as one of
the root nodes (cf. Figure 2), and not as a leaf like X. As
shown, the weights influence the grouping Z of the objects.

Additionally, we introduce the categorical random vari-
ables ci,j (due to the symmetry of the weights, we only need
to consider i < j). These variables indicate which view is
responsible for a specific constraint. That is, we have

ci,j ∼ Categorical(~h(i,j)) (6)

where ~h(i,j) ∈ [0...1]M with
∑
m∈M h

(i,j)
m = 1. The user can

use ~h(i,j) to express some further prior knowledge about the
constraint between object i and j. If the user, for example,
knows that a set of constraints should most likely belong
to one view, the h vectors can be selected accordingly. Per
default, we assume that no knowledge about the assignment

of constraints to views is known, i.e. we use h
(i,j)
m = 1/M .

Given W and C, how can we use their values to influence
the clustering structure of the data? Our idea is to add a
bias to the probability distribution of the zm,j . The proba-
bility of generating a clustering that matches the constraints
should be higher than the probability of a clustering which
violates the constraints. Particularly, this results in a de-
pendency between the variables zm,∗ which is guided by the
constraints. We define

p(zm,∗ | ~πm,W,C)

∝
N∏
i=1

πm,zm,i ·
N∏
i=1

N∏
j>i

ci,j=m

ewi,j ·δ(zm,i,zm,j) (7)

Here, δ(zm,i, zm,j) denotes the Kronecker delta, which eval-
uates to 1 if both objects are located in the same cluster (in
view m), and 0 otherwise. Please note that Equation 7 is
the joint distribution for all zm,∗.

The first part of the equation corresponds to the mixture
weights as used in standard mixture models. If all wi,j = 0,
Equation 4 and 7 are equivalent. The second part models
the bias to specific groupings: As one can see, if wi,j is
positive and the objects are located in the same cluster, the
probability of selecting this grouping increases. Accordingly,
if wi,j is negative, one would decrease the probability of
clusterings where i and j are grouped together. A similar
principle was used in [25, 7] for single-view clustering.
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Important to mention is that the second part of the equa-
tion incorporates the automatic assignment of constraints to
views. The constraint between i and j adds a bias to the
clustering structure in view ci,j = m only. In accordance to
our discussion above, the other views are not affected.

Given the new definition for the distribution of Z, the
actual observations are, as before, generated according to
Equation 5. Overall, our model combines the principle of
multiple clusterings in subspace projections with the para-
digm of semi-supervised clustering and automatically as-
signs constraints to their responsible views.

3. THE SMVC ALGORITHM
While the previous section has focused on the model’s

generative process, we now present our learning technique.
That is, given a set of observations X and a set of constraints
W , we infer the model’s parameters. Our method is called
SMVC (Semi-Supervised Multi-View Clustering).

3.1 Variational Inference
The general inference problem we have to solve is to deter-

mine the distribution p(Y |X,W ), where Y={V,Z,C, ~π, µ, τ}
is the set of all latent variables. Based on this distribution,
we can, e.g., pick the realizations of the latent variables lead-
ing to the highest likelihood given the data. Since comput-
ing p(Y |X,W ) is intractable, we compute an approximation
based on the principle of variational inference [10]: we ap-
proximate p(Y |X,W ) by a tractable family of parametrized
distributions q(Y |Ψ). The parameters Ψ are the free vari-
ational parameters. These parameters are optimized such
that the best approximation between q and p is obtained.
Technically, one minimizes the Kullback-Leibler divergence
between q and p by optimizing Ψ. Using Jensen’s inequality,
minimizing the KL divergence is equivalent to maximizing
the following lower bound on the log marginal likelihood [10]:

L(X,W ; Ψ) = Eq[ln p(X,W, Y )]− Eq[ln q(Y |Ψ)] (8)

where Eq[.] denotes the expectation w.r.t. the q distribution.
Following primarily the idea of mean field approximation,

we assume the function q to factorize in

p(Y | X,W ) ≈ q(Y |Ψ) :=
∏
d

q1(vd) ·
∏
m

∏
i

q2(zm,i)

·
∏
i

∏
j>i

q3(ci,j) ·
∏
m

q4(~πm) ·
∏
m

∏
k

∏
d

q5(µm,k,d, τm,k,d)

As we will later see, assuming the above factorization, the
optimal variational distributions have the form

q1(vd) = Categorical(vd |φd,1, ..., φd,M )
q2(zm,i) = Categorical(zm,i |ψm,i,1, ..., ψm,i,K)
q3(ci,j) = Categorical(ci,j | ξi,j,1, ..., ξi,j,M )

q4(~πm) = Dir(zm,i |~λm)
q5(µm,k,d, τm,k,d) = NG(µm,k,d, τm,k,d |

µ̃m,k,d, κ̃m,k,d, α̃m,k,d, β̃m,k,d)

where Ψ = {φ, ψ, ξ, ~λ, µ̃, κ̃, α̃, β̃} are the variational parame-
ters to be optimized. Note that each distribution has its own
variational parameters [10]. Thus, e.g. the functions q1(vd)
and q1(vd′), are not necessarily identical. This extra degree
of freedom allows to find a good approximation between q
and p. As discussed in Section 2, for ci,j , i.e. the function
q3, we only need to consider pairs i, j with wi,j 6= 0.

General Processing Scheme. We use an iterative co-
ordinate ascent method to maximize Equation 8 w.r.t. the

parameters Ψ (the update equations follow in Section 3.2).
The processing scheme is as follows:

while not converged do
for i, j ∈ N : j > i ∧ wi,j 6= 0 do update ξi,j,∗ Eq. 10
for d ∈ D do update φd,∗ Eq. 11
for m ∈M, i ∈ N do update ψm,i,∗ Eq. 12

for i ∈ N,m ∈M do update ~λm Eq. 13
for m ∈M,k ∈ K, d ∈ D do Eq. 14

update µ̃m,k,d, κ̃m,k,d, α̃m,k,d, β̃m,k,d

Note that due to the properties of variational inference
[10], it is guaranteed that the method converges. In prac-
tice, we assume convergence if the change in the lower bound
on the marginal likelihood is below than 0.01. Additionally,
to avoid the problem of local minima, we enhance the pro-
cessing scheme by gradually increasing the importance of the
constraints. That is, starting with low weights, we linearly
increase the values wi,j until they reach the user specified
scores. For initializing our method, we exploit the same
principle as described in [21]. The random variable C/q3 is
initialized randomly based on its prior distribution.

3.2 Update Equations
We briefly present the update equations required for the

coordinate ascent method. We primarily follow the princi-
ple of [10]: The optimal distribution for qx(B) can be deter-
mined by

ln q∗x(B) = Eq\B [ln p(X,Y,W )] + C (9)

Here, the constant C absorbs all terms which are indepen-
dent of B and, thus, do not affected the optimal distribution
of qx. Eq\B [.] denotes the expectation w.r.t. the distribution
q taken over all variables Y except of B. To avoid cluttering
the notation, we simply write Eq in the following (it is clear
from the context which variable is excluded).

Updating the constraint responsibility. Let [[.]] denote
the Iverson bracket. We can rewrite Equation 7 as follows

N∏
i=1

K∏
k=1

π
[[zm,i=k]]

m,k ·
N∏
i=1

N∏
j>i

K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

This formulation makes it easier to derive the following re-
sults. Accordingly, we can rewrite the remaining equations.

The optimal distribution for q3(ca,b) (with a < b) can be
obtained via Eq. 9. Removing all terms which are indepen-
dent of ca,b and using the above reformulation, we get

log q∗3(ca,b = y)

= Eq[log (P (ci,j)P (Z|π,C,W ))] + C

= Eq[log
1

M
] + Eq[log

M∏
m=1

( N∏
i=1

K∏
k=1

π
[[zm,i=k]]

m,k ·
N∏
i=1

N∏
j>i

·
K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

)
] + C

= Eq[
M∑
m=1

K∑
k=1

log ewa,b[[zm,a=k]][[zm,b=k]][[ca,b=m]]] + C

= wa,b

K∑
k=1

Eq[[zy,a = k]] · Eq[[zy,b = k]] + C

Since ca,b has a finite domain, the distribution q3 is a cat-
egorical distribution. Renaming the variables, the optimal
hyperparameters of the distribution q3(ci,j) are given by

ξi,j,m ∝ exp(wi,j
∑K
k=1 Eq [[zm,i=k]]·Eq [[zm,j=k]]) (10)
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where
∑
m ξi,j,m = 1. The occurring expectations can be

replaced by the known expectations of the variational dis-
tributions (cf. appendix). Intuitively, the parameter ξi,j,m
shows the probability of assigning the constraint between i
and j to the view m.

Updating the views. Computing Eq. 9 for q1(vd) and
removing all terms which are independent of vd leads to

ln q∗1(vd = y)

= Eq[log (P (x∗,d|vd, Z, µ, τ)P (vd))] + C

= Eq[log

M∏
m=1

N∏
i=1

K∏
k=1

N (xi,d|µm,k,d, τ−1
m,k,d)

[[vd=m]][[zm,i=k]]]

+ Eq[log
1

M
] + C

= Eq[log

N∏
i=1

K∏
k=1

N (xi,d|µy,k,d, τ−1
y,k,d)

[[zy,i=k]]] + C

=

N∑
i=1

K∑
k=1

Eq[[zy,i = k]] · f(y, k, d, i) + C

Here, we used the definition

f(m, k, d, i) := Eq [N (xi,d|µm,k,d, τ−1
m,k,d)]

=Eq [log

√
τy,k,d

2π
e
−(xi,d−µy,k,d)

2τy,k,d
2 ]

=
1

2
Eq [log

τy,k,d

2π
] +

1

2
Eq [−(xi,d − µy,k,d)2τy,k,d]

=
1

2
· (Eq [log τy,k,d]− x2

i,d · Eq [τy,k,d] + 2 · xi,d · Eq [µy,k,d · τy,k,d]

− Eq [µ2
y,k,d · τy,k,d]− Eq [log 2π])

Thus, q1 is a categorical distribution and the optimal hy-
perparameters for q1(vd) are given by

φd,m ∝ exp
∑N
i=1

∑K
k=1 Eq [[zm,i=k]]·f(m,k,d,i) (11)

where
∑
m φd,m = 1.

Updating the cluster indicator. The same principle
can be applied for the cluster indicator variable. We obtain:

log q∗2(zm,a = y)

= Eq [log (P (xa,∗|V, Z, µ, τ)P (Z|π,C,W ))] + C

= Eq [log
D∏
d=1

K∏
k=1

N (xa,d|µm,k,d, τ−1
m,k,d)[[vd=m]][[zm,a=k]]]+

Eq [log
K∏
k=1

N∏
i=1

π
[[zm,i=k]]

m,k

N∏
i=1

N∏
j>i

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]]

=
D∑
d=1

Eq [[vd = m]]Eq [logN (xa,d|µm,y,d, τ−1
m,y,d)] + Eq [log πm,y ]

+

N∑
i=1

N∑
j>i

wi,j Eq [[zm,i = y]]Eq [[zm,j = y]]Eq [[ci,j = m]] + C

=
D∑
d=1

Eq [[vd = m]] · f(m, y, d, a)+

Eq [log πm,y ] +
N∑
j 6=a

wa,j Eq [[zm,j = y]]Eq [[ca,j = m]] + C

Here, we exploit the symmetry of wi,j and the definition of
f as given above. Note again, that we do not actually need
to sum over all j 6= a when using a sparse encoding of the

matrix W . It is sufficient to iterate over those j for which
a constraint with a is given. Similar as before, the optimal
hyperparameters for q2(zm,i) are given by

ψm,i,k ∝ exp
( D∑
d=1

Eq[[vd = m]] · f(m, k, d, i)

+ Eq[log πm,k] +

N∑
j 6=i

wi,j Eq[[zm,j = k]]Eq[[ci,j = m]]
)

(12)

with
∑
k ψm,i,k = 1.

Updating the mixing weights. The mixing weights are
continuous. Since we selected a conjugate prior in our model,
it follows:

log q∗4(~πm)

= Eq [log (P (πm)P (zm,∗|π,C,W ))] + C

= Eq [log

(
Γ(̊λK)

Γ(̊λ)K

K∏
k=1

πλ̊−1
m,k

)
] + Eq [log

( N∏
i=1

K∏
k=1

π
[[zm,i=k]]

m,k

N∏
i=1

·
N∏
j>i

K∏
k=1

ewi,j [[zm,i=k]][[zm,j=k]][[ci,j=m]]

)
] + C

=
K∑
k=1

(̊λ− 1)Eq [log πm,k] +
N∑
i=1

K∑
k=1

Eq [[zm,i = k]]Eq [log πm,k] + C

=
K∑
k=1

(
(̊λ− 1) +

N∑
i=1

Eq [[zm,i = k]]

)
· Eq [log πm,k] + C

As seen, the optimal distribution for q4 is a Dirichlet dis-
tribution, where the hyperparameters are given by

λ̃m[k] = λ̊+

N∑
i=1

Eq[[zm,i = k]] (13)

Updating the mixture components. Updating the mean

and precision of each mixture component follows the stan-
dard principle of variational inference in a conjugate setting.
Let um,k =

∑N
i=1 Eq[[zm,i = k]] be the unnormalized weight

of a cluster and x̄m,k,d = 1
um,k

∑N
i=1 xi,dEq[[zm,i = k]] its

weighted mean in dimension d (when considering the expec-
tation w.r.t. q). Using conjugacy, it follows that the optimal
hyperparameters of the distribution q5 are given by

µ̃m,k,d =
κ̊d µ̊d + um,k x̄m,k,d

κ̊d + um,k
κ̃m,k,d = κ̊d + um,k

α̃m,k,d = α̊d +
um,k

2
(14)

β̃m,k,d = β̊d +
1

2

N∑
i=1

(xi,d − x̄m,k,d)2 +
κ̊d um,k

κ̊d + um,k

(x̄m,k,d − µ̊d)2

2

3.3 Complexity and Summary
Inspecting the individual update equations, it becomes

apparent that each iteration of our algorithm runs in time
O(M · N · K · (D + W )), where W denotes the number of
constraints. Thus, we obtain a linear complexity in all im-
portant parameters.

Overall, our method efficiently computes an approxima-
tion of the posterior distribution p(Y |X,W ) which shows us
the multiple clustering structures, their relevant subspaces,
and the assignment of constraints to views.
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4. RELATED WORK
Our approach is related to four main paradigms in the

field of cluster analysis, as we will discuss in the following.
Table 1 shows on overview of the related works and their
corresponding properties.

Subspace clustering. For traditional full-space cluster-
ing, a large proportion of irrelevant attributes can cause an
obfuscation of the clustering structure. The underlying as-
sumption of subspace clustering (co-clustering/bi-clustering)
[24, 2, 26] is that the set of irrelevant attributes might differ
for each cluster. These locally irrelevant attributes hinder
a meaningful global dimensionality reduction [29] and make
traditional, full-space approaches futile. The consideration
of attribute subsets is highly related to our multi-view sce-
nario, since different views of the data are most likely at-
tributable to different characteristics. However, subspace
clustering does not realize a grouping of clusters to repre-
sent alternative views as required for multi-view clustering.

Multi-view clustering. The paradigm of multi-view or
alternative clustering can be categorized in three types [27]:
Approaches of the first category, e.g. [23, 4, 13, 14], operate
in the full-space and, therefore, suffer from similar problems
as traditional clustering. Furthermore, they usually aim at
finding just two alternative clusterings. The second cate-
gory’s representatives iteratively determine an alternative
clustering based on the previous one via space transforma-
tions such as PCA [11, 15] or distortion of the distance func-
tion [30]. They do not globally/simultaneously optimize the
whole set of all clusterings. Since previous clustering solu-
tions serve as guidance for the discovery of new clustering
structures, these approaches can partially be categorized as
semi-supervised. However, the constraints affect only the
solution of the single, next clustering and, thus, already de-
tected solutions cannot benefit from them. Additionally, dis-
tortions of the original space usually hinder an intuitive in-
terpretation of the clustering result. Contrarily, axis-parallel
projections of the data as used in our approach allow an easy
interpretation. The third category, which is mostly related
to our approach, represents methods that simultaneously re-
veal all clusterings by analyzing axis-parallel subspace pro-
jections [28, 22, 21]. These approaches do not incorporate
any user knowledge. With our SMVC approach, we want to
examine the usefulness of instance level constraints for the
process of simultaneous multi-view clustering.

Model-based clustering. This general paradigm assumes
the considered data to be sampled from a statistical model.
Several approaches for estimating the parameters of the un-
derlying probability distributions, e.g., to maximize the log-
likelihood of the data, were proposed including the EM or
variational inference [10]. Model-based clustering is very
flexible as the modeled distributions can be arbitrarily com-
plex. Traditionally, such approaches use a single mixture
distribution (which spans across all dimensions of the data
space). Even though each observation might be associated
with a membership degree (e.g. the likelihood of belonging
to a cluster), this principle does not capture the idea of gen-
erating objects through multiple components as required for
the multi-view scenario. To overcome this issue, a few mod-
els [17, 5, 19] try to represent such multi-component mem-
bership (i.e. overlapping clusters). Although, these models
lead to results where an object might take multiple roles
within a single view, they do not account for the principle
of multiple views. So far, MVGen [21] is the only approach
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Subspace clustering – X X – –
Multi-view clustering

↪→ iterative X – – ◦ fixed
↪→ simultaneous X X X – –

Semi-supervised clust. – X – X fixed
Our method X X X X learned

Table 1: Overview of related paradigms

assuming a statistical model where each data point is drawn
from multiple components each within a different view. It
has proven to successfully detect the multi-view clustering
structure on various data sets.

Semi-supervised clustering. As already argued, the de-
tection of multiple clustering solutions strongly depends on
the user’s preferences. Semi-supervised clustering [8] pro-
vides a possibility to accommodate these preferences as ad-
ditional information or domain knowledge into the cluster-
ing process. For traditional single view, full-space cluster-
ing (e.g. k-Means) a popular solution is to use instance level
constraints: the objective function is extended by penalizing
violated constraints [6] or one learns a distance metric that
best represents the constraints [9]. For model-based cluster-
ing few extensions for equivalence constraints exist. [31] in-
troduces a closed form EM based on the transitive closure
of must-link constraints and proposes a Markov network for
handling cannot-link constraints. Since it neither can incor-
porate both constraint types simultaneously nor cope with
conflicting constraints, [25, 7] propose to integrate negative
and positive pairwise constraints as priors into Gaussian
mixture models, which allows for modeling soft as well as
hard constraints. These approaches have shown to substan-
tially improve the clustering result in the single view case.
Since in the multi-view case we are uncertain which con-
straints refer to which view, these existing solutions cannot
easily be transferred.

Methods such as [1] use supervision (e.g. human interac-
tion) to enhance the clustering in a single given subspace.
In contrast, we exploit supervision to enhance the cluster-
ing result across all views simultaneously. Works such as [18]
combine subspace clustering with graph clustering. The un-
derlying graph might be regarded as a certain type of super-
vision. These methods do not focus on finding alternative
groupings in the attribute space.

Overall, none of the existing approaches is able to incorpo-
rate prior information for a multi-view clustering solution,
where constraints may refer to different clustering views.
Our new statistical model handles different clustering views
in different attribute subspaces and learns responsibilities of
views for the provided equivalence constraints.

5. EXPERIMENTAL ANALYSIS
Setup. We compare SMVC with representatives from all

three paradigms: multi-view clustering, subspace clustering,
and semi-supervised clustering. For multi-view clustering we
choose the four approaches Multi-View 1 and Multi-View
2 proposed in [11], the Alternative Clustering method pro-
posed in [30], and our MVGen [21] approach. These ap-
proaches best reflect the demands for multi-view clustering
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Fig. 3: Quality for a varying number of constraints
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Fig. 4: Quality for a varying number of views

as discussed in Sec. 4. As subspace clustering approaches we
choose the partitioning approach Proclus and StatPC, which
allows for overlapping clusters. Furthermore, we compare
against the two semi-supervised approaches PCKMeans [6]
and MPCKMeans [9], both using instance level constraints.

For case studies on real world data we use the CMU-
Faces, Iris, and Wine data (all from the UCI repository [3]),
and drawn stick figures. Synthetic data containing multiple
views is generated based on our generative model. The de-
fault data set contains 2 disjoint views, each with 4 clusters,
20 dimensions, and 5000 objects.

Each method is provided with the number mmax of views
and the number kmax of clusters per view. If the algorithm
does not allow for setting these parameters, we choose the
default parameter setting.

Runtime is measured on 4GHz AMD FX-8350 CPU with
16 GB main memory. Quality is assessed based on the E4SC
measure [20], which is a symmetric and subspace aware vari-
ant of the popular F1 measure. Since most of the competing
approaches do not determine axis parallel subspaces, we re-
frain from evaluating the subspaces and just concentrate on
the object groupings (for clarity we rename the measure to
’E4FC’). For all quality experiments, we average the results
over ten executions.

5.1 Evaluation on Synthetic Data
Varying number of constraints. We start our eval-

uation by examining the influence of a varying number of
constraints in Figure 3. Here, we tested three different vari-
ants of the semi-supervised clustering approaches: We either
used only must-link constraints (SMVC-ML), only cannot-
link constraints (SMVC-CL), or a combination of 50% from
both (SMVC-Comb). Note that in this experiment, we ran-
domly generated constraints based on the ground truth clus-
ters known for synthetic data. These constraints might not
help to improve the clustering and, thus, represent only very
weak supervision. In practice, the user might provide better
constraints, e.g. via the principles of active learning [6].

Figure 3 shows the results for an increasing number of
constraints: Here, we generated a challenging dataset with a
large variance to study the benefit of semi-supervision. Most
approaches fail to identify a meaningful clustering structure
for this difficult clustering scenario. SMVC is not only the
approach showing the best clustering results without the
help of prior knowledge, it is also the only approach able to

improve its clustering based on additional constraints. For
the two other semi-supervised approaches PCKMeans and
MPCKMeans, we even observe a decreasing clustering qual-
ity with increasing amount of prior knowledge! This indi-
cates, that they cannot deal with the potentially disagreeing
constraints of the two views.

We furthermore can see the varying influence of the differ-
ent constraints (100% must-link constraints, 100% cannot-
link constraints, or 50%must-link + 50% cannot-link). The
higher the proportion of must-link constraints, the higher is
the influence. The reason is that cannot-link constraints a
priori have a higher possibility to be fulfilled than must-link
constraints (for m views, each with k clusters, the probabil-
ity to fulfill a cannot-link constraint is m ·

(
k
2

)
, whereas for

must-link constraints it is m · k). Therefore, we will focus
on must-link constraints in the following experiments.

Another interesting observation, also stated in [16], is that
more constraints do not necessarily result in a better quality.
They can even decrease the clustering quality. In Figure
3 we can observe this slightly for cannot-link constraints
(SMVC-CL); other experiments showed similar effects for
must-link constraints. We kindly refer to [16] for a discussion
about these effects. Unfortunately the principles discussed
in [16] for wisely choosing the set of constraints are not easily
transferable to our scenario.

Varying number of views. In the next experiment, we
study the potential of using SMVC as an unsupervised tech-
nique in a multi-view setting. In Figure 4, we vary the
number of hidden views in the data. The dimensionality
of each view is 5, i.e. with increasing number of views, the
data’s overall dimensionality increases as well. As depicted,
SMVC and MVGen are the only approaches able to detect
the clustering structure in the case of a large number of
views. Their clustering quality is very high and proves to
be robust against a varying number of views. The compet-
ing methods behave differently: while for single-view data
the quality is relatively high, their quality heavily decreases
with an increasing number of views.

Scalability. Even though the focus for SMVC lies on its
clustering quality, we briefly analyze its efficiency. As al-
ready discussed in Section 3, SMVC scales linearly in the
number of objects (Figure 5), linearly in the number of
dimensions (Figure 6), and linearly in the number of con-
straints (Figure 7). Please note the logarithmic scaling of
both axes in all three plots. For a varying database size
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Fig. 5: Runtime vs. database size
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Fig. 6: Runtime vs. dimensionality
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Fig. 8: Quality on iris data
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Fig. 9: Quality on wine data

(Figure 5), all algorithms show an increasing runtime. The
approaches that represent adaptations of the simple and
efficient KMeans algorithm (which also includes Proclus)
clearly show the lowest runtimes. The runtime of SMVC is
comparable to the other algorithms analyzing subspace pro-
jections (MVGen, StatPC) and even manages to outperform
them thanks to the efficient variational inference techniques.

The benefit of SMVC becomes apparent for a high data
dimensionality (Figure 6). Due to the exponential num-
ber of subspaces, most subspace clustering algorithms (e.g.
StatPC) suffer from a tremendously increasing runtime for
an increasing number of dimensions. Also MVGen cannot
compete with our SMVC due to the complex model selec-
tion process. Contrarily, for SMVC, we observe a moderate
increase in runtime. This enables us to apply SMVC also on
high-dimensional data, as we will see in the experiments on
real world data.

Figure 7 shows the runtime results of the semi-supervised
methods for a varying number of constraints. Here, it is hard
to verify the linear runtime of SMVC because constraints
support the clustering procedure and, thus, help decreas-
ing the number of iterations. For a small number of con-
straints, the two KMeans-based approaches can maintain a
low runtime. For an increasing number of constraints, how-
ever, their runtime eventually even meets the one of SMVC.
Of course, such a high number of constraints might not be
realistic for most applications.

5.2 Evaluation on Real World Data
For evaluation on real world data we use different evalua-

tion principles, all focusing on the multi-view aspect.
Case study A. In Figures 8 and 9, we extend the data

sets Iris and Wine to data containing multiple views: for

this, we randomly concatenate the attribute values of differ-
ent objects up to five times to a higher dimensional space.
The original data sets have dimensionalities of 4 and 13, re-
spectively, while the extension to multi-view data leads to
dimensionalities up to 5·4 = 20 (Iris) and 5·13 = 65 (Wine).

For just one view, the quality of some competing ap-
proaches is similar to the one of SMVC. However, for an in-
creasing number of views the clustering quality for almost all
competing approaches decreases. Only MVGen and SMVC
are nearly not affected by an increasing number of views but
detect the different object groupings even for multiple views.

To study the effects of semi-supervision, we additionally
provided for both datasets 100 and 500 constraints. For just
a single view SMVC is able to improve the cluster quality.
On iris, for example, the quality increases from 0.94 over
0.97 to 1.0. The full potential of our approach, however,
can bee seen in the case of multiple views: While it is still
able to benefit from prior knowledge, the clustering quality
of the competing approaches dramatically decreases.

It is noticeable, that with increasing number of views, the
constraints seem to have less positive effect on the result of
SMVC. This phenomenon can, however, easily be explained
by the fact that the constraints have to be distributed among
the views, i.e. the proportion of prior knowledge decreases
with increasing number of views.

Summarizing, the results for real world data are consistent
with the observations made for the synthetic data.

Case study B. For our next study, we created a data
set consisting of 900 20x20 images of ’dancing stick fig-
ures’. This dataset allows an easy visual interpretation of
the clustering results. We drew 9 basic stick figures (Fig-
ure 10(a)) and built 900 samples by randomly introducing
noise. Since the subspace clustering and single-view clus-
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(a) Samples of the stick figures data

(b) SMVC result with 0 constraints (c) SMVC with 100 constraints

Algorithm E4FC

SMVC 0 constraints 0.700
SMVC 100 constraints 1

MVGen 0.760
Alt. Clus. 0.585

Multi-View 1 0.735
Multi-View 2 0.781

(d) Multi-view algorithm results

Fig. 10: Evaluation of multi-view clustering algorithms on the stick figures dataset

(a) SMVC result with 0 constraints (b) SMVC with 100 constraints

Algorithm E4FC

SMVC 0 constraints 0.691
SMVC 100 constraints 0.780

MVGen 0.720
Alt. Clus. 0.667

Multi-View 1 0.623
Multi-View 2 0.666

(c) Multi-view algorithm results

Fig. 11: Evaluation of multi-view clustering algorithms on the faces data set

tering approaches have proven to be not applicable for the
multi-view scenario, we applied only the multi-view cluster-
ing approaches in this experiment. We provide this data set
on our website1

Although this data does not seem to be very complex,
all approaches are challenged in identifying two meaningful
views as shown by their clustering results (cf. Figure 10(d)).
Even the initial result of our SMVC approach is not convinc-
ing as it produces the clustering depicted in Figure 10(b),
which is very similar to those of the other approaches. The
illustrated images correspond to the means of each detected
cluster. In contrast, if we provide SMVC with 100 must-link
constraints, it is able to perfectly identify the two clustering
views as depicted in Figure 10(c). These two views differ-
entiate between the stick figures’ top position (view 1) and
their leg position (view 2). Please note that we only choose
100 random constraints out of the 269,100 (= 2 · (3 ·

(
300
2

)
))

possible constraints. By exploiting this small amount of
prior knowledge, our SMVC approach clearly outperforms
all competing methods.

Case study C. To show that the findings of the stick fig-
ures data also apply to more complex scenarios, we next ana-
lyze the clustering result of all multi-view approaches on the
CMUFace data. This data is interesting for multi-view clus-
tering since it consists of images taken from persons showing
varying characteristics such as their facial expressions (neu-
tral, happy, sad, angry), head positions (left, right, straight,
up), and eye states (open, sunglasses). As also done in [12],
we randomly select 3 persons with all their images and ap-
plied PCA retaining at least 90% of the data’s variance as
a pre-processing.

1http://www.dme.rwth-aachen.de/SMVC

The result of SMVC without prior knowledge for two
views each with three clusters is illustrated in Figure 11(a).
The images correspond again to the clusters’ means. By
visual inspection, we can easily identify that the first view
partitions the images based on the 3 different persons. The
second view, in contrast, cannot be explained easily.

If we provide 100 constraints in order to find one view for
partitioning w.r.t. the persons and another view to partition
w.r.t. the head position (in total 2,592 (= 3 ·

(
32
2

)
+ 4 ·

(
24
2

)
)

possible constraints), SMVC gets the result depicted in Fig-
ure 11(b). Here we can easily identify the different head
positions straight, side (left and right), and up (note that
we have four head positions but only search for 3 clusters).
Using the original labels provided by the dataset as ground
truth, i.e. the groupings based on the different persons and
the grouping based on different head positions, we obtain the
clustering results of Figure 11(c). We can see, that the un-
supervised multi-view approaches all yield similar clustering
qualities. They were only able to identify the first view. For
SMVC, we can observe a noticeable quality improvement if
we integrate prior knowledge into the clustering process.

Overall, our experiments show that SMVC is able to de-
tect the multi-view clustering structure on a variety of data
sets. It successfully solves the challenge to learn the as-
signment of user constraints to views such that it is able to
improve its clustering results based on this prior knowledge.

6. CONCLUSION
We have presented the semi-supervised clustering method

SMVC that detects multiple clustering solutions in subspace
projections and that exploits prior knowledge by incorpo-
rating instance level constraints. Our method is based on a
sound Bayesian framework which models the data via multi-
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ple mixture distributions. The model uses the instance level
constraints to guide the clustering of objects, and it auto-
matically determines which views are responsible for which
constraints. For learning the clustering, we use the prin-
ciple of variational inference. Our experimental study has
shown the high potential of SMVC to detect multiple clus-
tering views and its capability to use the prior knowledge
for improving the clustering results.
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APPENDIX
For the variational distributions, the following holds:

Eq [[zm,i = k]] = ψm,i,k Eq [[ci,j = m]] = ξi,j,m

Eq [[vd = m]] = φd,m Eq [πm,k] =
λ̃m[k]∑K
i=1 λ̃m[i]

Eq [log πm,k] = ψ(λ̃m[k])− ψ(

K∑
i=1

λ̃m[i])

Eq [µm,k,d] = µ̃m,k,d Eq [µm,k,d · τm,k,d] = µ̃m,k,d ·
α̃

β̃

Eq [τm,k,d] =
α̃

β̃
Eq [log τm,k,d] = ψ(α̃)− log(β̃)

Eq [µ2
m,k,d · τm,k,d] =

1

κ̃m,k,d
+ µ̃2

m,k,d ·
α̃

β̃
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