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ABSTRACT
This paper targets the problem of computing meaningful
clusterings from uncertain data sets. Existing methods for
clustering uncertain data compute a single clustering with-
out any indication of its quality and reliability; thus, deci-
sions based on their results are questionable. In this paper,
we describe a framework, based on possible-worlds seman-
tics; when applied on an uncertain dataset, it computes a
set of representative clusterings, each of which has a prob-
abilistic guarantee not to exceed some maximum distance
to the ground truth clustering, i.e., the clustering of the ac-
tual (but unknown) data. Our framework can be combined
with any existing clustering algorithm and it is the first to
provide quality guarantees about its result. In addition, our
experimental evaluation shows that our representative clus-
terings have a much smaller deviation from the ground truth
clustering than existing approaches, thus reducing the effect
of uncertainty.

1. INTRODUCTION
In a variety of application domains, our ability to unearth

a wealth of new knowledge from a data set is impaired by
unreliable, erroneous, obsolete, imprecise, and noisy data.
Reasons and sources of such uncertainty are many. Sensing
devices are inherently imprecise (e.g., due to signal noise,
instrumental errors and transmission errors [15]). Moving
objects can only be monitored sporadically, such that at
a certain time the position of an object is not explicitly
known [50]. Integration of data from heterogeneous sources
may incur uncertainty, for example due to uncertain schema
matchings between different data sources [3]. Uncertainty
may also be injected to the data on purpose, for privacy
preservation reasons [19].

Ignoring data uncertainty in a mining task (e.g., replacing
any uncertain values by their expectations) may compromise
the quality of the result. On the other hand, by considering
the uncertainty directly in the mining process, we can assess
the reliability of the result, giving the user a notion about its
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quality and giving an intuition of how likely it is identical, or
at least similar, to the result of the mining task when applied
to the true (but unknown) data values [48]. For instance, in
association rule mining on uncertain data, confidence values
of the probability that a given itemset is frequent are derived
[5]. This notion of confidence allows the user to make a
more educated judgement of the data, thus enhancing the
underlying decision-making process.

This paper targets the problem of deriving a meaningful
clustering from an uncertain dataset. For this purpose, our
aim is not to develop a new clustering algorithm, but rather
to allow clustering algorithms designed for certain data to
return meaningful, reliable and correct results in the pres-
ence of uncertainty. To illustrate the challenge that arises
by considering uncertain data, consider the work-flow de-
picted in Figure 1. Figure 1(a) shows a dataset containing
six two-dimensional points, which correspond to the posi-
tions of moving objects at some point of time t. The shaded
region in Figure 1(a) corresponds to a lake, which none of the
moving objects may cross. To cluster the locations of these
objects, a domain expert may opt to choose a clustering al-
gorithm C from a suite of available options (e.g., a density-
based algorithm [34], such as DBSCAN [17] or HDBSCAN
[8], or one of the numerous variants from the k-means family
[27]). Assuming that the true locations of the objects are
known, C can compute the clustering shown in Figure 1(b).
However, the true locations of the objects could be unknown
and we may only have access to the last reported observa-
tions of these objects (e.g., by their GPS devices), shown as
triangles in Figure 1(c). In such a scenario, an uncertainty
data model is typically used to capture the distribution of
the possible object locations. For instance, past observations
as well as empirically learned moving patterns of an object
can be used to obtain a probability function for the position
at a time after the object’s last observation [16]. Examples
of probability density functions (PDFs) around the observa-
tions are shown in the Figure.

Object A, for instance, is likely to be moving around the
lake (since movement inside the lake is impossible), while the
movements of other objects are less constrained. If we follow
a simplistic approach for clustering the data, by clustering
the expected values of the objects according to the uncer-
tain data model, then we may end up in deriving a cluster-
ing as shown in Figure 1(c) which arbitrarily deviates from
the clustering of the actual (but unknown) locations of the
objects shown in Figure 1(b). Therefore, approaches that
aggregate the information given by the uncertain model to
expected values and then apply clustering may yield results
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Figure 1: Uncertain Clustering Workflow.

of poor quality, due to information loss and potentially due
to invalid input to the clustering process (e.g., the expected
location of A after aggregating all its possible positions in
Figure 1(d) is in the lake).

In this paper, our goal is neither the definition of new un-
certain data models suited for clustering, nor the proposal
of new clustering algorithms tailored for uncertain data. In-
stead, we aim at making possible the application of any ex-
isting clustering algorithm C on an uncertain database DB,
based on any given uncertain data model for DB, assuming
that C would be appropriate for DB, if DB was certain. For
example, we take that the clustering of Figure 1(b) by algo-
rithm C is the ideal one, but infeasible to derive, given that
we do not know the actual locations of the objects. The
objective of our framework is to use the data of Figure 1(c)
and algorithm C to derive a clustering that has a probabilis-
tic guarantee (according to the uncertain data model used)
to be very similar to that of Figure 1(b).

Our approach performs sampling and then represents the
original uncertain database DB as a set of sample determin-
istic databases. We then run the clustering algorithm C on
each of the sampled databases, to derive a set of possible
clusterings PC. Our main contribution is to combine the
resulting set PC into a concise set RPC of representative
clusterings. Furthermore, using all clusterings in PC, we
estimate a probability φ of each representative clustering
in RPC, defined as the probability that this representative
clustering does not exceed some maximum distance τ to the
true clustering. Since φ has to be estimated from sampled
databases, we obtain a lower bound of φ that is significant at
a user specified level. We provide a methodology to derive
an RPC for a given value of τ ; and therefore impose quality
constraints on the uncertain clustering results, unlike previ-
ous approaches on uncertain data clustering [41, 21, 23, 38,
32, 22, 31, 36, 37] which cannot provide quality guarantees.

In summary, our contributions are as follows.
• We propose a sampling-based solution to cluster uncertain

data. This solution is generally applicable to all data do-
mains and with any suitable uncertain data model, allow-
ing the application of any existing clustering algorithm,
originally designed for certain data. As opposed to previ-
ous work on uncertain clustering, our approach conforms
to the possible worlds semantics and also considers any
dependencies between objects.
• We present a methodology via which we can assess the

quality of a clustering of a possible world compared to
the true clustering of the data.
• We show how the confidence of clustering results on possi-

ble worlds can be improved by computing a set of multiple
representative clusterings, each having a significant likeli-
hood to resemble the true, unknown clustering.

The rest of the paper is organized as follows. Section 2
surveys existing methods for clustering uncertain data. Sec-
tion 3 gives general definitions used in the remainder of this
work. Section 4 shows how we can estimate the probability
of the clustering result on a possible world to be the clus-
tering of the true data values. Section 5 shows how, from
a set of possible clusterings, we can find representative clus-
terings that are probabilistically guaranteed to be similar
to the real clustering. Section 6 evaluates our framework
experimentally. Section 7 concludes this work.

2. RELATED WORK
Clustering is undoubtedly one of the most important tools

for unsupervised classification. A large number of cluster-
ing algorithms has been developed, as reflected in numer-
ous surveys [28, 34, 45]. Although clustering has proved its
applicability in many different domains and scenarios, the
problem of clustering uncertain data has only gained little
attention so far. Uncertain data clustering approaches ei-
ther use expected distances between objects or assume that
the distances between different pairs of objects are indepen-
dent. In this work we review these methods and discuss
their drawbacks.
Clustering Using Expected Distances. The main draw-
back of approaches based on expected distances [41, 21, 23] is
the information loss incurred by describing a complex prob-
ability distance function by a single scalar. Considering ad-
ditional moments of a probability distance function, such
as deviation [23] works well in specific applications where
objects have little uncertainty. Still, the quality of such ap-
proaches cannot be assessed, rendering them inappropriate
for applications where decisions are to be made based on
the computed clustering. As an example consider the set-
ting of Figure 2, having two certain objects A and B, and
an uncertain object U having two possible values U1 and U2.
Now, assume a deterministic clustering algorithm C which
clusters two objects only if there distance does not exceed
dist(A,U1) (= dist(B,U2)). Clearly, in the example of Fig-
ure 2, there are two possible clusterings, either the clustering
having cluster {A,U} and outlier B, or the clustering having
cluster {U,B} and outlier A. The probabilities of these pos-
sible clusterings equal the probabilities 0 < P (U1) < 1 and
P (U2) = 1−P (U1) of alternatives U1 and U2 of U . However,
using the expected distance between A and U given by

E(dist(A,U)) = P (U1) · dist(A,U1) + P (U2) · dist(A,U2),
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objects A and U can never be located in the same cluster,
since it holds that E(dist(A,U)) > dist(A,U1). The same
holds for B and U . Thus, for the example of Figure 2, an
approach using expected distance yields a clustering, which
is strictly impossible. Summarizing, the use of expected
distances is a heuristic to obtain a single clustering that
represents the whole realm of possible clusterings, however,
the derived result is not necessarily similar to any of them.
Most clustering algorithms using expected distances focus
on improving efficiency rather than addressing this draw-
back [38, 32, 41]. Gullo et al. [22] propose a method, called
UK-medoids, for which they utilize the expected distance
between two uncertain objects. Jiang et al. [31] propose to
use the KL divergence between two uncertain objects which
is often used to reflect similarity between two probabilis-
tic density functions. They investigate the applicability to
both K-means [40] and DBSCAN [17]. Since all these ap-
proaches are based on expected distances, their results are
not in accordance with the possible worlds semantics and do
not carry any quality guarantee.
Clustering Assuming Independent Distances. Kriegel
and Pfeifle [36, 37] assume that pairwise distances between
uncertain objects are mutually independent. This assump-
tion may yield wrong results; in addition, the results are
biased toward overestimating the size of clusters. In par-
ticular, they rely on the following assumption on distances
between uncertain objects:

P (A↔ε B ∧B ↔ε C) = P (A↔ε B) · P (B ↔ε C).

P (X ↔ε Y ) denotes the probability that the distance be-
tween the two uncertain objects X and Y is smaller than
a threshold ε. However this assumption does not hold in
the general case. For example, in Figure 2, the two random
events A ↔ε U and U ↔ε B are negatively correlated: for
the case where dist(A,U1) < ε < dist(A,U2), it even holds
that both random events are mutually exclusive. That is,
if U is close to A then it cannot be close to B and vice
versa. Relaxing this assumption of independent distances
yields a computationally hard problem, as a distance value
may depend on a large number of uncertain objects.
Discussion. To our knowledge, there is no previous work
on uncertain data clustering that conforms to the possible
worlds semantics. A likely reason for this that general induc-
tion on uncertain data is a #P-hard problem [13]. In order
to avoid the exponential run-time cost of considering all pos-
sible worlds, a common approach to handle uncertain data,
in general, is sampling [30]. Given a sample of instances
of the database (each corresponding to a possible world), a
query or data mining task can be performed on each of them,
and common results can be returned, associated with confi-
dences of these results to be equal (or sufficiently similar) to
the result on the true (but unknown) data. This is exactly
the approach that we are following in this paper. We provide
a small number of representative clusterings that have high
confidence values to be similar to the true (but unknown)
clustering.

3. DEFINITIONS
This section gives definitions for uncertain databases and

clustering, which generalize all previous models and defi-
nitions. While existing works [37, 36, 38, 9, 23] generally
assume that objects are points in a multi-dimensional fea-
ture space, we allow objects to have any abstract type O,
where O is an object space, such as a multi-dimensional fea-
ture space, the set of all strings, the set of all images, etc.
Each uncertain object is then represented by a set of val-
ues in O, each associated with a non-zero probability. This
probability distribution can be a continuous probability den-
sity function (PDF) or a discrete probability mass function
(PMF). To model the uncertainty of an object in a general
way that captures both continuous [36, 42] and discrete [49,
42] models, we use the following general definition.

Definition 1 (Multivariate Uncertain Object).
A multivariate uncertain object o is defined by two functions
pdfo : O → IR+

0 and pmfo : O ∪⊥ → [0, 1] such that∫
O

pdfo(x)dx+
∑
O∪⊥

pmfo(x) = 1

Value ⊥ is used to model existentially uncertainty, i.e., with
a probability of pmfo(⊥) object o does not exist at all in
the database. By setting either pdfo(x) or pmfo(x) to the
zero function, which maps any value to zero, the above def-
inition can simulate discrete and continuous models, while
also allowing mixed models.1

Consequently, if there is at least one uncertain object in
a database, the state of the database becomes a random
variable. To model the semantics of a database being a
random variable, the concept of possible worlds is commonly
used [43, 46, 54, 39]: an uncertain database is defined by a
(potentially infinite) set of possible database states, called
possible worlds. Each possible world is associated with its
corresponding probability to be the true database state.

Definition 2 (Uncertain Database).
An uncertain database DB is defined by a set of uncertain
objects DB = {o1, ..., o|DB|} spanning a (potentially infinite)
set of possible worlds W and a constructive generation rule
G to draw possible worlds from W in an unbiased way. The
probability to draw a world w equals the probability P (w) of
this world being the true (but unknown) world oracle(DB).

Wherever independence is assumed between objects [25, 6,
10], the generation rule G is implicitly given by drawing
samples from each object individually. In scenarios with
interdependencies between uncertain objects (for example,
expressed by a Bayesian network [44], or by lineage of rela-
tions [2]), a possible world can be drawn by using the factor-
ized representation of the Bayesian network, and iteratively
drawing objects conditioned to previously drawn objects.2

To the best of our knowledge, our assumption of having
a generation rule G is met in all state-of-the-art uncertain
database management systems. The task of clustering can
be defined as follows.

1Note that this definition avoids the (wrong) claim that a
discrete distribution can be seen as a special case of a contin-
uous distribution without any form of continuity correction.
2The factorized representation guarantees that at each it-
eration there must be one random variable for which the
required conditions are met.
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Definition 3 (Clustering).
A clustering C(S) of a set S = {a1, ..., aN} of determinis-
tic objects is a partitioning of S into pairwise disjoint sub-
sets C1, ..., Ck ⊆ S, such that

⋃
1≤i≤k Ci = S. Each subset

Ci, 1 ≤ i ≤ k is called a cluster.

This abstract definition of clustering intentionally omits any
objective rules toward a “good clustering”, such as the re-
quirement that similar objects should be in the same clus-
ter. The reason is that our approach should be used in
conjunction with any clustering algorithm C, independently
to the algorithm’s objective. Due to the theoretical result
that general query processing (or mining) on uncertain data
is #P -complete [13], coupled with the fact that an uncer-
tain database may yield a number of possible clusterings
exponential in the size of the database, we now explore the
possibility of using a Monte-Carlo approach to perform clus-
tering over uncertain data.

4. CLUSTERING SAMPLED WORLDS
Let DB be an uncertain database and let C be a clustering

algorithm. Let X = {X1, ..., X|X|} be a multiset3 of possi-
ble worlds of DB generated from DB using generation rule G
and let C(X) denote the multiset of clusterings obtained by
clustering each sample world in X. We denote the set of dis-
tinct clusterings in C(X) as the set PC of possible clusterings
obtained from sample X. For any clustering C in PC, the

support C.supp of C is defined as
∑|X|
i=1 I(C(Xi) = C), where

I(·) is an indicator function that returns 1 if its operand is
true and 0, otherwise. Simply speaking, C.supp is the num-
ber of occurrences of clustering C in the multiset C(X).

Lemma 1 (Approximation of the True Clustering).

For any possible clustering C ∈ PC, the probability P̂ (C) =
C.supp
|X| is an unbiased estimator the probability P (C) that C

is the true clustering C(oracle(DB)) of DB; i.e., E(P̂ (C)) =
P (C).

Proof.

E(P̂ (C)) = E

(
C.supp

|X|

)
= E

(∑
Xi∈X I(Xi = C)

|X|

)
,

Since the expectation of a non-random variable is the iden-
tity, we obtain

E(P̂ (C)) =
E
(∑

Xi∈X I(Xi = C)
)

|X| ,

Since all sample databases Xi are drawn independently, and
since the expectation of a sum of independent random vari-
ables is the sum of their expectations, we get:

E(P̂ (C)) =

∑
Xi∈X E(I(Xi = C))

|X|
Due to the assumption that each sample Xi is drawn unbi-
ased from the distribution of all worlds of DB, which implies
that E(I(Xi = C)) = P (Xi), we obtain∑

Xi∈X P (Xi)

|X| = P (Xi)

3Due to independent sampling, the same sample may be
drawn multiple times.

Such a straightforward sampling approach works well for
small databases, including the running example depicted in
Figure 2, where the number of possible clusterings C is rea-
sonably small. In a large database setting, where the proba-
bility of finding exactly the same clustering on two samples
in X approaches zero, this approach becomes inapplicable.
The reason is twofold. First, the probabilities P (C) of a
clustering C being the true clustering of DB, become very
small. Due to independent samplings Xi, 1 ≤ i ≤ |X|, the
number of samples where C(Xi) = C follows a binomial
B(π = P (C), n = |X|) distribution. Estimating the proba-
bility parameter π of a binomial distribution given a sample,
requires a very large sample size n if π is small. A rule of
thumb is that n ·π ≥ 5 [11, 52]. Second, the large number of
possible clusterings combined with small probabilities makes
the exact results meaningless for a user. A huge set of possi-
ble clusterings, potentially exponentially large in the number
of uncertain objects, where many may be very similar, yet
different between each other, is of little use.

5. REPRESENTATIVE CLUSTERINGS
Our goal is to reduce the (potentially huge) set of cluster-

ings produced by the Monte-Carlo approach to a small set of
possible clusterings, which are diverse and at the same time
guaranteed to be similar to the clustering on the real (but
unknown) database. In Section 5.1, we discuss a general
concept for determining one representative from a set, the
medoid approach [47]. In Section 5.2, we generalize this ap-
proach to select a set of multiple representative clusterings
and show how we can estimate how well they can approxi-
mate the real clustering.

It is a common trend in the clustering community to
provide several, different (“alternative” [20, 18, 14]) results
rather than just one. On the other hand, it is also con-
sensus to avoid an abundance of redundant results [35, 55].
The eminent question is then, how many solutions to provide
and how representative these solutions are. For the problem
of clustering uncertain data, we therefore present, in Sec-
tion 5.3, a methodology for selecting a set of representative
clusterings of guaranteed quality.

5.1 Sample Medoid
Let PC denote the set of possible clusterings derived from

sampled worlds X = {X1, ..., Xn}. Let D be the distance
|PC| × |PC| matrix such that

Di,j := dist(PCi, PCj).

Here, dist denotes a distance measure between two cluster-
ings, such as, e.g., the Adjusted Rand Index (ARI) [26].
Similarity usually takes a value between 0 (no agreement)
and 1 (identical partitionings) and can be converted to a
distance after subtraction from 1.

The median of PC can be defined as

Median(PC) = MedianXi∈X(C(Xi)) =

arg min
i

n∑
j=1

dist(C(Xi), C(Xj)) =

arg min
i

n∑
j=1

Di,j · PCi.supp

Arguably, the median clustering can be the most represen-
tative clustering out of all sampled clusterings C(Xi). How-
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ever, we do not have confidence information for Median(PC),
i.e., the deviation of the true clustering C(oracle(DB)) from
Median(PC) is impossible to assess.

It is important to note that Median(PC), albeit derived
using expected distances between clusterings, does not suf-
fer from the same drawbacks as existing works on cluster-
ing uncertain data using expected object positions and ex-
pected distances (cf. Section 2). The main difference is that
Median(PC) is a clustering derived from a possible database
instance that was generated consistently to the uncertainty
data model, i.e., considering the value distributions and
stochastic dependencies between objects.

5.2 Multiple Representatives
The possible clusterings of an uncertain database may be

very heterogeneous; depending on object attribute values
of a world, an individual cluster may become noise, may
shatter into multiple clusters, or may be absorbed by an-
other cluster in some worlds, but not in others. Such large
changes in the overall clustering may be caused by minimal
changes in the underlying dataset: the density of a criti-
cal region may drop below the threshold of a density-based
clustering algorithm; a partition-based cluster representa-
tive may change slightly, yielding a new data partitioning
and leading into a spiral of changes. Keeping this poten-
tial heterogeneity of possible clusterings in mind, a single
sample medoid clustering could be insufficient: it may be an
unlikely pivot between a number of likely clusterings and it
may not even be similar to the most likely possible worlds.
Instead, a user may be more interested in a smaller set of
clusterings, all having a significantly high probability to be
similar (but not necessarily equal) to the true clustering, i.e.,
being representative. We define a representative clustering
as follows:

Definition 4 (Representative Clustering).
Let DB be an uncertain database and let C be a clustering
algorithm. We call a clustering C(Xi) a τ -φ-representative
clustering, if the probability

P (Xi, τ) := P (dist(C(Xi), C(oracle(DB))) ≤ τ)

that the true clustering C(oracle(DB)) of DB has a distance
dist(C(Xi), C(oracle(DB))) of at most τ is at least φ.

Lemma 2 (Approximation of Representatives).
Let X = {X1, ..., X|X|} be a set of possible worlds of DB
generated from DB using generation rule G and let dist be
a distance measure on clusterings. Let PC be the set of
clusterings obtained from X associated with their supports.
The probability

P̂ (Xi, τ) :=

∑|X|
j=1 I(dist(C(Xi), C(Xj)) ≤ τ)

|X|
is an unbiased estimator of the probability

P (Xi, τ) := P (dist(C(Xi), C(oracle(DB))) ≤ τ)

that cluster representative Xi has a distance of at most τ to
the true clustering of DB.

Proof. Analogous to Lemma 1, by substituting the pred-
icate (dist(C(Xi), C(Xj)) ≤ τ) for (C = Xi).

Albeit unbiased, the probability P̂ (Xi, τ) cannot be used di-
rectly to assess the probability P (Xi, τ) of cluster Xi having

a distance of at most τ to the true clustering C(oracle(DB)).

Thus, Xi can not simply be returned as a τ -φ = P̂ (Xi, τ)-
representative according to Definition 4, because the estima-
tor P̂ (Xi, τ) may overestimate the true probability P (Xi, τ).
To return τ -φ representative clusters to the user, our aim is
to find a lower bound P̂ (Xi, τ, α) such that we can guar-

antee that P (Xi, τ) ≥ P̂ (Xi, τ, α) with a probability of α,
where α is a domain specific level of significance (typically,
α = 0.95).

To derive such a significant lower bound of P (Xi, τ) we
may exploit the fact that sampled possible worlds were drawn
independently. Therefore, the absolute number P̂ · |X| of
sampled worlds which are represented by Xi follows a bi-
nomial B(P (Xi, τ), |X|) distribution. To estimate the true

probability P (Xi, τ), given realization P̂ · |X|, we borrow
techniques from statistics to obtain a one sided 1 − α con-
fidence interval of the true probability P (Xi, τ). A simple
way of obtaining such confidence interval is by applying the
central limit theorem to approximate a binomial distribution
by a normal distribution.

Definition 5 (α-Confidence Probabilities).
Let DB be an uncertain database. For a set of drawn database
instances X, and for a possible clustering C(Xi), Xi ∈ X, a
distance threshold τ and a level of significance α, the proba-
bility

P̂ (Xi, τ, α) = P̂ (Xi, τ)− z ·

√
1

|X| P̂ (Xi, τ)
(

1− P̂ (Xi, τ)
)
,

is called α-confidence probability of τ -representative Xi, where
z is the 100 · (1 − α) percentile of the standard normal dis-
tribution.

The α-confidence probability P̂ (Xi, τ, α) can be used to re-
turn the clustering C(Xi) as a τ -φ-representative clustering
to the user, as it guarantees, that by a user specified level
of confidence α, the true probability P (Xi, τ) is guaranteed

to be larger than P̂ (Xi, τ, α). To compute P̂ (Xi, τ, α) as in
Definition 5 we argue that in our setting the central limit
theorem is applicable, since the sample size |X| should be
sufficiently large (≥ 30 as a rule of thumb [7]). Furthermore,
the probability P (Xi, τ) should not be extremely small, since
a cluster representative having an extremely small value of
P (Xi, τ) is meaningless and should not be returned to the
user in the first place. In the case where all cluster repre-
sentatives have an extremely small P (Xi, τ) value, the pa-
rameter τ should be increased to obtain meaningful repre-
sentatives. Yet, we note that more accurate approximations
can be obtained using Wilson Score Intervals [53] or using
exact binomial confidence intervals [11].

5.3 Selection of Representative Worlds
Using the techniques of Section 5.2 we can estimate, for

a given τ the probability of any drawn possible world to
be a τ -representative. In this section, we show how good
representatives having a high confidence and low τ can be
extracted automatically from a set of sampled worlds. Fur-
thermore, when more than a single representative world is
returned, a requirement is to minimize redundancy between
sets of worlds represented by each representative [12, 29,
55]. This requirement is important in order to avoid overly
similar clustering representatives. To solve this challenge,
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we propose a general approach to first derive a clustering of
the set of clusterings PC that have been obtained by apply-
ing the domain specific clustering algorithm C to sampled
possible worlds X. Then, a single representative clustering
R is chosen from each cluster of PC such that τ is min-
imized while the fraction of drawn possible clusterings is
maximized. Formally:

Definition 6 (Representative Worlds Clustering).
Let PC denote the set of possible clusterings derived from
sampled worlds X = {X1, ..., Xn}. Let D be a |X| × |X|
matrix such that

Di,j := dist (Xi, Xj) .

Let C′ be a metric clustering algorithm based on dist and let
C′(PC) denote the meta-clustering returned by applying C′
to the set PC of possible clusters. For each meta-cluster Y ∈
C′(PC), a Representative Worlds Clustering returns a triple

(R, τ, P̂ (R, τ, α)), where R ∈ Y is the clustering chosen to
represent Y , and R is an α-significant representative (cf.

Definition 5) with a probability φ of at least P̂ (R, τ, α).

In Definition 6, two parameters are undefined, the choice of
the clustering algorithm C′(PC) and a heuristic to obtain
a representative from each meta-cluster in C′(PC). For the
choice of clustering algorithm C′, any clustering algorithm
which is appropriate for general metric spaces could be used
[33, 28, 34]. For the problem of defining a representative
for each a meta-cluster Y , we propose the following two
heuristics. Our first heuristic requires all possible clusterings
in a meta-cluster Y ∈ C′(PC) to be represented.

Definition 7 (Complete Representative).
For a meta-cluster Y ∈ C′(PC), the complete representative
is the clustering

Rcomplete := arg min
R∈Y

(
max
R′∈R

(
dist(R,R′)

))
which has the minimum maximum distance

τ = max
R′∈R

(
dist(R,R′)

)
to all other clusterings in Y .

This representative Rcomplete can be returned as a τ -φ-repre-

sentative with confidence probability φ = P̂ (Rcomplete, τ, α)
using a user specified level of confidence α as described in
Section 5.2.

A drawback of the complete representative approach is
that the value of τ may grow arbitrarily large, being at least
half of the corresponding clusters diameter. A τ -representative
having an overly large τ value, such as an ARI-distance [26]
value greater than 0.2, may have no semantic meaning to
the user, as the space of clusterings represented by this τ -
representative grows too large to allow meaningful decision
making. Furthermore, a large value of τ yields overlapping
clusters. For instance, for a pair of complete representatives
Ri and Rj , i 6= j, where Ri is an τi-representative and Rj is
an τj representative, it may hold that for a single sampled
clustering Xk ∈ X that D(Xk, Ri) ≤ τi and D(Xk, Rj) ≤ τj .
This drawback of complete representatives can be particu-
larly bad, if the underlying clustering algorithm C allows
clusters to have a large diameter (e.g., C is k-means). In
contrast, complete representatives may yield good results in

Table 1: Datasets [4] and Parameters
Dataset Tuples Dim ε MinPts

abalone 4177 8 .08 5
ecoli 336 8 .12 4
glass 214 10 .3 4
iris 150 4 .4 4
letter 20000 16 .04 5
segmentation 2310 19 .3 4
wine 178 13 .6 4
yeast 1484 8 .08 5

settings where density-based clustering algorithms such as
DBSCAN are used.

For the general case, we propose a different approach,
where a maximum threshold for τ is provided. This pa-
rameter, which is specific to the chosen distance function
dist, should be chosen in a way that a user should treat two
clusterings, having a distance of no more than τ as similar.

Definition 8 (τmax-Clustering).
Given a τmax threshold, for a cluster C ∈ C′(PC) a τmax

representative is a τ -φ-representative, such that τ ≤ τmax

given by

Rτmax := arg max
R∈Y

∑
Ci∈Y

I (dist(R,Ci) ≤ τmax)

 · Ci.supp.
Again, this representative Rτmax can be returned as a τ -φ-
representative by computing a confidence probability φ =
P̂ (Rτmax , τmax, α) with a user specified level of confidence α
as described in Section 5.2.

The main drawback of τmax clusterings is that large frac-
tions of possible clusterings may not be assigned to any τ -re-
presentative. The semantics of such result, however, may be
useful, indicating that a large fraction of possible clusterings
deviate too much from other clusterings. This indication of
high heterogeneity of possible clusterings has to be consid-
ered when making decisions based on the uncertain data set
DB.

6. EXPERIMENTS

6.1 Experimental Setup
The focus of this paper is to mitigate the effect of un-

certainty by obtaining an uncertain clustering that is simi-
lar to applying algorithm C on the real, unknown data set
oracle(DB), independent of the choice of C.
Datasets and Ground Truth. Evaluations have been run
on synthetic data as well as on the datasets summarized in
Table 1. For reasons of comparability, we normalized all
datsets to [0,1] in each dimension. In a preparation step, we
apply a traditional (certain) clustering algorithm, DBSCAN
[17], to obtain the ground-truth clustering C(oracle(DB)).
We then tuned the parameters ε and MinPts in order to
yield a high F -measure for predicting the class labels of each
database object. Those parameters are specified along with
the datasets in Table 1.

Then, we discarded the class-information from the datasets,
and treated the result of C as the ground truth C(oracle(DB)).
Recall that our goal is to compute clustering results on an
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uncertain version of each dataset similar to C(oracle(DB)),
independent of the quality of C in terms of its F -measure.
Yet, the parameters of C should have meaningful values in
our setting, to avoid effects such as having only a single
cluster or no clusters at all.
Uncertainty Generation. In an uncertain setting we do
not have access to the certain database oracle(DB) and are
rather given an uncertain database DB. Thus, for each
object o ∈ DB, we draw a new object using a multivari-
ate Gaussian or multivariate uniform distribution. In both
cases, we use a parameter ext to describe the uncertainty. In
the Gaussian case we uniformly chose a standard deviation
σ ∈ [0; ext/4] in each dimension and generated a center of
a generating probability distribution by drawing one sample
point g from the Gaussian PDF with µ = o. Using g as
observation of o, we generate i − 1 additional points from
the normal distribution µ = g. The resulting i points corre-
spond to samples of an uncertain object observed at location
g.

In case of uniform distribution, a rectangle r was con-
structed having an extent chosen uniformly in the interval
[0, ext] in each dimension. The resulting new object u is
chosen uniformly from this interval. Then, the rectangle r
is centered at u and i− 1 more points are drawn uniformly
from r. In addition to o, which is guaranteed to be inside
r by construction we generated i − 1 additional points uni-
formly distributed in r. All generated uncertain objects form
the uncertain database DB.

For our experiments, we used ext = 0.04 and i = 10.
Our approach sampled |X| = 100 possible worlds, assuming
mutual independence of objects.
Algorithms. In our experiments we set the parameters of
our framework to C = DBSCAN [17] and C′ = PAM [33], a k-
medoid variant, and dist = 1−ARI, i.e., a distance between
clusterings, based on the Adjusted Rand Index [26].

As baseline, we use a Median Clustering (MC) of the data
set, which performs DBSCAN on the uncertain objects by
reducing each uncertain object to one single possible alter-
native which corresponds to the median of its alternatives.
This approach is a representative of näıve approaches [41,
21, 23] which reduce the uncertainty information of an un-
certain object to a single point (the median in this case). A
comparison partner from the literature is FDBSCAN [36].
The parameters were chosen identically for MC, FDBSCAN,
and our approach.

All algorithms were obtained from or implemented in the
ELKI-Framework [1] and executed on a 64-Bit Linux Com-
puter with eight cores at 3.40GHz and 32GB RAM.

6.2 Experiments on Synthetic Data
Before evaluating the proposed approach in a broad exper-

imental setting, we first demonstrate the difference regarding
the result of the clustering task between our technique and
previous work on clustering uncertain objects (represented
by MC). For this purpose, we generated a toy example con-
sisting of three Gaussian distributed point clouds {A,B,C}
which represent our ground truth data. After adding Gaus-
sian uncertainty, as described in the previous section, all
objects consist of several sample points which can be cov-
ered by a minimum bounding rectangle; these rectangles are
shown in Figures 3 and 4.

Figure 3(a) illustrates the clustering of the original data
set without uncertainty. Objects belonging to the same clus-

(a) Clustering of original data (b) Median Clustering (MC)

Figure 3: Clustering results of sample dataset

(a)P̂ (X1, 0.075, 0.95) = 0.36 (b)P̂ (X2, 0.094, 0.95) = 0.25

(c)P̂ (X3, 0.075, 0.95) = 0.19 (d)P̂ (X4, 0.22, 0.95) = 0.12

Figure 4: Four representative clusterings

ter are plotted using the same color. Outliers are plotted in
a different color. Figure 3(b) shows the result of MC, which
yields a different clustering compared to the original one,
since the lower two point clouds are merged to a single clus-
ter.

Next consider the results of our approach when generat-
ing four representative clusterings {X1, ..., X4} in Figure 4.
First, note that the four results coarsely reflect the four
expected possible results of a density based clustering ap-
proach ({A}, {B}, {C}), ({A, B}, {C}), ({A}, {B, C}) and
({A, B, C}). The corresponding confidence probabilities

P̂ (Xi, τ, α) (cf. Definition 5) are shown for each representa-
tive. For instance, representative X1, shown in Figure 4(a),
is an α = 0.95-significant representative having a probabil-
ity of 0.38 to have an ARI-distance of at most τ = 0.075 to
the ground-truth clustering C(oracle(DB)).

The real ARI-distances of the four representatives to
C(oracle(DB)) are 0.038, 0.400, 0.404, and 0.851, respec-
tively. In this toy example, the clustering with the smallest
ARI to the base clustering has the highest probability. This
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Figure 5: ARI on all datasets.

is not always the case and our approach might also return a
result having a large distance with the highest probability.
Yet, our approach usually returns at least one possible clus-
tering having a very high similarity with the true clustering.
However, more importantly, unlike existing approaches, our
approach is able to assess the probabilistic quality of its re-
sults and can provide multiple representative clusterings for
the user to choose from.

6.3 Experiments on Real Data
Clustering Quality. Figure 5 illustrates the results under
the default values on all tested datasets. Shown is the Ad-
justed Rand Index (ARI) [26] to the certain clustering on
the original dataset. Thus, a value of one means that the
method produces the same clustering result on the uncer-
tain data than on the certain data, whereas a value closer
to zero means that the two clusterings differ drastically. As
observed, in several cases the rather simple MC performs
better than the more sophisticated FDBSCAN. This might
be because of the shortcomings of FDBSCAN regarding the
consideration of possible worlds semantics as discussed in
Section 2. Yet still, although the MC approach returns a
clustering of a possible world, it cannot assign any measure
of confidence to it, possibly resulting in a highly unlikely
world. This becomes obvious when revisiting the results in
Figure 5. Even for the case were only one representative
is returned by our method (REP1), this representative re-
sembles the original clustering better and in addition it also
carries a confidence about its similarity to the true clus-
tering. For instances of our method with multiple repre-
sentatives, the figure shows the ARI of the representative
with the minimum distance. Thus, increasing the number
of representatives (REP4, REP10) ensures that at least one
representative resembles the original clustering very closely.
Number of Representatives. An important question is
how many representatives should be presented to the user.
Presenting the user too few representatives may yield an in-
sufficient understanding of the possible outcomes and the
result may not contain a clustering which is close to the
“true” clustering at all, while presenting too many represen-
tatives may overwhelm the user. In Figure 6, we show the
averaged ARI over all considered datasets when increasing
the number of representatives. Observe that the average
ARI of all our representatives (weighted by the confidence
of the representatives) decreases in comparison to the MC
approach (we exclude the FDBSCAN in this graph due to
its larger deviation). This can be explained by the diver-

0.8

0.85

0.9 minimum
MC
average

number of representatives

A
R

I

Figure 6: ARI vs. the number of representatives.
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Figure 7: Confidence depending on samples.

sity that increases with a higher number of representatives.
On the other hand, the closest representative to the original
clustering yields a higher score when increasing the number
of representatives – as a larger number of representatives
increases the likelihood of having a representative close to
the ground truth clustering. Summarizing, our experiments
show that the quality of our result gains only up to about
ten representatives returned, after which no significant im-
proval can be seen anymore. Furthermore, if becomes appar-
ent that a set of four cluster representatives already yields
fair results in most cases, while it can still be considered as
concise enough to be represented to an average user.
Number of Samples. In our next experiment, we investi-
gate how many samples |X| are required in order to obtain
significant results on the D31 data set [51] using the same pa-
rameter setting as for yeast (cf. Table 1). For this purpose,

we aggregated the P̂ (Xi, τ, α) of all cluster representatives
Xi for τ = 0.1, α = 0.95 for different values of |X|. The
result is shown in Figure 7, where it can be observed that a
larger sample size |X| increases the lower probability bounds
obtained by Definition 5. More information on obtaining
confidence intervals for a binomial probability function such
as P (Xi, τ) can be found in the literature [24].
Runtime. The runtime of our approach directly corre-
sponds to the number of samples we utilize. Thus our ap-
proach will always be slower in terms of runtime than other
approaches like MC for the exchange of more valuable in-
formation and insights into the dataset, which is normal for
data mining tasks such as clustering. Thus we present, in
Figure 8, which modules of the process effect runtime the
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most. We divided the procedure of finding cluster represen-
tatives into three steps:
• Cluster Samples: This step includes drawing possible in-

stances of the database and clustering them using DB-
SCAN. This process is repeated until |X| = 100 instances
have been processed.
• Compute Pairwise Distances: During the last step, ARI-

distances between clustered database instances are required
several times, thus we precomputed the 100·99

2
pairwise

distances.
• k-Medoid Clustering: In this step, we perform k-medoid

clustering of the sampled (certain) clusterings.
The first two steps of the overall procedure are the compu-

tational bottleneck. Obviously, applying C a large number of
times is computationally expensive. The second step of com-
puting the pairwise distances of the clustering results usually
takes less time. This step strongly depends on the character-
istics of the outcome of the first step. Specifically, comput-
ing the ARI-distance between two clusterings becomes more
expensive if the clusterings contain more clusters. ARI is
based on the pre-computation of the cluster contingency ta-
ble which counts the number of objects in each pair of clus-
ters of two clusterings. The number of clusters in a cluster-
ing is of course dependent on the dataset and the parameter
settings.

7. CONCLUSIONS
We presented a general solution for clustering of uncer-

tain objects. Our challenge was to develop a framework
making any clustering that has been developed for certain
data applicable for the case of uncertain data. We ap-
proached this challenge by employing a sampling approach
to obtain a number of possible database instances from the
uncertain database. Applying a domain specific clustering
algorithm to each obtained database instance yields a (pos-
sibly large) set of different clusterings. Therefore, the chal-
lenge is to find a representative solution for all these possi-
ble clusterings. For this purpose, we defined the notion of
τ -φ-representative clusterings: a τ -φ-representative cluster-
ing is a clustering having probability at least φ to have a
distance of at most τ to the actual clustering of the data
if the data were certain. Our solution follows a sampling
approach, which returns clusterings that are guaranteed to
be τ -φ-representative clusterings at a user specified level of
significance. To the best of our knowledge, our approach is
the first to yield clusterings associated with confidences, al-
lowing the user to assess the quality of the clustering result,

and conforming to the possible worlds semantics. Further-
more, by returning multiple representative clusterings to the
user, we can improve the quality (and therefore usefulness)
of results, as shown by our experimental study.
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[35] H.-P. Kriegel, P. Kröger, and A. Zimek. Subspace
clustering. WIREs DMKD, 2(4):351–364, 2012.

[36] H.-P. Kriegel and M. Pfeifle. Density-based clustering
of uncertain data. In Proc. KDD, pages 672–677, 2005.

[37] H.-P. Kriegel and M. Pfeifle. Hierarchical
density-based clustering of uncertain data. In Proc.
ICDM, pages 689–692, 2005.

[38] S. D. Lee, B. Kao, and R. Cheng. Reducing uk-means
to k-means. In ICDM Workshops, pages 483–488,
2007.

[39] J. Li, B. Saha, and A. Deshpande. A unified approach
to ranking in probabilistic databases. PVLDB,
2(1):502–513, 2009.

[40] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In 5th Berkeley
Symposium on Mathematics, Statistics, and
Probabilistics, volume 1, pages 281–297, 1967.

[41] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau,
and K. Y. Yip. Efficient clustering of uncertain data.
In Proc. ICDM, pages 436–445, 2006.

[42] J. Pei, M. Hua, Y. Tao, and X. Lin. Query answering
techniques on uncertain and probabilistic data:
tutorial summary. In Proc. SIGMOD, pages
1357–1364, 2008.

[43] A. D. Sarma, O. Benjelloun, A. Halevy, and
J. Widom. Working models for uncertain data. In
Proc. ICDE, 2006.

[44] P. Sen, A. Deshpande, and L. Getoor. Prdb: Managing
and exploiting rich correlations in probabilistic
databases. VLDB J., 18(5):1065–1090, 2009.

[45] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A
survey on enhanced subspace clustering. Data Min.
Knowl. Disc., 26(2):332–397, 2013.

[46] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k
query processing in uncertain databases. In Proc.
ICDE, pages 896–905, 2007.

[47] A. Struyf, M. Hubert, and P. Rousseeuw. Clustering
in an object-oriented environment. Journal of
Statistical Software, 1(4):1–30, 1997.

[48] L. Sun, R. Cheng, D. W. Cheung, and J. Cheng.
Mining uncertain data with probabilistic guarantees.
In Proc. KDD, pages 273–282, 2010.

[49] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In
Proc. VLDB, pages 922–933, 2005.

[50] G. Trajcevski, R. Tamassia, P. Scheuermann,
D. Hartglass, and C. Zamierowski. Ranking
continuous nearest neighbors for uncertain
trajectories. VLDB J., 20(5):767–791, 2011.

[51] C. J. Veenman, M. J. T. Reinders, and E. Backer. A
maximum variance cluster algorithm. IEEE TPAMI,
24(9):1273–1280, 2002.

[52] S. Wallis. Binomial confidence intervals and
contingency tests: Mathematical fundamentals and
the evaluation of alternative methods. Journal of
Quantitative Linguistics, 20(3):178–208, 2013.

[53] E. B. Wilson. Probable inference, the law of
succession, and statistical inference. JASA,
22:209–212, 1927.

[54] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient
processing of top-k queries in uncertain databases. In
Proc. ICDE, 2008.

[55] A. Zimek and J. Vreeken. The blind men and the
elephant: On meeting the problem of multiple truths
in data from clustering and pattern mining
perspectives. Mach. Learn., 2013.

252




