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ABSTRACT
We present a clustering algorithm for discovering rare yet
significant recurring classes across a batch of samples in the
presence of random effects. We model each sample data
by an infinite mixture of Dirichlet-process Gaussian-mixture
models (DPMs) with each DPM representing the noisy re-
alization of its corresponding class distribution in a given
sample. We introduce dependencies across multiple samples
by placing a global Dirichlet process prior over individual
DPMs. This hierarchical prior introduces a sharing mech-
anism across samples and allows for identifying local real-
izations of classes across samples. We use collapsed Gibbs
sampler for inference to recover local DPMs and identify
their class associations. We demonstrate the utility of the
proposed algorithm, processing a flow cytometry data set
containing two extremely rare cell populations, and report
results that significantly outperform competing techniques.

The source code of the proposed algorithm is available
on the web via the link: http://cs.iupui.edu/~dundar/

aspire.htm.

Categories and Subject Descriptors
I.5.3 [Pattern recognition]: Clustering—algorithms
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1. INTRODUCTION
Rare-class discovery is a difficult machine-learning prob-

lem that occurs in various practical settings, including vi-
sual surveillance and monitoring, quality control, astronomy,
physics, and – last but certainly not least – life sciences. A
solution to the detection of rare classes is essential for rapid
identification of samples with anomalous patterns of data.
In this context a normal sample can be considered to be
a composition of data points each originating from a pre-
defined, i.e., known, class. Unlike normal samples, anoma-
lous samples contain data points originating from classes not
known beforehand and thus are considered undefined. An
anomalous sample may contain data points from both de-
fined and undefined classes; however, the points belonging
to undefined classes are usually far less frequent than those
originating from predefined ones, hence the term rare classes.
Predefined classes are recurring and form reproducible pat-
terns (in terms of class membership proportions) across all
normal samples, whereas rare classes do not necessarily re-
cur, and when they do, they may form varying patterns
of class proportions in each anomalous sample. Therefore,
anomalous samples can be as different from each other as
they are from normal samples, in terms of the specific sub-
set of rare classes present and their membership proportions.

We assume that data for each sample are generated by
local distributions of classes present in that sample. The
total number of classes across all samples is not known. The
number and the specific subset of classes locally realized
in each sample are also not known. Ideally, local distribu-
tions of a given class across all samples should be identical,
as they are snapshots of the same underlying model. How-
ever, random effects that arise from various sources affecting
sample-to-sample heterogeneity cause local distributions of
the same class to vary significantly from one sample to other.
This makes automated matching of local distributions across
samples an arduous task, which is further complicated when
some classes are represented by only a small number of data
points. As a result, identifying the subset of classes present
in each sample and recovering true class distributions be-
come impractical without modeling random effects. Thus,
the main objective of this study reaches beyond clustering
on a per-sample basis, but addresses the issue of grouping
local clusters across multiple samples to identify subsets of
classes present in each sample. This goal is achieved un-
der the severe constraint imposing the mo1(n)1(d)- in which some
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classes are rare, local class distributions vary from sample to
sample owing to random effects, and classes may disappear
altogether from some samples.

1.1 Motivation
Our research has been motivated mainly by a practical

problem related to automated clinical diagnostics, involving
flow cytometry (FC) data analysis.

FC is a single-cell screening, analysis, and sorting tech-
nology that plays a crucial role in research and clinical im-
munology, hematology, and oncology. The power of FC lies
in its ability to quantify phenotypic characteristics of indi-
vidual cells in a high-throughput manner. This unique ca-
pability allows FC to study complex inter-cellular networks,
such as the immune system as it responds to various exter-
nal perturbants, including pathogens, chemical compounds
(drugs), or vaccination. The cellular phenotypes are defined
in FC by combinations of morphological features (measured
by elastic light scatter) and abundances of surface and intra-
cellular markers. Each biological sample contains multiple,
functionally distinct cell types, or “cell populations” in FC
vernacular. These populations form multidimensional clus-
ters in the space defined by measured biological features.
Although the characteristics of cell populations present in
normal samples are generally known, the number of popu-
lations and the proportions of cells present in them could
be substantially different in anomalous (often diagnostically
relevant) samples.

Given the rapid increase in FC data abundance and the
unsatisfactory level of engagement from the machine-learning
community, FC researchers have been organizing the annual
FlowCAP (Flow Cytometry Critical Assessment of Popula-
tion Identification Methods) competition in order to increase
awareness and elicit help from data scientists. The problem
that our study tackles is related to the rare-class classifica-
tion challenge introduced in FlowCAP 2012 [2]. The data
set used in this challenge was produced by multiple lab-
oratories participating in the External Quality Assurance
Program Oversight Laboratory (EQAPOL) project [1].

The data sets containing two biologically important rare-
cell populations represent samples that were subject to sev-
eral potential sources of variation, including natural biologi-
cal variability, different stimulation levels, and data acquisi-
tion in different laboratories. The challenge provided several
data sets representing three biological samples, at three lev-
els of stimulation, collected in fifteen FC laboratories across
the US. For the purpose of method verification the data
points (individual cells analyzed by FC) belonging to two
rare classes were manually labeled by experts. The remain-
ing data points, considered “normal” (and hence not inter-
esting from the perspective of rare-class discovery), were all
labeled as a single predefined abundant class. A typical sam-
ple contained about three hundred thousand data points of
which only less than one percent belonged to one of the two
rare classes.

The FlowCAP challenge framed this problem in a stan-
dard supervised classification setting in which the contes-
tants were provided with half the samples as training data
and were required to build classifier models subsequently
assessed by the organizers using the remaining test data.

Although we appreciate the complexity and the difficulty
of the challenge, we believe it represented the best-case sce-
nario and a relatively easy problem setting. Therefore, our

problem formulation presented in this report differs signif-
icantly from the FlowCAP challenge description. We rec-
ognize that biologically the rare classes may emerge as a
result of various external perturbants, some of which may
be unknown a priori. Thus, defining rare classes in an
exhaustive fashion may not be realistic. In other words,
defining rare classes on the basis of a small available sub-
set present in the training data inevitably leads to classi-
fiers that are biased towards those particular types of rare
classes. Such models may not generalize well when applied
to future samples in which rare classes may originate ow-
ing to other biological mechanisms. Therefore, our prob-
lem formulation requires that rare class discovery be per-
formed in the absence of labeled data points representing
these classes in the training sets. Herein, we present a non-
parametric Bayesian algorithm called ASPIRE (anomalous
sample phenotype identification with random effects) that
identifies biologically significant phenotypes across a batch
of samples in the presence of random effects.

1.2 Proposed Approach
We model each sample data by a mixture of potentially

infinitely many Dirichlet-process Gaussian-mixture models
(DPMs) with each individual DPM modeling the local dis-
tribution of a single class. Under fairly weak assumptions
and given enough components, finite mixtures of Gaussian
distributions can model a given density arbitrarily closely
[9]. The DPM itself is a mixture of potentially infinitely
many Gaussian distributions with the actual number of mix-
ture components determined directly from the data during
inference. Thus, modeling local class distributions by DPMs
offers the flexibility needed to accommodate class data that
may arise in samples subjected to significant sources of vari-
ations.

As local distributions of a given class are noisy realizations
of the true class distribution we introduce a sharing mech-
anism to create dependencies across DPMs associated with
the same class. This is achieved by centering the base distri-
butions of DPMs associated with the same class on a unique
global parameter, which itself is distributed according to a
higher level DPM. This global DPM not only associates lo-
cal distributions of a given class with one another but also
models the number and proportions of classes in each sam-
ple.

We use a collapsed Gibbs sampler to perform inference.
Model learning, which is performed in a single unified pro-
cess, involves three main tasks: recovering DPMs in each
sample, finding class associations of DPMs, and identifying
the total number of classes and their proportions in each
sample.

ASPIRE is capable of identifying recurring classes (both
normal and rare) in a completely unsupervised way across a
batch of samples that are significantly perturbed by random
effects and can characterize normal as well as anomalous
states given only very weak assumptions regarding sample
characteristics and origin.

1.3 Related Work
Existing lines of work that can be adapted to solve the

described problem can be broadly grouped into three cate-
gories.

The first approach involves pooling data from all sam-
ples and applying a standard clustering algorithm to cluster
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pooled data. Such an approach will have limited success
with most real biological data sets because in the presence
of random effects, local distributions belonging to one class
may significantly overlap with local distributions of another
class. The degree of overlap will be more severe in the pres-
ence of rare classes. As a result, clusters recovered this way
are unlikely to have any meaningful correspondence with the
true class distributions.

The second approach involves identifying clusters on a
per-sample basis and then matching local clusters across
samples to recover actual class distributions. Although this
technique may perform better than the first solution oper-
ating with pooled data, the cluster-matching part will re-
main a big challenge in the presence of random effects and
rare classes. As a result, local distributions correspond-
ing to larger classes may not be recovered as a whole and
clusters corresponding to rare classes may be incorrectly
matched with the distributions of other dominant classes,
failing to indicate rare classes. FLAME (flow analysis with
automated multivariate estimation) [11] is a well-known spe-
cialized FC algorithm that can be considered an example
belonging to this category. FLAME fits a mixture model
into each sample data with four possible choices of den-
sity functions (Gaussian, skewed-Gaussian, t-distribution,
skewed-t-distribution) available for individual mixture com-
ponents. Local modes are pooled and then clustered to ob-
tain a global template of meta-clusters. Local clusters are
then assigned to these meta-clusters using graph-matching
techniques. FLAME is somewhat similar to ASPIRE in the
narrow sense that both techniques model individual sample
data by a mixture model. However, there are significant
differences in model learning. FLAME divides model learn-
ing into three tasks: clustering data in individual samples,
finding the optimal number of local clusters in each sample,
and matching local clusters across samples to recover classes.
These three tasks are performed by FLAME independently
in a sequential manner. Unlike FLAME, the model learn-
ing by ASPIRE is performed as a single unified process.
Thus, ASPIRE can take advantage of recurring patterns of
similarities across samples. For example, groups of isolated
data points forming rare classes that would be ignored as
outliers by clustering followed by cluster matching can be
successfully identified as a rare class when these two tasks
are performed simultaneously.

The third approach involves performing sample cluster-
ing jointly with cluster matching. The proposed ASPIRE
model, the hierarchical Dirichlet-process Gaussian-mixture
model (HDPM) [5], and HDPM with random effects (HDPM-
RE) [8] all belong to this category. Thanks to their non-
parametric nature, the number of local clusters and classes
can arbitrarily grow in all three models to better accommo-
date data as needed. Both HDPM and HDPM-RE model
individual sample data by a single DPM. HDPM uses the
standard hierarchical Dirichlet process prior [13], assuming
exact sharing of class parameters across all samples and ig-
noring the presence of random effects. In the presence of ran-
dom effects this assumption leads to the creation of several
extraneous classes. HDPM tackles this problem by post-
processing the results to combine local clusters sharing a
common mode. However, such a post-processing technique
may have limited success, as local clusters of a given class
may not necessarily share the same mode. Unlike HDPM,
HDPM-RE assumes that local clusters are noisy realizations

of true class distributions and probabilistically models the
deviations of the local cluster means from the mean of the
corresponding class distribution.

One key limitation of HDPM-RE is the assumption that
local class distributions can be effectively captured using a
single Gaussian distribution. This assumption is often vio-
lated in many real-world settings because different sources
of variation introduced at different stages of the data col-
lection and processing pipeline create class data that may
not be closely approximated by a single Gaussian distribu-
tion. In the case of HDPM-RE, additional local clusters of
a given class are treated as if they belong to another class,
thereby splitting a single class into multiple subclasses. Un-
like HDPM-RE, which uses a single Gaussian distribution
for each local distribution of a class, ASPIRE uses a single
DPM for each local distribution, allowing for an arbitrarily
large number of Gaussian distributions for modeling of lo-
cal class data. Individual DPMs across samples are linked
through class-specific global parameters, which are in turn
distributed according to a higher-level DPM model. In ad-
dition to modeling random effects, ASPIRE offers a more
flexible data model that can recover class distributions with
arbitrary shapes, avoiding the creation of artificial classes.

The rest of this report is organized as follows. In Section
2 we compare data models for DPM, HDPM, HDPM-RE,
and ASPIRE. In Section 3 we discuss model inference for
ASPIRE. In Section 4 we demonstrate the performance of
ASPIRE with two experiments and compare results with
three other competing techniques. In Section 5 we conclude
by summarizing our contributions and offering future re-
search directions.

2. ASPIRE GENERATIVE MODEL
We describe the technical details of our data model in four

incremental stages. In the first stage we assume that each
sample is modeled by a single DPM and that DPMs across
multiple samples are independent. In the second stage we
introduce dependencies across DPMs and impose exact shar-
ing of mixture components corresponding to classes across
samples. This is equivalent to the HDPM model. In the
third stage we tackle random effects by relaxing the exact
sharing of mixture components to allow local clusters to in-
herit noisy realizations of classes in individual samples. This
is equivalent to the HDPM-RE model. In the fourth stage we
describe the proposed data model for ASPIRE, which mod-
els each sample by a potentially infinite mixture of DPMs.

2.1 Independent Modeling of Samples by DPM
We denote point i in sample j by xji ∈ <d, where i =
{1; : : : ; nj.} and j = {1; : : : ; J}, nj. is the nmeber of points
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Figure 1: Plate diagrams for DPM, HDPM, HDPM-RE, and ASPIRE.

Using the stick-breaking construction according to [7], we
can express Gj as

Gj =
P∞
t=1 �jt�ψjt (3)

where

�jt = �
0
jt

Qt−1
l=1 (1− �

0
jl)

�
0
jt ∼ Beta(1; �)

 jt ∼ G0

The points  jt are called the atoms of Gj . Note that
unlike continuous distributions, the probability of sampling
the same  jt twice from Gj is not zero and is proportional to
�jt. Thus, Gj is considered a discrete distribution and offers
a clustering property, as the same  jt can be sampled for
different �ji. In this model � is the parameter that controls
the prior probability of assigning a point to a new cluster and
thus plays a critical role in the number of clusters generated.

For the base distribution G0, from which  jt are drawn,
we define a bivariate prior:

p (µ;Σ) = N

�
µ|µ0;

Σ

�0

�
×W−1 (Σ|Σ0;m) (4)

where µ0 is the prior mean and �0 is a scaling constant
that controls the deviation of the cluster means from the
prior mean. The smaller the �0, the larger the separation
will be between the cluster means. The parameter Σ0 is a
positive definite matrix that encodes our prior belief about
the expected Σ, i.e., E(Σ) = �0

m−d−1
. The parameter m

is a scalar that is negatively correlated with the degrees of
freedom. In other words the larger the m, the less Σ will

deviate from E(Σ), and vice versa. The plate model for
independent modeling of samples using one DPM for each
sample is available in Figure 1a.

2.2 Introducing dependencies across samples
by HDPM

In the previous section we introduced a clustering prop-
erty across points in an individual sample by placing a DP
prior over Gj as in (2). Since Gj is a discrete distribution,
this prior enables sharing of the same cluster parameter by
different points. When dealing with multiple samples, in
addition to sharing of clusters by points formed within indi-
vidual samples, a higher level of sharing occurs. Each local
cluster in an individual sample is associated with a class.
Thus, as we cluster points in each sample we also need to
group local clusters into appropriate classes so that we can
identify class associations of local clusters. This grouping
can be achieved by introducing dependencies across individ-
ual DPMs by placing a hierarchical DP prior over G0 [13].
The HDPM for joint clustering and cluster matching across
multiple samples becomes

xji ∼ p (·|�ji)
�ji ∼ Gj
Gj ∼ DP (G0; �)
G0 ∼ DP (H; )

(5)

where  is the precision parameter for the higher-level DP
prior and H is defined as in (4).
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Using the stick-breaking construction we can express G0

as

G0 =
P∞
k=1 �k�φk (6)

where

�k = �
0
k

Qk−1
l=1 (1− �

0
k)

�
0
k ∼ Beta(1; �)

�k = {µk;Σk} ∼ H

With this update, instead of letting G0 be distributed ac-
cording to (4) as in the independent modeling of samples
we let H be distributed according to (4) and let the atoms
of G0 be distributed according to H. The distinct set of
parameters �k corresponding to classes is sampled from H
and local cluster parameters are sampled from Gj . Since
Gj is a discrete distribution with its atoms sampled from
G0, and G0 is a discrete distribution with its atoms sampled
from H, each local cluster in turn inherits one of the �k, i.e.,
 jt ∈ {�k}Kk=1 and �ji ∈ { jt}

mj:

t=1, where K is the number
of classes and mj. is the number of local clusters in sample
j.

Therefore, this model not only groups data points within
each sample into clusters, but also groups local clusters across
samples into classes. In other words, clustering and cluster
matching are simultaneously addressed and depend on one
another. The plate model for HDPM is available in Figure
1b.

2.3 Modeling random effects by HDPM-RE
In the standard HDPM the same parameters are inher-

ited by all local realizations of a class. However, owing to
the potential random effects this surmise may be unrealis-
tic. Therefore, to account for random effects the HDPM-RE
model [8] would be more suitable for the discovery of recur-
ring classes. HDPM-RE presumes that sample data are gen-
erated by noisy versions of parameters defining classes. This
change can be incorporated into the data model by updating
the model in (5) as follows:

xji ∼ p (·|�ji)
�ji ∼ Gj
Gj ∼ DP (G0j ; �)
G0 ∼ DP (H; )

(7)

where G0j is a discrete distribution whose atoms are noisy
versions of the corresponding atoms in G0. With this change
in the model each individual sample now inherits different
noisy realizations of global parameters. The plate model for
HDPM-RE is available in Figure 1c.

2.4 Modeling individual sample data with mul-
tiple DPMs

Both HDPM and HDPM-RE assumes that local distri-
butions of classes can be closely approximated by a sin-
gle Gaussian distribution. This assumption is often quite
restrictive for many practical settings, as local class data,
which are produced subject to random effects, may emerge
in the form of skewed as well as multi-mode distributions.
As a result, fitting a single Gaussian distribution for local
class distributions creates artificial classes that may not be
easily distinguished from other significant classes.

ASPIRE uses a potentially infinite mixture of DPMs to
model each sample data where individual DPMs are linked

together through a hierarchical DP prior. This hierarchi-
cal prior not only identifies local DPMs associated with the
same class through sharing of a global parameter but also
models the specific subset of classes present and their pro-
portions in each sample.

We update our indexing notation from previous sections to
introduce an additional subscript k to account for multiple
DPMs in each sample. We denote point i of class k in sample
j by xjki ∈ <d, where i = {1; : : : ; njk.}, k = {1; : : : ;K}, and
j = {1; : : : ; J}, njk. is the number of points from class k in
sample j, K is the total number of classes, and J is the total
number of samples. The proposed ASPIRE data model is
as follows.

xjki ∼ p (·|�jki)
�jki ∼ Gjk
Gjk ∼ DP (Fφk ; �)
�k ∼ G0

G0 ∼ DP (H; )

(8)

where �k are global parameters each of which is associated
with a different class. Individual DPMs associated with the
same class inherit the same �k across samples. The nota-
tion Fφk indicates a distribution F centered at �k and de-
fines class-specific base distributions of individual DPMs.
Although Fφk is same for all DPMs associated with the
same class, local clusters between samples are generated
i.i.d. given �k of corresponding DPMs. Thus, each local
realization of a given class is modeled by a different DPM,
allowing for the modeling of sample-to-sample variations in





�̄ =
(
P
jkt:cjkt=k

njktκ1

(njkt+κ1)
+ �0)�1P

jkt:cjkt=k

njtκ1

(njkt+κ1)
+ �0 + �1

(22)

Once the distributions in (17)-(20) are substituted into (14)
a closed-form expression for p(µjkt;Σk|D.cjkt.; Djkt) can be
obtained. When we substitute this solution into (13) we
obtain p(xjki|D.cjkt.; Djkt) in the form of a multivariate
Student-t distribution with three parameters.

p(xjki|D.cjkt.; Djkt) = stu− t(µ̂; Σ̂; v) (23)

The location vector (�̂), the scale matrix (Σ̂), and the de-
grees of freedom (v) are given below. Location vector:

µ̂ =
njktx̄jkt + �̄µ̄

njkt + �̄
(24)

Scale matrix:

Σ̂ =
Σ0 +Ak +Ajkt +

njkt�κ

njkt+�κ
(x̄jkt − µ̄)(x̄jkt − µ̄)T

(�κ+njkt) v

(�κ+njkt+1)

(25)

Degrees of freedom:

v = m+
X

jkt:cjkt=k

(njkt − 1) + njkt − d+ 1 (26)

The predictive distribution of a class can be readily obtained
from p(xjki|D.cjkt ; Djkt) by setting Djkt an empty set. This
is equivalent to dropping terms related to local clusters in
equations (24), (25), and (26). Finally, the predictive distri-
bution of an empty cluster can be obtained from p(xjki|D.k.)
by setting D.k. an empty set. This is equivalent to dropping
terms in p(xjki|D.k.) related to classes.

4. RESULTS AND DISCUSSIONS
We report results of experiments performed with two dif-

ferent data sets. The first experiment demonstrated the
functionality of the algorithms tested using simulated data,
while the second experiment utilized real FC data.

Aside from the proposed ASPIRE algorithm, three other
techniques were considered: DPM, HDPM, and HDPM-RE.
In Section 1.3 we described three different approaches to the
clustering problem set forth in this study. The first method
uses standard clustering algorithms applied to pooled data,
the second approach performs clustering and cluster match-
ing in a sequential way, and the third performs clustering
jointly with cluster matching. Among the three benchmark
techniques DPM belongs to the first category; HDPM and
HDPM-RE along with ASPIRE belong to the third category.
We chose the well-known FC algorithm FLAME to represent
the second category. Unfortunately the implementation of
FLAME available through GenePattern [12] produced er-
rors during processing of many of the samples in the two
data sets, so we were forced to exclude FLAME from this
analysis. For HDPM we used the software provided by the
authors in [5]. For the other three algorithms we used our
own implementations. Each algorithm is run for a thousand
sweeps, and the state with the best likelihood is recorded
for subsequent analysis.

The F1 score is used as the performance measure for com-
paring performances of these four techniques. As one-to-
many matchings are expected between true and recovered
classes, the F1 score for each class is computed as the max-
imum of the F1 scores for all recovered classes, similar to
[3].

Table 1: F1 scores achieved and the number of
classes recovered by each of the four techniques on
the artificial data set.

Class F1 Scores
Method 1 (98.7%) 2 (0.3%) 3 (1%) # Classes
DPM 1.00 0.75 0.56 5
HDPM 0.84 0.74 0.66 11
HDPM-RE 0.68 0.94 0.85 7
ASPIRE 1.00 1.00 0.90 3

Table 2: Number of points available from three
classes in the FC data set before and after subsam-
pling. Numbers in parentheses indicate percentage
of the total number of points in the corresponding
set.

# points
Method Normal Rare 1 Rare 2
Original 56.2M 10.2K 24.3K

(99.94%) (0.02%) (0.04%)
Subsampled 1.9M 9.5K 24.1K

(98.23%) (0.50%) (1.27%)

4.1 Experiment 1: Artificial Data Set
We generated twenty samples, each with five thousand

data points in a two-dimensional feature space, using the
model in (8) and the following values of the model param-
eters: �0 = 0:01, �1 = 0:2, m = 20, �0 = [0 0]T , Σ0 = I,
� = 0:2,  = 0:2, where I denotes the identity matrix. After
all data points were sampled, three classes were produced by
this model with overall class proportions of 0.987, 0.003, and
0.01, which indicates that two of the three recurring classes
can be considered rare. For the pooled data, distributions of
local clusters and the true values of the global parameters,
i.e., �k, are shown in Fig. 2a by dashed and solid contours,
respectively. The ellipses correspond to data distributions
that are at most four standard deviations from the mean.
Individual data points are shown by black dots.

We ran all four techniques (ASPIRE, DPM, HDPM, and
HDPM-RE) on this data set and plotted contours repre-
senting recovered classes in Figures 2b, 2c, 2d, and 2e, re-
spectively. F1 scores obtained for each class and numbers of
classes recovered by all four techniques are included in Table
1. Results suggest that ASPIRE not only correctly predicts
the true number of classes but also estimates global param-
eters with almost no bias, which in turn produces almost
perfect F1 scores for each class. DPM produces a reason-
able number of classes but estimates global parameters with
a large bias. HDPM fails to consistently match local clus-
ters across samples and substantially overpredicts the actual
number of classes. HDPM-RE performs better compared to
DPM and HDPM but generates several artificial classes, a
direct result of modeling local class data by a single Gaus-
sian distribution.

4.2 Experiment 2: Flow Cytometry Data Set
with Two Rare Classes

We evaluated the performance of ASPIRE in discovering
rare classes with a FC data set used in the FlowCAP 2012
competition [2]. The data set contained FC measurements of
multiple aliquots of three biological samples exposed to three
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(a) Pooled Data (b) ASPIRE

(c) DPM (d) HDPM (e) HDPM-RE

Figure 2: An illustrative example showing the performance of DPM, HDPM, HDPM-RE, and ASPIRE
algorithms in estimating global parameters corresponding to classes. Solid color contours plotted using true
values of global parameters represent true classes. Dashed color contours indicate true distributions of local
clusters with the color identifying the class origin. Solid black contours plotted using estimated values of the
global parameters represent recovered classes. Black dots denote data points.

different stimulation levels. The samples were examined in-
dependently by fifteen FC laboratories. In this context the
term “sample” denotes a tube containing white blood cells.
Each cell is separately measured by a flow cytometer. The
measurement provides the small-angle and large-angle light-
scatter characteristics as well as four fluorescence intensity
values. Thus, each cell is characterized by a six-dimensional
feature vector. The goal is to recognize the cells belonging
to two rare-cell populations, manually labeled by experts,
without access to information about characteristics of these
populations in the training data set. Cells not belonging
to one of the two rare populations are considered “normal”
and were all labeled as a single predefined abundant class.
Thus, including the normal class there are three classes in
this data set.

The original data set contained data points for about 60
million cells across 202 samples. To obtain a more manage-
able data-set size while preserving cells from rare classes we
used a density-based subsampling technique and reduced the
data size to 1.9 million points. The number of points avail-
able from each of the two rare classes as well as the normal

class before and after subsampling and their percentages are
shown in Table 2.

As in the previous experiment, we compare ASPIRE against
DPM, HDPM, and HDPM-RE. The DPM model has five
free parameters (�;Σ0;m; �0; �0), the HDPM model has one
more parameter () than DPM, and HDPM-RE and AS-
PIRE have one more parameter (�1) than HDPM. These
parameters are selected using the following strategy.

Each feature is normalized to have zero mean and unit
variance. As the sample batch may contain anomalous sam-
ples, prior information about the potential number of local
clusters and global classes may not exist for most real-world
FC data. Thus, for � and  we use vague priors by fixing
their value to one. We set m to the minimum feasible value,
which is d + 2, to achieve maximum degrees of freedom.
By doing this we let the actual covariance matrices deviate
significantly from the expected covariance matrix, which is
E(Σ) = �0

m−d−1
. The prior mean �0 is set to the mean of

the entire data. The scale matrix Σ0 is set to I=s, where
I is the identity matrix. This leaves the scaling constant s
of Σ0, �0, and �1 as the three free parameters that require
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Table 3: F1 scores achieved and the number of
classes recovered by each of the four techniques on
the entire FC data set. Results for ASPIRE are av-
erages over ten repetitions. Numbers in parenthesis
indicate standard deviations.

Class F1 Scores
Method Normal Rare 1 Rare 2 # Classes
DPM 0.22 0.20 0.39 175
HDPM 0.23 0.01 0.02 75
HDPM-RE 0.22 0.46 0.63 91
ASPIRE 0.62 0.59 0.77 38.7

(0.02) (0.03) (0.01) (3.20)

tuning. The parameter �1 models the deviation of cluster
means from their corresponding class mean in the genera-
tive model. Thus, increasing �1 while �0 and s are fixed
potentially increases the number of classes generated. The
parameter �0 models the deviation of cluster means from
the prior mean in the generative model. Thus, increasing
�0 while �1 and s are fixed potentially increases the num-
ber of clusters generated. The parameter s models the ex-
pected size of clusters. Increasing s potentially increases the
number of clusters generated. These three parameters were
coarsely tuned using a generic 5-parameter peripheral-blood
immunophenotyping data set previously collected and ana-
lyzed in our lab as part of an earlier study without retuning
them for the FC data used in this experiment. The following
values were used: �0 = 0:05, �1 = 0:1, s = 10.

F1 scores computed for all three classes are shown in Ta-
ble 3. Results for ASPIRE are averages of ten repetitions.
As the run time for ten repetitions of the other algorithms
would take on the order of weeks, we included results of
a single run for these algorithms. Results in Table 3 fa-
vor methods modeling random effects (HDPM-RE and AS-
PIRE) over those that do not (DPM and HDPM) in terms
of higher F1 scores achieved for both rare classes. Between
techniques that model random effects ASPIRE significantly
outperforms HDPM-RE in terms of producing a more real-
istic number of classes and higher F1 scores for all classes.
ASPIRE models local realizations of classes by an infinite
mixture of Gaussians, which allows for associating multi-
ple clusters with individual classes during inference. The
other three techniques use a single Gaussian distribution to
model local realization of classes. If a local distribution of
a class cannot be effectively modeled by a single Gaussian
distribution, these techniques tend to produce multiple local
clusters all of which are assigned to a distinct class. As a
result ASPIRE tends to generate a fewer number of classes
and achieves higher F1 scores compared to the other three
techniques.

We also compared ASPIRE with a supervised classifier
to find out how F1 scores would improve if a subset of the
labeled data were to be used during training. We used all
samples belonging to one of the biological samples for train-
ing and sequestered all samples for the other two biological
samples for testing. The support vector machine toolbox in
[6] was used to train and test a supervised classifier on this
data. Parameters of this classifier are extensively tuned to
optimize test performance. These results along with the re-
sults obtained by ASPIRE on the test data are shown in Ta-
ble 4. Results suggest that ASPIRE can predict rare classes

Table 4: F1 scores achieved by ASPIRE and SVM on
the test portion of the FC data set. Results are av-
erages over ten repetitions. Numbers in parenthesis
indicate standard deviations.

Class F1 Scores
Method Normal Rare 1 Rare 2
ASPIRE 0.62 0.54 0.75

(0.02) (0.03) (0.01)
Supervised 1.00 0.66 0.83

(0.00) (0.01) (0.01)

with F1 scores comparable to those of a supervised classi-
fier without using any labeled data. The F1 score achieved
by ASPIRE for the normal class is worse than that of the
supervised classifier, mainly because the normal class is a
combination of multiple uninteresting subclasses for which
ASPIRE produces multiple classes to more effectively model
the underlying class distribution. However, we do not be-
lieve this is a major limitation, as in most practical set-
tings labeled data are present for normal classes as these
are classes that are known and predefined. On the other
hand, for rare classes, labeled data may not exist because
rare classes are usually not known a priori and cannot be
predefined. Under such circumstances training a supervised
classifier that requires labeled data for all classes may not
be very realistic. On the other hand, ASPIRE can cluster
data in a fully unsupervised manner and with the help of a
limited amount of labeled data from normal classes results
can be post-processed to distinguish unknown classes from
known ones.

For ASPIRE, one sweep of the Gibbs sampler involves two
main iterative loops. In the first loop, cluster indicator vari-
ables are sampled for all data points across all samples. In
the second loop, class indicator variables are sampled for all
local clusters across all samples. As the first loop iterates
over all points across all samples it is usually more com-
putationally expensive than the second loop. Fortunately,
during the sampling of the cluster indicator variables class
parameters are fixed. This allows us to sample cluster indi-
cator variables independently for each sample during a sin-
gle sweep and leads to improvement in processing time on
multi-processor machines. The actual run time for ASPIRE
to process the FC data set containing 1.9 million points is
about five and eleven hours with and without parallelization,
respectively, on an eight-core workstation. The reduction in
the overall computational time is not proportional to the
number of processors, as the computational gain by paral-
lelizing the first loop will be limited after a certain point by
the computational time of the second loop.

5. CONCLUSIONS
We introduced ASPIRE as a new method for discover-

ing recurring yet significant rare classes in the presence of
random effects and showed experimental results that clearly
favor ASPIRE over other benchmark techniques. We believe
that ability to recover rare classes in FC data sets obtained in
fifteen different laboratories convincingly demonstrates that
automated identification of anomalous samples in research
or diagnostic settings is indeed feasible.

Labeled information about normal, i.e., known classes,
can be directly incorporated into the learning process by
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adopting a restricted Gibbs sampler scheme similar to the
one introduced in [4]. Our research was mainly driven by a
rare-class discovery problem in a clinical setting. However,
ASPIRE is a general clustering technique that can be used
in other disciplines to discover classes with recurring nature
irrespective of whether they are rare or normal. ASPIRE
can also be utilized for problems involving the detection of
group anomalies [10, 14].

ASPIRE is implemented in C++. The source code is avail-
able on the web via the link http://cs.iupui.edu/~dundar/

aspire.htm.
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