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ABSTRACT

Clustering categorical data poses some unique challenges:
Due to missing order and spacing among the categories, se-
lecting a suitable similarity measure is a difficult task. Many
existing techniques require the user to specify input param-
eters which are difficult to estimate. Moreover, many tech-
niques are limited to detect clusters in the full-dimensional
data space. Only few methods exist for subspace cluster-
ing and they produce highly redundant results. Therefore,
we propose ROCAT (Relevant Overlapping Subspace Clus-
ters on Categorical Data), a novel technique based on the
idea of data compression. Following the Minimum Descrip-
tion Length principle, ROCAT automatically detects the
most relevant subspace clusters without any input param-
eter. The relevance of each cluster is validated by its con-
tribution to compress the data. Optimizing the trade-off
between goodness-of-fit and model complexity, ROCAT au-
tomatically determines a meaningful number of clusters to
represent the data. ROCAT is especially designed to detect
subspace clusters on categorical data which may overlap in
objects and/or attributes; i.e. objects can be assigned to
different clusters in different subspaces and attributes may
contribute to different subspaces containing clusters. RO-
CAT naturally avoids undesired redundancy in clusters and
subspaces by allowing overlap only if it improves the com-
pression rate. Extensive experiments demonstrate the effec-
tiveness and efficiency of our approach.
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1. INTRODUCTION

In many applications, ranging from social media to biome-
dicine, large categorical data sets are collected. The unique
characteristic of categorical data is that the values of an at-
tribute do not have any order. For example the attribute
genotype having four values AA, Aa, aA and aa, where cap-
ital A represents the dominant normal variant of a gene and
lowercase a the recessive version. There is no implicit order
or quantitative spacing between the different categories.

To explore a large categorical data set, clustering is in
principle very promising. Among the most successful ap-
proaches to unsupervised data mining, clustering aims at
finding a natural partitioning of a data set into groups called
clusters which represent the major patterns in the data.
However, there are several special challenges associated with
clustering moderate to high-dimensional categorical data:

1) Many existing algorithms require the user to choose a
similarity metric and/or input parameters which are difficult
to estimate, e.g. k-Modes [14], COOLCAT [5] and ROCK
[13]. In comparison to numerical data where Minkowski dis-
tances are wide-spread and well-explored, the choice of a
suitable similarity measure for categorical data is much more
difficult: In a comparative survey [6], Boriah et al. studied
the properties of 14 similarity measures and concluded that
a suitable choice requires deep knowledge on the envisaged
data mining task and the special characteristics of the data
set to be analyzed. The same holds for input parameters
like the number of clusters k in k-Modes [14], COOLCAT
[5], SUBCAD [9], or the similarity threshold in ROCK [13].

2) Most techniques for clustering categorical data are lim-
ited to detect clusters in the full-dimensional space. For
numerical data, the effects of the so-called curse of dimen-
sionality have been extensively studied and many specialized
techniques for clustering moderate to high-dimensional data
have been proposed, for a survey see e.g. [16]. For categor-
ical data, fewer approaches have been proposed, e.g. CAC-
TUS [10], SUBCAD [9], and CLICKS [26], most of them
associated with the problems mentioned above.

3) These methods are either partition-based (e.g. SUB-
CAD) or producing large redundancies (e.g. CLICKS). STA-
TPC [19] and RESCU [20] are proposed to find relevant non-
redundant subspace clusters but are applicable to numerical
data only. Detecting relevant overlapping subspace clusters
on categorical data is an open research question.

To address these challenges, we propose a novel approach
ROCAT (Relevant Overlapping Subspace Clusters on CAT-
egorical data) combining the following benefits:

213



1. Data compression as an intuitive notion of sim-

ilarity. Relating clustering to data compression, RO-
CAT considers the co-compressibility of the objects
inside a cluster as one major aspect to evaluate the
cluster quality. Thereby, ROCAT does not require the
user to choose a similarity measure to quantify the
pair-wise similarity among categorical data objects.

2. Parameter-free detection of clusters. Following
the Minimum Description Length principle [22], co-
compressibility is not the only aspect of cluster quality
in ROCAT. We additionally consider the code length
specifying the complexity of the clustering model and
aim at minimizing both parts. Therefore, ROCAT is
fully-automatic without requiring any parameters.

3. Relevant overlapping subspace clusters. The cod-
ing scheme of ROCAT allows overlapping in both ob-
jects and attributes set, but punishes redundancies.
Therefore ROCAT finds the most relevant overlapping
subspace clusters in the sense that they contribute to
an effective compression of the data.

4. Flexibly handling outliers. ROCAT supports noise
objects and noise attributes which are flexibly identi-
fied during the clustering process.

5. Efficiency. ROCAT scales linearly in data size.

The remainder of this paper is organized as follows: In the
following section, we elaborate our optimization goal. Sec-
tion 3 presents the algorithm in detail. Section 4 contains
an extensive experimental evaluation. Section 5 briefly dis-
cusses related work and Section 6 concludes the paper.

2. OPTIMIZATION GOAL COMPRESSION
In this section, we elaborate how a subspace clustering can

be used to effectively compress a categorical data set. The
basic idea is that objects inside a cluster can be compactly
represented by joint coding in the corresponding subspace.
Since subspace clusters may overlap, we validate the rele-
vance of each cluster by its contribution to compress the
data. Following the Minimum Description Length (MDL)
principle [22], the clustering is regarded as a model for com-
pression. The better the data fits to the model, the better is
the compression rate since we only need to encode the devi-
ations of the data from the model. In addition to the data,
we also need to encode the model itself, which avoids overly
complex models and naturally balances goodness-of-fit.
Figure 1 depicts an example of how we use compression

to evaluate a clustering of categorical data. The data is rep-
resented by a matrix with 10 rows and 8 columns, each row
represents 40 data objects and each column is an attribute.
Figure 1(a) indicates a subspace clustering with 4 subspace
clusters marked as colored squares. The clusters share the
homogeneous data in the corresponding subspace, while the
white area represents heterogeneous data, i.e. objects have
arbitrary categories of the corresponding attributes. It costs
6076.5 bits to compress the data with the proposed coding
scheme. Figure 1(b) and 1(c) depict a full-dimensional clus-
tering and no clustering, where we need 6147.1 bits and
6670.9 bits to represent the whole data sets.
In the following, we firstly provide the necessary defini-

tions and then propose a MDL-based coding scheme, which
is specially designed for clustering categorical data.
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Figure 1: Using compression to evaluate clustering.

2.1 Notations

Definition 1. A Categorical Data Set is defined as
D = (X,V ) with N objects and M attributes. A1, ..., AM

denote a set of categorical attributes and V1, ..., VM a set
of domains, where Vj = {Vj1 , ..., Vjm} is the domain for
attribute Aj. X ∈ N ×M is a matrix storing the categorical
value X(i, j) of object i in attribute Aj.

Definition 2. A Subspace Cluster Ci = (Xi, Vi) is a
subset of the data set D = (X,V ), where Xi is a sub-matrix
of X and Vi is a subset of V .

Definition 3. A Pure Subspace Cluster is a Subspace
Cluster where the objects share the same value in all its at-
tributes.

Definition 4. A Non-Clustered Area S of data D mod-
eled by subspace clusters C1, C2, ..., CK contains all the en-
tries in matrix X that are not in any sub-matrix Xi, the
white area in Figure 1(a).

2.2 Coding Scheme
Following the concept of MDL principle, the quality of

a model is provided by Eq. (1), where L(H) denotes the
cost for coding the model and L(D|H) represents the cost
of describing the data D under the model H.

L(D,H) = L(D|H) + L(H). (1)

The model H contains K subspace clusters C1, C2, ..., CK

and the non-clustered area S. According to our definition
of a Subspace Cluster, C1, C2, ..., CK might overlap in both
points and attributes set. The description of data D under
the model H is provided by describing C1, C2, ..., CK and
S separately. Therefore, L(D|H) consists of two parts: the
costs for the clusters and the non-clustered area.

L(D|H) =

K
∑

i=1

CCv(Ci) + CCv(S). (2)

In order to quantify the description length of a subspace
cluster Ci or the non-clustered area S, we need to agree on
an encoding scheme for Ci and S. For each cluster Ci, we
encode the corresponding data sub-matrix Xi of Ci column
by column. Specifically, for each assigned attribute Aj of
cluster Ci, we calculate the probabilities for all categories in
attribute Aj . Then any lossless coding method can be used
to compress the column of attribute Aj in matrix Xi, i.e.
Huffman coding. Practically we only need the coding length
for evaluation, but not the true bits stream. Besides, lossless
coding methods are lower bounded by the Shannon entropy.
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Therefore, we suggest to calculate the coding length of an
attribute Aj in cluster Ci with categories Vj = {Vj1 , ..., Vjm}
by the Shannon Entropy, which is defined as:

Entropy(P ) = −

Vjm
∑

k=Vj1

·Pk · log2Pk, (3)

P = PVj1
, ...PVjm

are the probabilities of the categories in

attribute Aj and cluster Ci, where Pk = |Xi(:,j)==k|
|Ci.obj|

and | · |

is the number of entries in a set.
Then the coding cost for cluster Ci is provided as:

CCv(Ci) =
∑

j

|Ci.obj| · Entropy(P ). (4)

The coding cost for the non-clustered area CCv(S) is calcu-
lated analogously to Eq. (4).
In addition to the data, we also need to describe the model

itself L(H). The model H contains the clustering assign-
ments and probabilities that are used to encode Ci and S in
Eq. (4). We need to describe both the object assignments
CCo and the attribute assignments CCa to encode the clus-
tering assignments for each subspace cluster Ci. In addition,
we need to encode the probabilities used to describe data
L(D|H) since they are essential for lossless decoding. These
probabilities are encoded as parameters CCr.

L(H) =
K
∑

i=1

(CCo(Ci)+CCa(Ci)+CCr(Ci))+CCr(S). (5)

Specifically, we describe the clustering assignments with
object ID tables and attribute ID tables. The object ID table
for a subspace cluster is a length N binary table. Objects
are assigned 1 if they belong to the cluster, and 0 otherwise.
As before, we suggest to encode the tables using an optimal
Shannon code. The coding cost for an object ID table of Ci

is calculated by its Shannon entropy:

CCo(i) = −N · (p(i) · log2p(i) + n(i) · log2n(i)), (6)

where p(i) = |Ci.obj|
N

is the percentage of 1s, n(i) = 1− p(i)
is the percentage of 0s. The coding cost for the attribute ID
table is derived analogously to Eq. (6).
We encode the probabilities used in Eq. (4) as param-

eters. Following [22], the cost for the probabilities can be
approximated by:

CCr(i) = 0.5 · |Param| · log2|Ci.obj|, (7)

where |Param| is the number of parameters or probabili-
ties. For each assigned attribute Aj of cluster Ci we need to
encode |Vj | probabilities. Therefore, |Param| =

∑

j
(|Vj |).

The parameter cost for the non-clustered part CCr(S) is
calculated analogously to Eq. (7).
The relevance of each cluster is validated by its contri-

bution to compress the data. Thus the proposed coding
scheme is perfectly suitable to evaluate relevant overlapping
subspace clusters on categorical data. Firstly, it allows over-
lapping clusters in both objects and attributes set, but pun-
ishes those redundancies, since the overlapping parts will be
encoded twice. Secondly, it avoids too complex models (too
many small clusters) by encoding the model itself (cluster-
ing assignments and the probabilities), thus large informa-
tive clusters are preferred. In summary, clustering with the
most relevant overlapping subspace clusters will achieve a
lower coding cost under the proposed coding scheme.

3. ALGORITHM
In this section, we present an effective and efficient al-

gorithm to identify the most relevant overlapping subspace
clusters. Our optimization goal is to find the clustering
model that best describes the categorical data set under the
proposed coding scheme in Section 2.

3.1 Minimum Coding Problem
The proposed coding scheme does not specify how to find

a good clustering; it can only say which of two cluster-
ings is better. The problem, which we call the Minimum
Coding Problem in the following, can be modeled as find-
ing sub-matrices (Subspace Cluster) that allow the highest
compression with respect to the proposed coding scheme.
Given a data set D with N objects and M attributes, there
are I = (

∑N

i

(

N

i

)

) ·(
∑M

j

(

M

j

)

) possible sub-matrices, further

there are
∑I

i

(

I

i

)

possible clusterings with different combina-
tions of sub-matrices. Obviously, an naive exhaustive search
for the optimal result is infeasible even for a small data set,
since the number of candidates |I| is exponential to M and
N . Even for the case that |I| is polynomial to M and N ,
the Minimum Coding Problem is a NP-hard problem.

Minimum Coding Problem is NP-hard. The Set Covering
Problem is known to be NP-hard [11]. Given a set of ele-
ments U and a set E of n sets, the Set Covering Problem
finds smallest subsets of E whose union cover all the ele-
ments in U . The Minimum Coding Problem aims at finding
sub-matrices of a data matrix X that cover all the entries
of X, but uses a different kind of cost function, i.e. the
proposed coding scheme. In the case that |I| is polynomial
and except of using a different cost function, the Minimum
Coding Problem is equivalent to the Set Covering Problem
or the Weighted Set Covering Problem. Since the proposed
coding function can be calculated in polynomial time, the
Minimum Coding Problem is NP-hard as well.

In summary, the Minimum Coding Problem is so difficult
that we need an efficient and effective heuristic algorithm to
achieve a local optimal result.

3.2 Algorithm ROCAT
The best-possible polynomial time approximation algo-

rithm for the Set Cover Problem is the greedy algorithm
[17]. At each stage, the set that contains the largest number
of uncovered elements is selected. However, the greedy algo-
rithm can not be used directly to solve the Minimum Coding
Problem due to the following reasons. Firstly, the Minimum
Coding Problem uses a different cost function, thus includ-
ing the set that contains the largest number of uncovered
elements may not reduce the proposed coding function. Sec-
ondly, the number of candidates |I| is exponential to M and
N , which makes the greedy algorithm exponential as well.

The proposed algorithm ROCAT is based on the greedy
idea as well, but some essential modifications are made to
solve the above two problems. Firstly, we need to iteratively
include the Subspace Cluster that reduces the overall cost
under the proposed coding function. Secondly, we need to
reduce the number of candidate Subspace Clusters for greedy
selection. Eq. (4) shows that including large Pure Subspace
Clusters will lead to a reduction of the coding cost. Addi-
tionally, searching for large Pure Subspace Clusters will re-
duce the candidate space to polynomial as well. Therefore,
we focus on selecting the Pure Subspace Clusters at first,
then post-process them to get the final Subspace Clusters.
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Algorithm 1 ROCAT

Input: Data set D = (X,V )
Output: Subspace clusters list SubClus

//Searching phase
SubClus = ∅; Queue queue = ∅; queue.Push(D);
while queue 6= ∅ do

Curr = queue.Pop;
C = FindBestPure(Curr, SubClus);
if Eq. (1) decreases with SubClus ∪ C then

SubClus.Add(C);
queue.PushAll(SplitSpace(Curr, C));

end if

end while

//Combining phase
Priority queue Pairs = ∅;
for Each pair of clusters Ci, Cj ∈ SubClus do

Overlap = |Ci.obj ∩ Cj .obj| · |Ci.att ∩ Cj .att|;
If Overlap > 0, Pairs.Push(Ci, Cj);

end for

while Pairs 6= ∅ do

Process Pairs.Pop as shown in Figure 3;
Choose one process with minimum Eq. (1);

end while

//Reassigning phase
while Convergence do

for Each cluster Ci ∈ SubClus do

Find all objects set O with same value in Ci.att;
Assign or Remove O to Ci.obj based on Eq.(1);

end for

for Each cluster Ci ∈ SubClus do

If Ci.obj changed, Re-select Ci.att based on Eq.(1);
end for

end while

return SubClus

The found Pure Subspace Clusters can overlap and exhibit
redundancies. Therefore, during post-processing we firstly
combine or split them to remove redundancies, then refine
the results by locally modifying clustering assignments.
More precisely, there are three phases in ROCAT: Search-

ing, Combining and Reassigning. Firstly, we iteratively in-
clude large Pure Subspace Clusters if the coding cost can
be reduced in the Searching phase. Then we merge or split
these candidates to remove redundancies in the Combining
phase. The candidates with higher redundancy will be pro-
cessed first. Finally, a reassignment step refines the result
by reassigning objects and re-selecting the attributes to the
candidate clusters. All phases are guided by the proposed
coding scheme, and so every step guaranties decreasing cod-
ing cost, which finally leads to reaching a local minimum.
The pseudocode of ROCAT is provided in Algorithm 1.
Searching Phase. We iteratively search for the best

relevant Pure Subspace Cluster that reduces the coding cost
most. The baseline coding cost is determined from a cluster-
ing model where all data points belong to the non-clustered
area. Eq. (4) shows that large Pure Subspace Cluster will
reduce the coding cost most, since the entropy of such clus-
ters is 0. For a given searching matrix we find m large
Pure Subspace Clusters, where m is the number of columns
of the matrix. The pseudocode for this procedure called
FindBestPure is depicted in Algorithm 2. The first clus-
ter only contains attribute a with minimum entropy (see
Eq. (3)) and objects with largest probability with respect

Algorithm 2 FindBestPure

Input: Matrix, SubClus
Output: C

PureClus = ∅;Att′ = ∅;
Obj = Matrix.obj;Att = Matrix.att;
while PureClus.Size < |Matrix.att| do

Find a ∈ Att with min Entropy regarding Obj;
Obj′ = {o ∈ Obj,Xoa = v, |o ∈ Obj| is max};
Att′.Add(a); Form cluster C with Obj′ and Att′;
PureClus.Add(C); Att.Remove(a); Obj = Obj′;

end while

C = {Ci ∈ PureClus, Eq.(1) is min for (SubClus ∪ Ci)};

return C;

to a. The second cluster is searched in the sub-matrix that
contains the objects in the first cluster only. We expand
the attribute set of the first cluster by the attribute that
has the minimum entropy within the reduced data objects.
This procedure is repeated until m Pure Subspace Clusters
are found (see Figure 2a). Finally, the one that leads to
minimum coding cost is returned as the best Pure Subspace
Cluster. The first searching matrix is the value matrix X of
data set D, in which we search for the best Pure Subspace
Cluster C. If including C decreases the coding cost, we split
the current searching matrix by C into two new ones (see
Figure 2b) and add both to the searching matrix queue. We
continue to search for best Pure Subspace Clusters until the
searching queue is empty.

Combining phase. The Pure Subspace Clusters found
in the Searching phase can overlap. We remove the re-
dundancies in the Combining phase. The redundancy of
each pair of clusters is modeled by their mutual informa-
tion, which can be approximated by the overlapping entries
between them. We firstly choose the two clusters Ci and Cj

with the largest redundancy. Then we calculate the value of
Eq. (1) for 4 different processing steps that are illustrated
in Figure 3. We can preserve both clusters, combine the
two clusters into one, preserve Cj and split Ci or preserve
Ci and split Cj . Finally, we choose the step that yields the
minimum coding cost. The phase is terminated when every
pair of overlapped clusters has been processed.

Reassigning phase. The described Combining phase re-
moves the redundancies by combining or splitting pairs of
clusters only, thus redundancies may still exist among clus-
ters. Besides, some objects may not be assigned to any
cluster yet. Therefore we post-process the clusters in this
phase to refine the result. Firstly, for each cluster Ci we

f

f

f

e

e

d

d

d

C1

C2

C = C3

CM

C: Cluster with the smallest coding cost

e

(a) Search the best C.

Searching space 1 Searching space 2

C

(b) Split the search Space.

Figure 2: Searching Phase.
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Figure 3: 4 processing candidates in Combining phase.

fix the attributes set and adjust the objects set. In detail,
objects set O ⊂ D.obj with identical value in Ci.att is as-
signed to Ci or removed from it if this decreases the coding
cost. Secondly, we fix the objects set and try to improve the
subspace of each cluster. Intuitively, data objects should be
compact in the subspace of Ci and sparse in the remaining
attributes. Therefore, we rank the attributes according to
their entropy (see Eq. (3)), since a compact attributes set
leads to a lower entropy while a sparse attributes set causes
a higher entropy. Finally, we compare the coding cost for the
top-ranked attributes sets and keep the best one if it yields
an improvement over the old attributes set. We iteratively
do the two steps until no attributes or objects set changes.
Those objects that still can not be assigned to any cluster
are naturally regarded as outliers.
Runtime Complexity. The runtime complexity of RO-

CAT for a data set with N objects and M attributes can
also be divided into 3 parts. In the Searching phase, we
need to go through β objects α times for each dimension,
where β ≤ N and α ≤ M . Suppose we find γ clusters,
controlled by MDL normally γ ≪ N,M . Therefore the run-
time complexity in this phase is O(α · β · γ · M), which is
equal to O(M2 ·N). In the Combining phase we need to go
through all pairs of clusters, so the runtime complexity in
this phase is O(γ2 ·κ ·ι), where κ < N and ι < M are the av-
erage number of objects and attributes in each pure cluster.
The runtime complexity in the Combining phase is equal to
O(M · N). In the Reassigning phase, in each iteration for
each cluster we need to go through its objects set and at-
tributes set once. Therefore the runtime complexity in this
phase is O(i · (N ·M)), which is equal to O(M ·N) since the
Reassigning phase normally converges very fast. The overall
runtime complexity of ROCAT therefore is O(M2 ·N).

4. EXPERIMENTS
In this section, we compare the performance of ROCAT

to 8 methods from different areas which are related to this
work. Firstly, we compare ROCAT to SUBCAD [9], CLICKS
[26] and CLIQUE [2], 3 algorithms for subspace clustering
on high-dimensional categorical data. CLIQUE is designed
for numerical data but can be easily extended for categorical
data. Moreover, we compare our work to two parameter-free
algorithms for categorical data, DHCC [25] and AT-DC [7].
Due to space limitations, we do not compare to classical cat-
egorical clustering methods, i.e. K-modes [14], ROCK [13],
COOLCAT [5]. These methods are not designed to find sub-
space clusters anyway and in addition DHCC [25] and AT-

DC [7] have shown to yield better clustering models. Finally,
we compare to 3 algorithms for informative itemset mining,
Tiling [12], MTV [18] and Hyper+ [24], which try to find
the most important itemsets. The itemset mining methods
can be treated as categorical subspace clustering, since the
detected itemsets can be regarded as the attributes sets of
subspace clusters, while the objects that support the item-
set forms the corresponding clusters. CLICKS and CLIQUE
are based on the idea of itemset mining as well.

We implement ROCAT and SUBCAD in Java and use
CLIQUE from the ELKI package [1]. The codes for all
the other methods are provided by the authors. ROCAT,
DHCC, AT-DC are parameter-free methods. SUBCAD and
Tiling need the number of clusters K, where we set the true
number for synthetic data and try different K for real data
and output the best results. Besides, the performance of
SUBCAD depends on its initialization, thus we report the
average results of 10 runs. MTV is proposed as a parameter-
free method, but as the execution time is too long and it
allows the user to set the number of desired itemsets, we set
it as for SUBCAD and Tiling. Two parameters are required
for CLICKS (α and minsup) and Hyper+ (false tolerant ra-
tio f and minsup) all from [0, 1]. We vary these parameters
from 0.1 to 0.9 with a step of 0.1 for all data sets and report
the best results. CLIQUE requires to pass grid size ξ and
density τ as input parameters. We fix ξ = 2 ∗W to fit cate-
gorical data, where W is the maximal number of categories.
Then we vary τ from 0.1 to 0.9 with step 0.1 and report the
best results. For Tiling, MTV and Hyper+, the points sets
that support the detected itemsets might not cover all the
points, thus we regard the rest as outliers like ROCAT.

To evaluate the cluster and subspace quality, we compare
pairwise Precision, Recall and F-Measure as introduced in
overlapping clustering literature [4, 8] for all data sets. A
pair of points sharing at least one cluster is regarded as test
outcome positive in clustering results or condition positive
in golden standard. Precision is calculated as

tp

tp+fp
and

Recall is obtained by
tp

tp+fn
, where tp, fp and fn are the

numbers of true positives, false positives and false negatives
respectively. F-Measure is the harmonic mean of Precision
and Recall. In addition, we use the confusion matrix and
the cluster content to evaluate the quality of all clusters and
subspaces for the used real world data.

All experiments are performed on a workstation with 2.9
GHz Intel Core i7 CPU and 8.0 GB RAM.

4.1 Synthetic Data
We generate 4 synthetic data sets with different charac-

teristics as depicted in Figure 4. Syn1 contains only over-
lapping attributes sets, whereas Syn2 contains only overlap-
ping points sets. Syn3 adheres both kinds of overlapping,
while Syn4 provides a more difficult scenario. The data sets
are generated by first creating Pure Subspace Clusters and
then randomly choosing 10% entries of each sub-matrix and
randomly changing their values. Afterwards we randomly
generate values for the remaining non-clustered area. The
number of categories for each attribute is randomly chosen
where the average number is 4. For each scenario we gener-
ate 5 data sets and report the average performance.

Cluster Quality. Table 1 summarizes the results. Due to
space limitations, the following part presents the F-Measure
results only. ROCAT is the only algorithm performing very
well on all the synthetic data sets with a F-Measure above
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Figure 4: Synthetic Data.

Table 1: Cluster Quality for Synthetic Data (F-Measure).

Syn1 Syn2 Syn3 Syn4
ROCAT 0.982 0.985 0.998 0.997

SUBCAD 0.953 0.603 0.798 0.761
CLICKS 0.499 0.604 0.508 0.489
CLIQUE 0.414 0.604 0.507 0.516
DHCC 0.794 0.826 0.856 0.768
AT-DC 0.895 0.794 0.818 0.704
Tiling 0.542 0.532 - -
MTV 0.509 0.496 0.439 0.526

Hyper+ 0.565 0.634 0.565 0.491

0.982. Note that these results are obtained without requiring
any input parameters from the user. Designed for categori-
cal subspace clustering, with suitable parametrization SUB-
CAD performs well on data set Syn1 containing clusters
overlapping in the attributes (F-Measure 0.95). However,
the performance of SUBCAD severely degrades if clusters
overlap in the objects (Syn2, F-Measure 0.6). CLICKS and
CLIQUE perform worse than ROCAT with a F-Measure of
about 0.5, since they output too many redundant clusters
(thousands or tens of thousands clusters). DHCC and AT-
DC perform fairly well on all the data sets with a F-Measure
of about 0.8. However, DHCC and AT-DC are limited to
find full-dimensional clusters and therefore do not provide
any information about the subspaces in which clusters are
contained. Besides, they only find partitioned clusters with-
out any overlapping information. The three informative
itemset mining methods Tiling, MTV and Hyper+ do not
perform well on our synthetic data sets either and yield F-
Measures of about 0.5. The results of Tiling on Syn3 and
Syn4 are discarded since the running time is over 1 hour.
Subspace Quality. In contrast to traditional clustering,

subspace clustering does not only aim at finding clusters but
also at identifying the subspaces containing clusters with
high accuracy. Table 2 shows that ROCAT is the only tech-
nique correctly identifying the subspaces in all cases with a
F-measure of 1. We discard DHCC and AT-DC, since they
do not support subspace clustering. SUBCAD performs well
only if there is some overlap in the attributes (Syn1, Syn3
and Syn4), but the performance severely degrades on Syn2
where we only have overlap in terms of objects with an F-
Measure of only 0.52. CLICKS and CLIQUE perform worst
because they output too many redundant clusters. CLIQUE
yields results with pairwise F-Measure values of 0 on Syn2,
Syn3 and Syn4 because it outputs subspaces with a single
attribute only. Tiling and MTV perform fairly well in terms
of detecting subspaces with a F-Measure of 0.82 and 0.72

Table 2: Subspace Quality for Synthetic Data (F-Measure).

Syn1 Syn2 Syn3 Syn4
ROCAT 1 1 1 1

SUBCAD 0.975 0.524 0.967 0.949
CLICKS 0.742 0.375 0.375 0.528
CLIQUE 0.414 0 0 0
Tiling 0.808 0.849 - -
MTV 0.831 0.777 0.638 0.621

Hyper+ 0.565 0.469 0.744 0.853

respectively. However, they only find the subsets of golden
standard attributes sets. Hyper+ performs better with the
more difficult scenarios Syn3 and Syn4 (F-Measure of about
0.8), but worse with the easier scenarios Syn1 and Syn2 (F-
Measure of about 0.5). Since Syn1 and Syn2 are relative
sparse, Hyper+ outputs more redundant clusters.

Robustness against outliers. We add different amounts
of noisy objects to each synthetic data set. Particularly, we
add 10% new records with random values in all attributes to
Syn1 forming the noisy data Syn1 − 10% and analogously
obtain other noisy data with different amounts. The pair-
wise F-Measure results are shown in Figure 5. We use the
same settings for each scenario and for all the algorithms.
Obviously ROCAT is extremely robust against noises. We
cannot observe any decline in performance on Syn3 and
Syn4. Moreover the decline is also negligible on the other
two data sets yielding F-Measures above 0.96 on all exam-
ples even in the presence of 40% outliers. All the other
algorithms severely degrade in performance in the presence
of outliers, since they do not support the detection of noisy
objects during the clustering process.

Scalability. To evaluate the scalability of ROCAT with
respect to data size and dimensionality, we generate data
sets using scenario 4 in Figure 4. For data size, each data
set contains 52 attributes and the number of objects is var-
ied from 10000 to 50000. For dimensionality, each data set
contains 960 points and the dimensionality is varied from 50
to 200. The parameter settings are the same as for Syn4.
Figure 6 summarizes the results. Some results are discarded
if the running time is longer than 1 hour, i.e. SUBCAD and
Tiling regarding data size and CLICKS and Tiling in terms
of dimensionality. Figure 6 depicts that all the methods
scale linearly in terms of number of objects. ROCAT per-
forms similarly as DHCC and Hyper+, which is faster than
MTV and slower than AT-DC, CLIQUE and CLICKS. With
respect to dimensionality, ROCAT scales similar as DHCC,
faster than SUBCAD and slower than AT-DC. CLIQUE,
MTV and Hyper+ scale worst for dimensionality, where the
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Figure 5: Robustness against outliers, syn1 to syn4 with outliers from left to right.
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Figure 6: Scalability of ROCAT and comparisons.

running time severely increases when the dimensionality is
added to 150 or 200.

4.2 Real World Data
In this section, we evaluate the performance of ROCAT

and comparison methods on three real-world data sets: Con-
gressional Votes, Mushroom and Molecular Biology (Splice-
junction Gene Sequences) Data Set, which are publicly avail-
able at the UCI machine learning repository 1. For these
data sets, only non-overlapping class labels are available and
there are only 2 or 3 classes. Moreover, most of the algo-
rithms output many subspace clusters, which are normally
the subsets of golden clusters. Therefore, Recall can not
manifest the cluster quality anymore and we only use Preci-
sion for evaluation. We try different settings for all required
parameters and choose the one with the best Precision as it
is done for synthetic data sets. The results for real data sets
are depicted in Table 3.

Table 3: Cluster Quality for Real Data (Precision).

Vote Mushroom Splice
ROCAT 0.812 0.999 0.861

SUBCAD 0.845 0.501 0.378
CLICKS 0.525 0.508 0.343
CLIQUE 0.545 0.501 0.384
DHCC 0.793 0.766 0.875

AT-DC 0.521 0.612 0.497
Tiling 0.681 - -
MTV 0.626 0.943 0.754

Hyper+ 0.753 0.624 0.384

Congressional Votes. The data set consists of 435 in-
stances, represented by 16 categorical attributes. There are
2 classes: democrat and republican. ROCAT and DHCC au-
tomatically output 2 clusters, while AT-DC finds 5 clusters.
SUBCAD, Tiling and MTV output 2 clusters. Additionally,

1http://archive.ics.uci.edu/ml

ROCAT, Tiling and MTV find an outlier cluster. CLICKS
outputs 39 clusters, CLIQUE gives 12 clusters and Hyper+
provides 114 clusters. From Table 3 we can see that ROCAT
outputs better clusters than most of the other methods with
a Precision of 0.812. The confusion matrices are depicted in
Table 4. Due to space limitation, we only show the results of
the top 6 methods and clusters with large number of points
for those with too many clusters. Clusters with high purity
are highlighted in bold.

ROCAT yields two clusters with very high purity, see.
Table 4a. Regarding subspace quality, the clusters found by
ROCAT are more compact in the detected subspace (Cp =
0.194) than in the whole space (Cp = 0.254) and the whole
data set (Cp = 0.531). The compactness value Cp ∈ [0, 1]
is defined in [9], and 0 means that all data values in the
corresponding features are the same. Specifically, let us take
a look at cluster 0 in Table 4a, which is a pure democrat
cluster. ROCAT outputs 12 attributes as the subspace for
this cluster. More than 95% of voters in this cluster have
the same opinion in 5 of the 12 subspace attributes, they
voted yes to aid to nicaraguan contras, yes to adoption of
the budget resolution, no to physician fee freeze, no to el
salvador aid, and yes to anti satellite test ban. Further,
at least 80% of the people vote for the same in the other
5 attributes, while more than 70% of them have the same
vote in the final two attributes. We get similar statistics for
the other cluster. Therefore, ROCAT does find meaningful
subspaces for the detected clusters. Since SUBCAD also
performs very well on this data set, let us take a look at
its democrat cluster as well (cluster 1 in Table 4e). The
corresponding subspace consists of 3 attributes only, which
represents much less information. ROCAT is able to detect
higher dimensional subspace clusters due to the ability to
label objects as outliers. In detail, the votes of the instances
labeled as outliers are nearly averagely distributed in these
10 attributes. Therefore the properties of the outlier points
are very different from those of the subspace clusters and
thus it makes sense that ROCAT considers them as outliers.
Tiling and MTV found outlier clusters as well. However,
they can only find smaller Pure Subspace Clusters, which
results in too many outliers. Some of the outliers that share
similar subspaces as clusters are not detected.

Mushroom. The Mushroom data set contains 8124 recor-
ds and 22 categorical attributes. Each record describes a
mushroom specimen regarding 22 properties (e.g. shape,
color, size) and is identified as definitely edible (4208 records)
or poisonous (3916 records). ROCAT, DHCC and AT-DC
automatically output 21, 10 and 6 clusters respectively. SUB-
CAD and MTV output 10 clusters. CLICKS outputs 260
clusters, CLIQUE gives 151 clusters and Hyper+ provides
183 clusters. Table 3 shows that ROCAT greatly outper-
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Table 4: Results on Congressional Votes.

(a) ROCAT.
Cluster Democrat Repub.

0 148 0

1 20 136

Noise 99 32

(b) DHCC.
Cluster Democrat Repub.

0 49 159

1 218 9

(c) Hyper+.
Cluster Democrat Repub.

0 9 106

1 107 2

92 28 20

(d) MTV.
Cluster Democrat Repub.

0 1 79

1 89 0

Noise 177 80

(e) SUBCAD.
Cluster Democrat Repub.

0 27 154

1 240 14

(f) Tiling.
Cluster Democrat Repub.

0 2 87

1 124 0

Noise 141 81

forms the other methods with a Precision of 0.999. The
confusion matrices of the top 6 methods are shown in Table
5. Not class-pure clusters are highlighted in bold.
Table 5a clearly shows that nearly all clusters detected by

ROCAT are of high purity, which is much better than the
other methods. Cluster 15 is the only one that contains sev-
eral differently labeled records. However, DHCC, AT-DC
and Hyper+ output clusters with hundreds of misclassified
objects, like Cluster 0 in Table 5b, cluster 1 in Table 5d
and cluster 5 in Table 5f. MTV is the second best algo-
rithm on Mushroom data regarding Precision, because most
of the clusters are Pure Subspace Clusters. However, there
are still many clusters with hundreds of misclassified ob-
jects, like cluster 9 in Table 5e. CLICKS outputs many high
purity clusters, however, some clusters contain 50 percent
misclassified records, like cluster 210 in Table 5c. Besides,
cluster 210 shows that the overlapping clusters provided by
CLICKS are highly redundant. Cluster 210 contains nearly
all the points and only one attribute as the subspace. In con-
trast ROCAT also finds overlapping clusters in the searching
phase, however the redundancy is removed during the Com-
bining and Reassigning phase. Finally, ROCAT outputs the
most relevant subspace clusters without any redundancy.
In terms of subspace quality, the compactnesses Cp of the

clusters found by ROCAT are 0.126 in the detected sub-
space, 0.171 in the whole space and 0.518 in the whole data
set. Let us take Cluster 2 in Table 5a as an example. The
1296 mushrooms in this cluster are all poisonous. The sub-
space that this cluster exists in is composed of 14 attributes.
Specifically, the cluster consists of specimen without bruises
and foul odor, free close broad gill, with identical shape, root
and surface of stalk, partial white veil, one large ring and
the color of spore is chocolate. Mushrooms with these fea-
tures are all poisonous. To validate the relevance of this
subspace attributes, we calculate the category distribution
of the remaining 8 attributes. The result indicates that the
mushrooms in these attributes have different category val-
ues. For example, the cap-shape attribute, contains one half
bell shaped and the other half flat records. Moreover, the
gill-color attribute exhibits buff, chocolate and green mush-
rooms. Similar statistics can also be found on other clusters.
Consequently, ROCAT can not only detect clusters, but can
find the subspaces as well.
Splice. This data set consists of 3190 instances and 60

categorical attributes. The instances are gene sequences and
attributes are the positions on the sequences. The value of
each attribute is a DNA base (A, T, G, C). Splice contains
class labels designating instances as either EI (767 records),

Table 5: Results on Mushroom.

(a) ROCAT.
Cluster Edible Poisonous

0 1728 0

1 0 1728

2 0 1296

3 512 0

4 192 0

5 0 256

6 768 0

7 96 0

8 0 192

9 0 288

10 192 0

11 288 0

12 192 0

13 96 0

14 0 72

15 48 32

16 48 0

17 48 0

18 0 8

19 0 8

20 0 36

(b) DHCC.
Cluster Edible Poisonous

0 2880 736

1 808 72

2 0 1296

3 216 0

4 0 1728

5 32 24

6 64 16

7 192 0

8 0 44

9 16 0

(c) CLICKS.
Cluster Edible Poisonous

43 1728 0

56 0 1728

201 2516 80

210 4016 3856

230 2016 8

(d) AT-DC.
Cluster Edible Poisonous

0 0 192

1 798 1223

2 62 1065

3 1296 0

4 1760 0

5 0 1728

(e) MTV.
Cluster Edible Poisonous

0 0 1728

1 1 1296

2 1728 0

3 768 0

4 288 192

5 512 0

6 480 0

7 528 0

8 384 48

9 496 224

Noise 192 524

(f) Hyper+.
Cluster Edible Poisonous

1 1152 0

2 16 1296

3 0 1152

5 855 353

10 1056 240

IE (768 records) or Neither (1655 records). EI and IE de-
note that exon/intron boundaries and intron/exon bound-
aries can be recognized in the sequence, respectively. Neither
states that there are neither EI nor IE sites.

ROCAT, DHCC and AT-DC automatically output 8, 6,
and 3 clusters respectively. Besides, ROCAT identifies 1,766
points as outliers. SUBCAD and MTV output 5 clusters.
CLICKS, CLIQUE and Hyper+ output 256, 241 and 399
clusters respectively. From Table 3 we can see that ROCAT
outperforms most of the other methods with a Precision of
0.861. The confusion matrices of top 6 methods are shown
in Table 6. Clusters with good quality regarding the number
of contained points and purity are highlighted in bold.

Table 6a clearly illustrates that the clusters found by RO-
CAT are of very high purity. Cluster 0 and Cluster 1 contain
the majority of all data points and are very pure. Cluster
0 is composed of 92% objects from class IE and Cluster 1
contains 97% objects from class EI. Besides, the outliers de-
tected by ROCAT are mainly composed of records in the
Neither class. DHCC and MTV also perform well on Spice.
The resulting clusters are very pure as well, like clusters 1
and 4 in Table 6f and cluster 0 and the noise cluster in Ta-
ble 6d. Although DHCC finds many clusters that mainly
contain records of the Neither class, it cannot label them
as outliers. On the other hand, MTV is able to find noisy
cluster, but also finds clusters of lower purity compared to
ROCAT. The other methods do not perform well on Splice.

The compactnesses Cp of the clusters found by ROCAT
are 0.249 in the detected subspace, 0.371 in the whole space
and 0.741 in the whole data set, which indicates the good
quality of detected subspaces. Particularly, we choose clus-
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Table 6: Results on Splice.

(a) ROCAT.
Cluster EI IE Neth.

0 45 703 16

1 629 16 10

2 1 17 0

3 0 8 0

4 15 0 0

5 9 0 0

6 8 0 0

7 10 0 0

Noise 101 36 1629

(b) AT-DC.
Cluster EI IE Neth.

0 55 78 513

1 151 644 1058

2 561 46 84

(c) Hyper+.
Cluster EI IE Neth.

0 374 8 3

52 153 75 127

197 300 302 709

349 130 4 442

(d) MTV.
Cluster EI IE Neth.

0 489 7 1

1 175 605 38

2 294 50 10

3 28 170 6

4 35 142 5

Noise 130 96 1601

(e) CLIQUE.
Cluster EI IE Neth.

0 174 158 380

95 161 197 378

179 227 123 402

240 136 153 393

(f) DHCC.
Cluster EI IE Neth.

0 15 10 419

1 668 19 28

2 40 3 393

3 11 0 369

4 28 728 34

5 5 8 412

ter 0 of ROCAT in Table 6a as an example to show the effec-
tiveness of ROCAT on detecting subspaces. The subspace is
made up of 25 out of the 60 original attributes. Among the
detected 25 attributes, there are 2 positions (28 and 29) with
the same values (A and G) for all sequences. Moreover 90
percent of the genes include C on position 27. Besides, there
are 10 and 12 positions where more than 80 and 60 percent
of all genes only take 2 different base values, respectively.
On the other hand, the 4 categories {A, T,G,C} are aver-
agely distributed in the remaining 35 positions by nearly all
the gene sequences in Cluster 0. Therefore, ROCAT outputs
reasonable subspaces for the Splice data set.
CLICKS, CLIQUE and Hyper+ output overlapping clus-

ters on Splice data set. However, there are too many clusters
with a large amount of redundancies. It is hard for users to
interpret such results directly. The other methods all pro-
vide partition-based results. In contrast, ROCAT finds rele-
vant overlapping subspace clusters on Splice data set. There
are 63 objects with multiple labels and 5 pairs of clusters
sharing objects. Cluster 1 and 4 in Table 6a for example,
share 15 records. However, they are detected in different
subspaces: 6 attributes for cluster 1 and the other 52 at-
tributes for cluster 4. Cluster 1 is very compact in the 6 de-
tected attributes, while the 15 instances in cluster 4 are also
very similar in further 52 attributes. Therefore, the over-
lapping clusters provide additional information over other
partition-based algorithms. Further, ROCAT only provides
the most relevant clusters without any redundancy, which
facilitates the interpretation of the clustering results.

5. RELATED WORK AND DISCUSSION
Compared to the large body of literature on clustering nu-

merical data only relatively few papers focus on clustering
categorical data. Some prominent approaches include the
basic algorithm K-modes [14] extending the famous k-means
algorithm to categorical data, ROCK [13] and COOLCAT
[5], to mention a few. It is often difficult to find clusters
in the full dimensional space even in moderate-dimensional
data sets, and a problem that is known as the curse of
dimensionality has been extensively studied. For an com-
prehensive survey on clustering high-dimensional numeri-
cal data see [16]. One of the most prominent technique is

CLIQUE [2]. This grid-based approach actually discretized
the numerical data and therefore is also applicable to cat-
egorical data. However, it enumerates all the possible sub-
space clusters which produces large redundancies.

Less algorithms have been designed for categorical sub-
space clustering. Ganti et al. [10] proposed the categorical
clustering method CACTUS, which builds a summary infor-
mation from the data set first and then projects the cluster
onto each attribute. It can be extended to find subspace
clusters, however though introduced in the paper, it was
not implemented by the authors [26]. Gan and Wu [9] pro-
posed the categorical subspace clustering algorithm SUB-
CAD. They define a cost function based on the idea that
data points in relevant subspaces are compact while being
sparse in irrelevant ones. LIMBO [3] is a hierarchical algo-
rithm based on an information bottleneck framework. They
try to maximise the mutual information between the clus-
ters and attribute values. A good cluster accurately predicts
the attribute values associated with objects of the cluster.
Although LIMBO is based on information theories it does
- in contrast to ROACT - not take into account the model
complexity. Furthermore, CACTUS, SUBCAD and LIMBO
are all partition-based method, which cannot find overlap-
ping clusters, and need input parameters. CLICKS [26]
is a subspace algorithm which constructs a k-partite graph
based on all the values of all attributes and then searches for
maximum cliques. CLICKS supports overlapping clustering,
however, it often includes too many redundant clusters. Be-
sides, the input parameters are hard to determine without
having deeper knowledge of the data.

Subspace clustering methods are either partition-based or
produce too many redundant clusters. To solve the redun-
dant problem, STATPC [19] and RESCU [20] are proposed
to find relevant non-redundant subspace clusters in high-
dimensional numerical data. However, they are not applica-
ble for categorical data. Moreover, they need many param-
eters to bound the searching space.

Pattern mining is another area related to the problem of
categorical subspace clustering. For instance, the frequent
itemsets found by pattern mining methods could be regarded
as the subspaces of clusters, while the objects that support
the itemsets can be seen as clusters. Among these pattern
mining algorithms, informative itemset mining, which finds
the most informative itemsets or ranks the importance of the
itemsets, is the most relative one. For instance, Tiling [12]
defines a tile as a region in the 0/1 database where all values
are 1 (Subspace Cluster), which aims at finding a tiling con-
sisting of at most K tiles covering the largest possible area.
Tiling can only find tiles without fault-tolerance, besides it
needs the number of tiles as input parameter. NoisyTile [15]
uses the maximum entropy distribution to measure the in-
formativeness of a tile or tiling and it supports noisy tiles.
However, it needs a fault-tolerant itemset mining algorithm,
i.e. [21], to generate the candidate noisy tiles. Moreover it
only gives a rank of informativeness on itemsets. Similarly
Hyper+ [24] tries to find overlapped hyper-rectangles (noisy
tiles) from candidates that are generated by an itemset min-
ing method with a different cost function. KRIMP [23] and
MTV [18] are designed for informative itemset mining based
on compression. KRIMP needs a minimum support value
as input parameter while MTV is parameter-free. However,
they do not support fault-tolerant itemsets thereby perform-
ing worse than ROCAT in our experiments. The cost func-
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tion of ROCAT is different and thus their searching or rank-
ing methods cannot be directly applied. Besides, ROCAT is
fully automatic while most of these algorithms need input
parameters. Furthermore, ROCAT scales better than these
algorithms in terms of both data size and dimensionality.
Only very few algorithms support parameter-free cluster-

ing of categorical data. Xiong et al. [25] proposes a di-
visive hierarchical algorithm DHCC, which iteratively splits
the higher level cluster by Multiple Correspondence Analysis
(MCA) and then refines the result. Cesario et al. [7] pro-
poses a top-down algorithm AT-DC, which iteratively gen-
erates and stabilizes clusters to achieve best quality. DHCC
and AT-DC are both parameter-free methods based on a
top-down splitting framework, thus they can only find parti-
tioning clusters but not overlapping clusters. Besides, DHCC
and AT-DC are greatly affected by outliers, where ROCAT
can handle them very well.

6. CONCLUSION
In this paper, we introduced ROCAT, an effective and

efficient algorithm for detecting the most relevant overlap-
ping subspace clusters on categorical data. Combining a
compression-based view on clustering with an effective search
algorithm, ROCAT identifies the most relevant subspace
clusters which may overlap in terms of the assigned objects
and/or the constituting attributes. The compression-based
approach of ROCAT naturally avoids undesired redundancy
of the result and guarantees that each detected cluster is rel-
evant since it contributes to compress the data.
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