
User Effort Minimization Through Adaptive Diversification

Mahbub Hasan Abhijith Kashyap Vagelis Hristidis Vassilis Tsotras

Computer Science and Engineering, UC Riverside
{hasanm, akash001, vagelis, tsotras}@cs.ucr.edu

ABSTRACT

Ambiguous queries, which are typical on search engines and

recommendation systems, often return a large number of results

from multiple interpretations. Given that many users often

perform their searches on limited size screens (e.g. mobile

phones), an important problem is which results to display first.

Recent work has suggested displaying a set of results (Top-k)

based on their relevance score with respect to the query and their

diversity with respect to each other. However, previous works

balance relevance and diversity mostly by a predefined fixed

way. In this paper, we show that for different search tasks there

is a different ideal balance of relevance and diversity. We

propose a principled method for adaptive diversification of

query results that minimizes the user effort to find the desired

results, by dynamically balancing the relevance and diversity at

each query step (e.g. when refining the query or viewing the

next page of results). We introduce a navigation cost model as a

means to estimate the effort required to navigate the query-

results, and show that the problem of estimating the ideal

amount of diversification at each step is NP-Hard. We propose

an efficient approximate algorithm to select a near-optimal

subset of the query results that minimizes the expected user

effort. Finally we demonstrate the efficacy and efficiency of our

solution in minimizing user effort, compared to state-of-the-art

ranking methods, by means of an extensive experimental

evaluation and a comprehensive user study on Amazon

Mechanical Turk.

Categories and Subject Descriptors

H.2.m [Database Management]: Miscellaneous

Keywords
Diversity; User Effort Minimization; Mobile Applications

1. INTRODUCTION
Now-a-days mobile devices have become increasingly popular

for searching. The majority of ecommerce sales are currently

performed through smartphones or tablets, and specifically

about 35% exclusively through smartphones [27]. Keyword-

based interfaces have been widely adopted as the preferred

query method because they are simple and intuitive.

Nevertheless, keyword queries are often ambiguous, that is, they

have multiple interpretations, and consequently generate many

results. As an example, consider the query “memory” which

might refer to computer memory (RAM, ROM, Flash etc.) or the

song Memory from the acclaimed musical Cats. For such

ambiguous queries, a ranking that considers only relevance (e.g.,

[8]) might return a large number of similar results from just one

interpretation of the query, e.g. DDR3 RAM, and a user with

different search intent (say music) might not find any result that

is relevant to her in the first page (Top-k) of the results.

To deal with query ambiguity, recently several search

applications have incorporated diversification while ranking

results to improve the user experience. Examples of such

applications include web search [4][6], recommendation systems

[9][18][19][20], semi-structured databases [23], graph search

[2], and document summarization [15]. A diversified ranking

includes not only relevant (as judged by the underlying ranking

function) results, but also results that may be less relevant and

are diverse with respect to other results in the ranked list. By

covering results from multiple interpretations of a query,

diversified ranking thereby increases the probability of the user

finding desired results based on her query intent [1]. Of course,

just focusing on diversity and displaying the set of most diverse

results is ineffective since some of these results may have low

relevance. In its most general form, the problem of query result

diversification is modeled as a bi-criteria optimization problem

[1][5], which uses a trade-off parameter (to tune the relative

effect of relevance and diversity factors during ranking. Using ,

the impact of the diversity factor can be increased for highly

ambiguous queries so as to include more diverse elements in the

result set; whereas for very specific (non-ambiguous) queries,

this factor can be decreased to prevent inclusion of results of

lesser relevance.

As an example, consider Figure 1a which depicts the result set

returned for the query „Camera‟ (on a structured dataset like

Amazon.com). As seen in the figure, the result set includes

products from several categories including DSLR, Compact

cameras and Accessories. Each result has a set of features (e.g.

Brand, Megapixel, Zoom etc.). Note that the Lenses of DSLR

cameras are considered in the Accessory category, therefore

DSLR cameras do not have a Zoom feature. Since there is a

limited paginated interface available to the user for displaying

the results (mobile screen size etc.), Figures 1b-1d show the

Top-3 results (first page) selected by varying the trade-off

parameter between diversity and relevance. Note that the

relevance ranking in this example assigns a higher score to

DSLRs. For a user shopping for DSLR cameras, the ranking

shown in Figure 1b, which prefers relevance over diversity,

might be sufficient. However, a user looking for a camera Lens

would prefer the highly diversified ranking shown in Figure 1d,

where she could click on the Lens attribute value for attribute

Type in the Accessory category to see more camera lenses.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

KDD '14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08…$15.00.

http://dx.doi.org/10.1145/2623330.2623610

203

https://squirrelmail.cs.ucr.edu/src/compose.php?send_to=Permissions%40acm.org
http://dx.doi.org/10.1145/2623330.2623610

Note that, for a given query, the user navigation cost (the user

“effort” or actions required to find the desired results) varies for

different choices of the trade-off parameter (see Figure 2, for the

query “Camera” using the MMR algorithm [10] to implement

diversified ranking). Moreover, in Section 5 (Figure 7), we show

experimentally, that the best value of the trade-off parameter

varies for different queries. However, no previous work

addresses the problem of computing a trade-off parameter that

will minimize the user effort. Instead, many hard-code it to a

reasonable value (fixing the relative weight between relevance

and diversity). Recently, several methods have been proposed

[4][16] to learn the trade-off parameter . Unfortunately, these

methods depend on training data provided by the experts which

are expensive to collect or might not be available. Further, they

compute a single trade-off parameter for a query, whereas we

show how this trade-off changes as the query refinement or

results viewing progress.

Because of the display interface, finding the desired result to a

particular query might involve several steps. If the user does not

find her desired result on the first page, then she might take

additional actions to find the result, such as: (a) scan additional

pages looking for the results of interest, or, (b) refine the query

by clicking on a displayed attribute value to focus on a subset of

the original results. Our goal in this paper is to compute at each

step a set of k results (corresponding to a page in the user‟s

interface) that dynamically balances diversity and relevance

such that the expected user navigation cost is minimized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
320

330

340

350

360

370

380

390

400

410

Trade-off Parameter (λ)

N
av

ig
at

io
n

C
o

st

Figure 2: Navigation Cost vs. for Query Camera

What makes the problem difficult is that when the query is

posed, neither the target result nor the sequence of actions the

user will execute to find it, are known. Therefore, to compute

the best set of results to display at each step, we must

probabilistically consider all the unknown future user actions,

which is a key challenge of our solution. For example, if the user

poses the (highly ambiguous) query Camera while her target

object is Lens, she will need further actions if we provide the

results in Figure 1b (high relevance) in the first page. A higher

diversified result set (like the one in Figure 1d) would have been

more appropriate. If instead, a more specific query is posed, like

DSLR Camera, then higher relevance and lower diversity is

preferable, because the user may (with high probability) satisfy

her search with just one page. Note that this dynamic balancing

of relevance versus diversity can also occur, within the

subsequent navigation steps of the same query, as it is

progressively refined by the user (e.g. after posing the Camera

query and getting the results in Figure 1d, a user interested in

lens might refine by selecting the condition Type: Lens).

To this end, we propose a user navigation model that considers

factors such as the characteristics of the query result, the user‟s

familiarity with various refine conditions, the number of pages

the user would have to navigate and the expected number of

navigation steps required to reach a result of interest. The

resulting model is adaptive to user actions and constructs a

diversified result that minimizes the expected user effort. This is

in contrast to the fixed diversity vs. relevance trade-off achieved

by previous techniques, which leads to a much higher navigation

cost, as shown in our experiments. In summary, we make the

following contributions:

1. A user navigation cost model that captures the actions of a

user navigating a result set (Section 2).

2. The cost model is necessarily probabilistic since it

computes the cost based on possible future actions taken by

the user while navigating a result set. We propose ways of

estimating the expected cost in Section 3.

3. We show that the problem of computing the best set of

results to minimize the expected user effort is NP-hard and

propose efficient approximate algorithms to compute an

appropriately balanced diversified result-set that minimizes

the expected user navigation cost (Section 4).

4. We present the results of an extensive experimental

evaluation of the proposed techniques compared to state-of-

the-art ranking methods using two real datasets (Section 5).

5. We validate our cost model and measure user navigation

time with a user study at Amazon Mechanical Turk, which

Figure 1: A subset of results of the query Camera and associated ranked list of results

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

4 Camera DSLR Brand: Nikon Megapixel: 12.0 0.6

5 Camera DSLR Brand: Sony Megapixel: 12.0 0.6

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

7 Camera Compact
Brand: Panasonic Zoom: 5x

0.6
Megapixel: 16.0

8 Camera Compact
Brand: Fujifilm Zoom: 5x

0.4
Megapixel: 12.2

9 Camera Compact
Brand: Kodak Zoom: 3x

0.2
Megapixel: 10.0

10 Camera Accessory Type: Lens
Focal Length:

18 – 55 mm
0.3

11 Camera Accessory Type: Lens
Focal Length:

55 – 300 mm
0.2

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

10 Camera Accessory Type: Lens
Focal Length: 18

– 55 mm
0.3

(b) High Relevance and Low Diversity

(c) Moderate Relevance and Moderate Diversity

(d) Low Relevance and High Diversity(a) Result Set

204

shows that our methods outperform the state-of-the-art

(Section 6).

Related work is discussed in Section 7 and we conclude in

Section 8.

2. PROBLEM DEFINITION
We proceed with the problem setting (Section 2.1), and describe

our navigation cost model (Section 2.2), which mimics the

actions of a user navigating query results and quantifies the user

effort, that is, assigns cost to the user actions. We then conclude

with a formal problem definition (Section 2.3).

2.1 Preliminaries
Database: Let { } be a database consisting of

tuples and { } be a set of attributes. Each attribute

has an associated domain consisting of un-

interpreted constants. The database is heterogeneous and each

tuple has a value for a subset of attributes and a

null value for the rest.

Query: The user exploring , navigates the results of a

query which could be a keyword query. Each attribute-value

combination in the results of , denoted by , is a

condition and can be used to refine the query. We denote the set

of all conditions of by ().

Example: Figure 1a shows a result-set for Q: Camera, where

the user could refine the query by selecting condition Brand

= Canon, which would return the two Canon cameras (#1, #3).

Paginated Result Subset : Typically, the result set is too

large to fit into a single page on the user interface. These results

are therefore paginated and only a small subset of size

 is presented to the user at a time. The size of the result

subset depends on the display size of the device. For example, e-

commerce and web-search interfaces typically show 10-15

results at a time on desktop browsers and 5 on mobile devices.

The latter are the key focus of this paper, which are even more

challenging because the screen size does not allow displaying

other result information like facets (see discussion in Section 7).

Example: Figures 1b-d show examples of various paginated

result subsets (with) for the query results in Figure 1a.

The choice of the subset is critical in determining the

effectiveness of a search interface. In particular, should

contain relevant and a diverse set of results.

Let be the relevance score of a result , where a

higher score means the result is more relevant to query .

Existing object relevance ranking functions like [8] can be used

to compute . Also, let be the distance

between two results . For instance, can be

the Euclidean distance between the vectors representing and

 . Currently, most systems model search result diversification

as a bi-criteria optimization problem that balances the effect of

relevance and diversity using a trade-off parameter

as follows:

 | |

(

 ∑

 ∑ ()

)

In Section 1, we described several scenarios where this bi-

criteria optimization is problematic. The primary reason is the

difficulty in selecting a value of for a given navigation step of

a query.

Instead of fixing the trade-off between relevance and diversity,

we model the diversification problem in terms of the user

navigation effort. We do this by designing a holistic model of

the user navigating a list of paginated results that considers all

the actions taken by a user, discussed next.

2.2 Navigation Cost Model
Users execute queries on a search interface to satisfy a certain

information need, which may be satisfied by a certain objects in

the query result. Given a user query and corresponding result

set , the query interface presents the first page of results

 of size to the user. Each result consists of a set of

attribute-value conditions. These conditions are selectable (e.g.

by clicking on the associated link), thereby refining the query.

Note that the search interface does not provide any facet

conditions to refine the results, but the results serve this dual

purpose. Such an arrangement is desirable especially in mobile

devices where there is not enough space to show both results

and facet conditions.

NAVIGATE ()

1. COMPUTE-PAGE(

2. READ-RESULT

3. If search need satisfied by

4. TERMINATE

5. Choose one of the following:

6. (a): Select a condition to refine;

 REFINE :

 (b): NEXT-PAGE():

7. NAVIGATE()

Figure 3: Diversification Navigation Model

In particular, the user chooses among the following possible

actions at each step:

1. If the user‟s search need is satisfied on the

current page, the search is terminated.

2. () The user can navigate to the next

page of the result set in the hope of satisfying her search

need there. In this case, the search interface computes the

next page of results and presents these results to the user.

3. Typically, a user has a notion of the

properties or conditions that a target (desired) object must

have. If one of these conditions is found in one of the

displayed results, then the user can refine her query by

selecting (clicking) this condition c. The query is then

refined to . For example, if a user is looking for

Compact cameras while reading through the result subset in

Figure 1d, she could click on the Compact attribute value.

This user repeatedly executes REFINE and NEXT-PAGE

actions until the target object is found, at which point the

user TERMINATEs the navigation. This iterative result

navigation process is captured by the recursive navigation

model presented in Figure 3. At the beginning of each step

(line 1), the system computes a page of results to be

presented to the user. The user reads all the results,

represented by READ-RESULT() and the rest of the

navigation repeats recursively.

In our model, the user executes an action based on the displayed

result set. Such navigation models, where the user only selects

205

actions proposed by the system, have been used extensively in

the navigation of keyword-based query results [12][21][22].

Each user action (REFINE, READ-RESULT, NEXT-PAGE) is

an effort on the part of the user. The total effort of the user to

satisfy her search need is the navigation cost.

As an example, consider the user navigating the result set in

Figure 1a using the initial pagination in Figure 1d. Further

assume that the user is interested in Lenses with 55-300 mm

Focal Length (#11). As a first step, the user would read (READ-

RESULT) the first page of 3 results. Next, the user REFINEs by

Type: Lens to see only the Lens results, since she is interested in

Lenses. Up to this point the navigation cost consists of 3 READ-

RESULT actions and 1 REFINE. Upon REFINE, the interface

presents the 2 lens results (#10,#11), which the user reads and

finds the desired object, thereby TERMINATING the

navigation. The overall navigation cost is READ-RESULT +

 REFINE.

If we assume that reading a result incurs unit cost (as was

assumed in [12]), and the cost of REFINE (click) action is a

constant greater than one , the total cost is 5 1 + 1 3

= 8. This assumption about the constant reflects our belief that

REFINE incurs more user effort than reading a result, since the

user has to consider all the conditions and then decide on a

condition to click on. Similarly, the user could do NEXT-PAGE

instead of REFINE if she does not find any useful condition to

refine on. The cost of NEXT-PAGE is β.

2.3 Problem Statement
The overall navigation cost depends on the result subset that

is presented to the user at each step. For example, if the user in

the example above is presented with a paginated result subset

containing the Camera Lens with 55-300 Focal Length (#11),

then she would find the desired target object on the first page

and TERMINATE the search. In this case, the total navigation

cost is 3 (3 READ-RESULTs).

Therefore, we need to compute a paginated result subset

 , that will minimize the expected navigation cost, by

appropriately balancing relevance and diversity. Let

 () denote the cost of navigating the result set of

a query , using the paginated result subset . Then the

minimal cost of navigation, , is the cost of the

paginated result set

, amongst the (
| |

) k-subsets, that has

the minimum cost. Formally,

Problem 1: Minimum Cost Diversification(): Given a

query and its result set | | , compute the result

subset

 of size (|

|) such that the expected

navigation cost incurred to satisfy the user‟s search need is

minimized.

 () =
 () (2)

Next, we show how to estimate (), the cost of a

result subset for a result set .

3. NAVIGATION COST ESTIMATION
The navigation cost of a result set , computed as discussed in

Section 2.2, depends on the actions taken by the user in reaching

a target object and can be exactly determined after the

navigation is complete. However, solution to the minimum cost

diversification problem (Problem 1) requires the selection of

result subset before knowing what sequence of actions the

user will perform after viewing . In this section, we propose a

way to estimate the cost of navigating a result subset by

means of a probabilistic cost model that assigns uncertainty

measures to each possible action a user can take and computes

the expected navigation cost for a given .

We begin by introducing the probability measures that capture

the uncertainty in user action. In the user navigation model in

Figure 3, the user, at each navigation step, has three choices –

(1) TERMINATE the navigation (line 3) (2) REFINE by a

condition (line 6a) and (3) to go to the NEXT-PAGE of results

(line 6b), and we introduce probability measures for each of

these actions.

 (: This is the probability

that the user finds the result she is looking for in , and

therefore terminates the navigation process.

 : This is the probability that

the user chooses to refine the result set by adding a

condition to the query . On the other hand, the user

could instead choose to see the next page of the results.

Since these are the only two choices supported by the

navigation model, the probability that the user chooses the

NEXT-PAGE action is .

 : If the user

chooses to REFINE, then she also has to select a condition

 to refine by. The probability captures the

probability that the user selects a condition .

Given the probabilities defined above, the entire navigation

process, which contains several iterations, can be expressed by

the following recursive cost equation (cost(.,.,.) is overloaded):

 () | |

[

 { ∑ ()

}

 (())]

This cost equation can be described as follows:

1. The user reads the results in , and decides about her next

action. The cost for reading the results is | | (assuming

unit cost for the READ-RESULT action). If the user finds

the target object then she terminates the navigation.

2. Otherwise, with probability , she can either refine

the query or go to the next page,

a. The user decides to refine the query with probability

 Let be the cost for a REFINE action. As the user

can select any condition we consider the

cost associated with each selection candidate (shown

as ()) weighted by the value.

b. With probability the user decides to go to the next

page. is the cost of a NEXT-PAGE action, and the

cost entailed by the NEXT-PAGE action and the cost

of the rest navigation is .

The cost equation (Equation 3) depends on the key probability

terms , and . We present specific and reasonable

methods to compute the probabilities used in our cost model.

Depending on the specific application, other computation

methods may more closely model the user. The computation of

these probabilities is orthogonal to the algorithms presented in

Section 4, which are the key contributions of this paper.

Computing : This is the probability that the user finds the

target object in and therefore terminates the navigation. Since

206

the target object is not known before navigation, a reasonable

assumption is the probability of a potential target object is

proportional to its relevance score . If the user finds the

target object amongst the result subset , then she can

terminate the navigation. Therefore, we estimate the probability

of termination as being proportional to the sum of relevance

scores in the paginated result subset and normalize it with

sum of relevance scores of all the results in as

∑
∑

⁄ . The choice of the relevance

function is orthogonal to this paper and can be computed in

various ways such as TF-IDF [13] for keyword queries or by

using Probabilistic Information Retrieval models [8].

Computing : The key assumption we make is that the user

has a high likelihood of refining the query when the results in

 are diverse. This is because a diverse covers multiple

aspects of the query by containing results from different

interpretations [7], [24]. For example, the result subset in Figure

1d contains results from different categories and also contains a

variety of attribute values, and hence offers many refinement

opportunities, which translated to a high In contrast, the

result subset of Figure 1b would translate to a low

To compute the diversity of a result subset , we need to

compute the distance between all pairs of results [5].

Distance measures like Euclidean distance, Cosine Similarity

can be used for this purpose and again the choice is orthogonal

to this paper. The diversity of can be defined as

 ∑
. Hence, can be computed as

∑

 | | ∑
, where the denominator is

used for normalization and is equal to the maximum possible

diversity of a k-result set from . Finding the maximum

diversity in the denominator is similar to the maximum clique

problem, and therefore known to be NP-Complete [5]. We use

 [10] to compute the maximum diversity for our

experiments (in Section 5).

Computing : This probability shows how likely the user will

refine the query by selecting condition , which depends

on the user‟s preferences or her familiarity to this condition. A

reasonable choice is that is proportional to the frequency of

condition in the result set as described in [12].

4. ADAPTIVE DIVERSIFICATION
Exact Algorithm: To compute the paginated result set such that

cost of navigating is minimized, it is necessary to compute

the cost, using Equation 3, of each subset of size and

selecting the subset

 that has the minimum cost. We show

that this problem (Problem 1) is NP-hard [28], by reducing Set

Cover to a simplified version of this problem. There are two

sources of complexity that make the exact algorithm

computationally expensive:

1. Computing the navigation cost of each subset of

size requires evaluating Equation 3 for (| |

)

subsets.

2. Since Equation 3 is recursive, to solve it we must compute

for each condition c in (more formally), the

minimum cost (according to Equation 2), which in turn

requires computing the minimum cost over all subsets of

 (Figure 4(a)). This process continues recursively for

deeper levels of the recursion tree. The depth of the

recursion is | | in the worst case, since each refinement

may eliminate just one result in . The width of each

recursive step, i.e., the cardinality of the summation, can be

up to , which is the number of attribute values

displayed at each step.

Approach overview: We attack the problem by proposing

efficient techniques to approximate both sources of complexity.

We first show how to effectively eliminate the recursion from

Equation 3 using a sequence of two relaxations. Then we show

how to avoid evaluating the simplified equation for every

combination of result subsets using a greedy algorithm.

Our approach starts by eliminating recursion from Equation 3

using two relaxations. Figure 4 shows the recursive tree to

compute Equation 3 and the simplifications achieved through

the two relaxation steps.

Relaxation 1 (Eliminate Conditions from Recursion Tree):
The navigation cost function (Equation 3) has two recursive

calls – one each for REFINE and NEXT-PAGE actions,

respectively to compute the navigation cost for subsequent

navigation steps.

Intuitively, the navigation cost of a result-set is proportional

to its size | |, since for a larger result-set the user must

explore more results to reach the results of interest. This

assumption is backed by our experiments in Section 5

(specifically Figure 6) and we use this observation to simplify

the cost equation. Formally,

 () | |

The cost associated with REFINE actions, denoted by (

), is the navigation cost incurred to reach the target

results from the refined result set . Based on the

observation above, this cost is proportional to size of , i.e.

 () | |

Based on observations and and ignoring the constants of

proportionality, the cost of the REFINE by a condition can be

estimated as:

 () (| | | |⁄) ()

Analogously, the cost of NEXT-PAGE action ((

)) can be approximated as
| |

| |
 (), since the

user is left with of the original result-set after a

NEXT_PAGE action.

By plugging in these approximations and rearranging terms, our

cost equation can be rewritten as:

 () | |

{

 () [∑

| |

| |

| |

| |
]

}

Equation 4 replaces the recursive calls of REFINE and NEXT-

PAGE actions (in Equation 3) with ()(Figure 4(b)).

However, it still requires evaluation of all possible k-subsets of

RQ to compute () according to Equation 2. We

address this by the next relaxation.

Relaxation 2 (Eliminate Result Subsets from Recursion

Tree): Our goal is to find the result subset that minimizes

Equation 4. But note that this same optimal Sk is used to

207

compute () according to Equation 2. Hence, we can

replace () by () in Equation 4.

Then, by solving for (), Equation 4 can be further

simplified as:

 ()

| | { }

 { ∑
| |

| |

| |

| |
}

Equation 5 has no recursion, and can be easily computed for a

given . Note that Relaxation 2 does not incur any

approximation error, in contrast to Relaxation 1.

Given the relaxed cost Equation 5, we still need to compute the

cost of all possible k-result subsets of to find the optimal

 with minimum cost.

N-P

Relax. 1 Relax. 2

(a) (b) (c)

Figure 4: Elimination of Recursion Using Relaxations 1&2

Algorithm:

Input: Query and Result Set

Output: Set of results,

1.

2.

3.

4.
5.
6. for p 2 to k do

7. ()

8.

9.
10. return

Figure 5: Adaptive Diversification Algorithm

For that, we present an efficient greedy algorithm, called

Adaptive Diversification Algorithm (ADA), which incrementally

builds the result set by adding at each step the result with

minimum incremental navigation cost. At each iteration p

(), makes use of two sets: the set of remaining

results and the set of selected results , with | | . Note

that = , the set of all the results. Initially and

 . At each iteration, computes ()

(using Equation 5) for each result and moves the result

with minimum navigation cost to . This process continues

until we select results (i.e.).

Figure 5 shows the pseudo-code of our diversification

algorithm . The first result is chosen as the object with

highest relevance score (line 3) since we want to provide to the

user the most relevant object. After that, in each iteration,

ranks the results in according to Equation 5 with replaced

by , removes the result with minimum navigation cost

from , and adds it in the selected result set (line 6-9). The

algorithm terminates when we select results.

Complexity: The running time of depends on the cost

computation time in line 7, which is invoked up to | |

times. To compute () using Equation 5, we

need to calculate , the cost of all possible

REFINEments (∑
| |

| |) and of NEXT-PAGE action

(
| |

| |
). Computation of and (Section 3) is dominated by

their denominators, which depend on the result set and .

However, in ADA we only need to compute these probabilities

for the original result-set , which takes time | | and

 (| |)(using), respectively. The computation of

all ments cost ∑
| |

| | requires

| | time. The cost of NEXT-PAGE and can be computed

in time. Therefore, the total running time of is

O | | (assuming | |). In practice, the

execution time is much faster than this worst case bound

(Section 5).

Example: Let us apply to the result set in Figure 1a. We

are interested to find the 3 results returned by . But before

that we analyze Equation 5 more closely to infer the implication

of the cost equation. The cost of a result set is minimized

when the denominator of the right hand side in Equation 5 is

maximized, which implies having higher value. But when the

result set size | | is high, we have smaller value (since the

denominator part of in Section 3 is high). Therefore, the

navigation cost depends on the cost of and NEXT-

PAGE actions. Since the NEXT-PAGE cost (denoted as
| |

| |
)

is the same for all result sets, the navigation cost is minimized

for the result set containing highly diverse results with

popular selective conditions (i.e., with high Pc). As | |

becomes smaller, dominates cost equation, therefore cost is

minimized for highly relevant results.

The conclusion of the above discussion is that, initially when

| | is large (small), ADA prefers diversity over relevance.

As | | becomes smaller (higher) in the next iterations, ADA

increases preference to relevance, and provides highly relevant

results.

Returning to the running example, initially prefers

diversity over relevance in Figure 1a since | | is relatively

large. The first result is the result #1 as it has the highest

relevance score (diversity is not a factor when selecting the first

result, which is always selected by relevance). The second result

would be from Compact or Accessory categories. Assuming all

the conditions in Compact and Accessory categories have similar

selectivity (similar Pc and similar diversity with respect to #1),

the second result is #6 because of its high relevance score. The

third result would be from the Accessory category to increase

diversity, and specifically #10 since it has higher relevance score

than #11. Thus would return result set in Figure 1d. In the

next iteration, as RQ becomes smaller, ADA will return more

relevant result-set snippets like the one in Figure 1c, and in the

last iterations like the ones in Figure 1b.

5. EXPERIMENTAL EVALUATION
In this section, we describe the results of an extensive

experimental evaluation of our approach. The setup, including

methodology, datasets, baselines and metrics used, is described

in Section 5.1. Sections 5.2 and 5.3 demonstrate the quality and

performance of diversification algorithms in terms of user

208

navigation cost and CPU time. All experiments were performed

on a 2.5GHz Intel Core i5 CPU, 8GB RAM machine running

Windows 7. We used MySQL as our database and all algorithms

were implemented in Java.

5.1 Setup

Datasets: We evaluated our approach on two datasets:

1. UsedCars: This dataset consists of a listing of 15,191 used

cars, extracted from a popular car-trade website. Each tuple

has 10 attributes, 4 categorical and the rest numeric.

2. Electronics: This dataset consists of 65K products from the

Electronics product catalog of a popular e-commerce

website. The products were sampled from various

Electronics categories, such as Laptops, Desktops,

Cameras, Printers etc. and therefore the dataset is highly

heterogeneous in nature. The dataset has a total of 86 (51

categorical and 35 numeric) attributes, but each product has

values for a small subset (avg. 12) of these attributes and

null for the rest.

Queries: We selected 8 queries each from the two datasets.

These queries are shown in Table 1 along with result-set sizes.

Note that we are interested optimizing the navigation of diverse

result sets, and therefore these queries were selected to be

deliberately ambiguous so as to include results from a variety of

categories. For that, we use single-keyword queries, although

our methods support any number of keywords or query

conditions; more keywords could be used if larger e-commerce

datasets were available. For each query, we select a target

object, which we assume the user is looking for, i.e. the

navigation terminates when the user locates this target object.

Table 1: Query Set

Electronics UsedCars

Query ID Query # Results Query ID Query # Results

Q1 Kodak 193 Q9 Honda 789

Q2 Dell 125 Q10 BMW 730

Q3 Canon 1097 Q11 2001 2034

Q4 Nikon 511 Q12 2005 920

Q5 Camcorder 789 Q13 Dallas 2932

Q6 Speaker 737 Q14 Irving 1064

Q7 Desktop 394 Q15 Black 2163

Q8 Laptop 518 Q16 Blue 1183

State-of-the-art: Current approaches to diversification use a

fixed relevance-vs.-diversity trade-off parameter (in Equation

1) to diversify rankings. However, as we argued in Section 1,

setting this parameter is not always obvious and depends on the

characteristics of the result set. In Section 5.2, we provide

evidence to further support this claim. We compare with two

commonly used approaches for ranking results:

1. Baseline 1 (REL): In this approach, the results were

ranked solely based on relevance, i.e. by setting in

Equation 1.

2. Baseline 2 (MMR-): As a second baseline, we

choose the Maximal Marginal Relevance (MMR)

diversification algorithm [10]. MMR computes a diversified

result-set by balancing relevance and diversity based on

Equation 1. MMR is an approximation algorithm since

computing a diversified set based on Equation 1 is NP-

Complete [5]. In our experiments, we set giving

equal weight to diversity and relevance factors.

Note that, for a fair comparison, we used MMR both as a

baseline and to compute in ADA algorithm. We chose MMR

since it outperforms other algorithms in terms of time and

generates quality results [5]. However, our use of MMR does not

preclude the use of other diversification algorithms, e.g. GMC,

GNE [5], which may produce better quality results but take

more time compared to MMR [10].

Next, we describe the relevance and diversity

measures used in our experimental evaluation. We reemphasize

that computing these measures is orthogonal to our problem and

any suitable and versions can be plugged in to our

approach. Due to space limitations we omit experiments with

additional measures.

Computing : Computing diversity involves computing

distance between two results. We use the sum of

distances between the attribute values

 () √∑ ()

 . For numeric

attributes, we used the Manhattan distance and for categorical

attributes, the Kronecker delta function was used between the

values of attribute.

Computing : In a structured result-set, the relevance of a

result depends on relevance of its attribute values. We estimated

the relevance of each attribute value by computing the Google

Trends scores (see [8] for more details). The rationale for using

Google Trends is based on the idea that the relevance of a term

can be based on its frequency in a query workload [8].

Since results in satisfy all conditions in , the relevance

scorewas computed using the unspecified attributes in by ,

as was proposed by [8], where unspecified refers to an attribute

that does not match any query condition. For example in Figure

1a, all the records satisfy the query condition "Camera" with

their Product attribute. Therefore, we compute the relevance

score using the unspecified attributes (e.g. Category, Brand).

Methodology: For each query in Table 1, we picked a result

 as the target object. The chance of selecting a result as

the target object is proportional to its relevance score, which

means the results with high relevance scores have a higher

chance to be selected as the target object. We then simulated the

user navigation until target is reached. Since multiple

navigation paths can lead to the target object , we used a

randomized simulation [12] to select navigation paths. Note that,

given a set of displayed results , the set of conditions that can

lead to is . We assumed that the user will select

one of these conditions, or go to next page, according to the

navigation probabilities (Section 3). For example in Figure 1a,

if the target object is #4, and we select Figure 1c as the

displayed result subset, the conditions that lead to #4 are

"Product=Camera", "Category = DSLR" and "Brand = Nikon".

The user would go to the next page if she does not like or know

these three conditions. Therefore, in our simulation, we

computed as ∏ (the probability that the

user would not like any condition in) and as

 . In case of refinement, the user could refine the query

by selecting any condition in . The choice of

selecting a condition is proportional to .

We used in the experiments in Section 5.2, 5.3, and

showed the findings averaged over 1000 runs (50 random target

objects, and 20 runs per target object) for each query.

209

5.2 Qualitative Analysis

In this section, we present the experimental results of the

qualitative evaluation of the three different algorithms (REL,

MMR and our algorithm ADA). Figures 6(a), 6(b) show the

average navigation cost and average number of and

 actions incurred respectively by each algorithm to

reach the target object for the queries of Electronics dataset.

Note that, all algorithms require similar number of REFINE

actions (i.e. selection of target object conditions) to filter out

enough undesired objects (Figure 6b). Since displays

results from popular categories, it requires a larger number of

 actions to display the conditions of the less

relevant target objects. has a fixed ratio of relevance and

diversity, which happens to work well for some queries with

small number of results like Q1, Q2 and Q4, but is ineffective for

other queries like Q3, Q6, where more NEXT PAGE actions are

required to find the target object conditions.

ADA outperforms the other two algorithms, because of its

adaptive nature. As discussed in Section 4, when | | is high,

ADA prefers diversity over relevance to pick the Top-k results.

As becomes more selective over iterations, ADA switches to

preferring relevance. Therefore, by balancing diversity and

relevance based on the result set at hand, ADA displays the

target object conditions much earlier compared to the other two

algorithms. This results in fewer actions, and thus

reduces the navigation cost of ADA algorithm (Figure 6a). The

improvement of ADA over the other two algorithms is more

pronounced for the queries that have large number of results

(e.g. Q3, Q5, Q6).

Figures 6(c), 6(d) show the average cost and actions respectively

for the queries of dataset. Similar to the Electronics

dataset, ADA outperforms the other two algorithms for all the

queries of . Since the dataset is

homogeneous, and perform slightly better as

compared to Electronics dataset, due to less variability in

attribute conditions.

Table 2: Average Navigation Cost for the Datasets

Datasets

Average Navigation Cost (α=1, β=1)

REL ADA
MMR

(λ = 0.5)
Expected
Optimal

Electronics 48.25 30.625 38.75 28.525

UsedCars 30.5 19.15 24.375 18.512

We also compare the average navigation cost incurred by the

three algorithms, REL, MMR and ADA, with the expected

optimal navigation cost computed by solving Equations 2 and 3.

Due to the exponential complexity, we compute the expected

optimal cost for smaller sizes of initial result sets (RQ) and query

parameter (k). Table 2 shows the average navigation costs for

|RQ| = 100 and k = 5 across all queries for the two datasets

Electronics and . We see that our algorithm ADA is

only 1.07 and 1.03 times worse than the optimal for the

Electronics and datasets respectively. For MMR and

REL, these factors are 1.36 (1.32) and 1.69 (1.65) respectively

for the Electronics () dataset.

Figure 7 shows average navigation cost of with increasing

trade-off (λ) values (high λ value implies preference to diversity

over relevance) for four queries from Table 1. The results of the

other queries are shown in [28]. Since ADA is independent of

value, therefore the cost of is shown as a straight line. We

skipped since it incurs higher cost compared to ADA and

 . As seen from Figure 7, there is no value for λ that is

optimal for a given dataset or even for a particular query.

Intuitively λ should change adaptively, at each navigation step,

depending on the characteristics of the result set. By balancing

the relative importance of relevance and diversity adaptively at

each step, ADA shows better performance (on average)

compared to with a fixed .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

40

50

60

70

80

90

λ

A
v
g
.
N

a
v
ig

a
ti
o
n
 C

o
s
t

ADA MMR

Q1 Q2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

55

60

65

70

75

80

85

90

95

100

λ

A
v
g
.
N

a
v
ig

a
ti
o
n
 C

o
s
t

ADA MMR

Q9 Q10

Figure 7: Average Navigation Cost vs. Tradeoff (λ) values

We also perform experiments while varying the model

parameters (). The results depict that the overall cost of ADA

increases at a slower rate with the model parameters compared

to and [28].

5.3 Performance Analysis

We now present the performance results of REL, MMR and our

ADA algorithms. Table 3 shows the average (across all queries)

computation (CPU) times taken by each of these algorithms to

reach the target object. As expected, the relevance-only

algorithm (REL) takes the shortest time among all the

algorithms. Computing diversity is a costly operation since it

involves computation of distance between all pairs of results. As

a result any algorithm that incorporates diversity is much slower

as compared to REL; our implementation of MMR is three times

slower as REL. Our algorithm (ADA) performs this distance

computation over all future navigations and therefore is slower

than MMR by a factor of 1.6. While ADA takes more time to

compute the set of paginated results, it is very effective in

reducing the time or effort incurred by users to navigate such

diverse result sets (discussed in Section 6).

Table 3: Avg. CPU Time for the Datasets

Datasets
CPU Time (sec)

REL ADA MMR (λ = 0.5)

Electronics 0.02 0.106 0.066

UsedCars 0.058 0.156 0.107

0

50

100

150

200

250
A

v
g
.
N

a
v
ig

a
ti
o
n
 C

o
s
t

REL ADA MMR (λ = 0.5)

R A M R A M R A M R A M R A M R A M R A M R A M0

5

10

15

20

25

30

A
v
g
.
N

u
m

b
e
r

o
f
A

c
ti
o
n
s

Refine Next Page
R – REL A – ADA M – MMR (λ = 0.5)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

20

40

60

80

100

120

140

A
v
g
.
N

a
v
ig

a
ti
o
n
 C

o
s
t REL ADA MMR (λ = 0.5)

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
R A M R A M RA M RA M R A M R A M RA M R A M0

2

4

6

8

10

12

14

A
v
g
.
N

u
m

b
e
r

o
f
A

c
ti
o
n
s

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Refine Next Page
R – REL A – ADA M – MMR (λ = 0.5)

(a) (b) (c) (d)

Figure 6: (a) Avg. Navigation Cost (b) Avg. Number of Refine and Next Page actions incurred for Electronics Dataset using =1,

β=1. (c), (d) show the same figures respectively for UsedCars Dataset

210

Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Avg.0

10

20

30

40

50

60

70

80

90

100

N
av

ig
at

io
n
 T

im
e

(s
ec

) REL ADA MMR (λ = 0.5) DIV

(a)

R AMD R AMD R AMD R AMD R AMD R AMD R AMD RAMD R AMD R AMD R AMD0

2

4

6

8

10

12

14

16

N
u
m

b
er

 o
f

A
ct

io
n
s Refine Next Page

R – REL A – ADA M – MMR (λ = 0.5) D – DIV

Q17
Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Avg.

(b)

Figure 8. (a) Avg. User Navigation Time, (b) Avg. number of Refine and Next Page Actions incurred by the users for 10 different

queries using UsedCars dataset (for =1, β=1)

We also examine the scalability of our algorithm (ADA) by

applying it to large result set and find that our algorithm scales

almost linearly with result set size [28].

6. USER STUDY
In this section, we present the results of a user study that we

conducted at Amazon Mechanical Turk (MTurk) [26] using the

 dataset. We selected three keyword queries (e.g.,

‘Ford’), and for each query we created a set of search tasks;

each search task specifies a set of target conditions (e.g., find a

car with Color = Green). We asked the users, starting from the

results of the initial keyword query, to find the best car

(according to the relevance score defined in Section 5.1) that

satisfies all the target conditions.

Table 4: Query Set for User Study

Query
ID

Initial
Query

Initial Result
Set Size

Target Conditions
of Results contain all

Target Conditions

Q17 Toyota 1470 Color = Green 86

Q18 Ford 2747 City = Grand Prairie 133

Q19 Ford 2747
Model = F150 Regular CAB,
State = MD, Color = Maroon

1

Q20 Ford 2747 Color = Maroon 42

Q21 Ford 2747 City = Ashland 75

Q22 Ford 2747 Color = Beige 40

Q23 Toyota 1470 City = Richmond 88

Q24 Toyota 1470 Color = Red; 79

Q25 Ford 2747 Color = Gold; 116

Q26 BMW 730
Model = Convertible,

City = Fairfax, Color = Grey;
1

We repeated the experiment for the four different ranking

algorithms: REL (λ), MMR (λ), ADA (λ-

independent) and a diversity-only baseline, DIV, which

constructs the k-result subset greedily at each step by

maximizing the score function (Equation 1); i.e. with λ .

The reason that we asked users to find the best and not any

result is to avoid giving an unfair advantage to methods biased

towards diversity like DIV which may help the user to find a

satisfying result, but this result may have low relevance. Table 4

shows the list of initial queries, their results‟ cardinality, the

target conditions, and the cardinality of results that satisfy all the

target conditions. The page size is set to 10. Each task was

completed by 36 MTurk users; we present the average results.

Figures 8(a) and 8(b) show the average time taken and average

number of actions executed respectively, by users to find the

best target object. As seen in Figure 8(b), if we have more target

conditions (e.g. Q19, Q26), using DIV (diversity-only), the

chances of getting a desired target condition on a given page

increases. This increases the probability of REFINE action and,

therefore, DIV performs better (Figure 8(b)) than the other two

baselines REL, MMR, and slightly worse that our algorithm

ADA, which prefers diversity over relevance during the initial

steps. If we decrease the number of target conditions, the

performance of DIV degrades, especially if multiple results

satisfy all target conditions (as seen for the other queries), since

the user needs to find the best and not any object. For Q17 and

Q24, MMR () and ADA perform similarly, which

intuitively shows that 0.5 happens to be the ideal balance

between relevance and diversity for these two queries. This is

clearly not that case for other queries such as Q23, where MMR

takes longer time even compared to the relevance-based REL.

As shown by the average values in Figure 8(a), ADA reduces the

navigation time significantly compared to all other algorithms.

On average, ADA is faster by a factor of 2.04 (p-value 0.004),

1.97 (p-value 0.001) and 1.66 (p-value 0.0002) over REL, MMR

and DIV, respectively. This significant improvement is because

of the smaller number of actions incurred by ADA compared to

the other three algorithms (Figure 8(b)).

Figure 9 shows the actual user navigation time vs. the estimated

cost (using our cost model in Section 3) for the 10 different

queries using the four different algorithms, where for each query

we average over all users. The figure and the trend line show a

clear correlation, and specifically a linear relationship, which

confirms the validity of the cost model.

20 40 60 80 100 120 140 160 18010

20

30

40

50

60

70

80

90

Estimated Navigation Cost

A
ct

u
al

 N
av

ig
at

io
n
 T

im
e

(s
ec

)

Rel ADA MMR (λ = 0.5) Div

Figure 9. Estimated Cost vs. Actual Time

7. RELATED WORK
Diversification has recently been introduced in search engines

and recommendation systems to increase user satisfaction.

[6][17] use coverage approaches to cover diverse aspects of

search space. [17] expresses the degree of diversification by a

setting a parameter which also determines the size of final result

set. [6] operates on Web documents and selects diverse

documents to cover many different interpretations of the query.

[18] provides diversity using the content of the

recommendations and the past history of the user. [19] presents

a method based on medoids clustering to select a set of diverse

and highly-ranked items to recommend to a user. However, none

of these approaches considers the problem of how to minimize

the total navigation cost incurred by the user to find the target

object by considering subsequent navigation steps. In this paper,

we have addressed this concern by introducing a navigation cost

model (Section 2).

Diversification is being used along with relevance in

[1][3][5][10]. Most of these approaches (e.g. [5]) consider

211

diversification as a bi-criteria optimization, which uses a fixed

trade-off value for relevance and diversity. In Section 5, we have

shown that different search tasks require different ideal trade-off

value. Some learning methods [4][16] have been proposed to

learn the trade-off value. However, these methods rely on

training data provided by the experts which is expensive and

difficult to obtain in all cases. [25] proposes a dynamic ranking

model for interactive user feedback. The ranking is based on the

history of other users. In contrast, our ranking function aims to

minimize the expected user effort. Threshold based techniques, a

variant of the optimization problem, have been proposed in [11]

to solve the diversification problem. These approaches consider

a threshold value of relevance and maximize the diversity

between results (or vice versa). Setting a threshold value is hard,

and depends on the domains. Moreover, [5] shows a comparison

between several diversification approaches where MMR (the

baseline used in this paper) clearly outperforms the threshold

based approach in both quality and time. Our approach does not

require the threshold value, and can adaptively set the balance

between relevance and diversity for different tasks.

Faceted Search has been shown to be effective in reducing the

user effort and time required to navigate large result sets of

structured databases. For a given query, these approaches

compute the best facet conditions and matching results to

display to the user [12][21][22]. However, this model is not

suitable for our setting of limited screen size, where we cannot

display separately faceted conditions and results. Instead, our

results serve a dual purpose, since a user can click on results‟

conditions to refine her navigation.

8. CONCLUSIONS
We described a novel framework for adaptive diversification of

query results that dynamically adjusts the relevance and

diversity of displayed results with the aim to minimize the total

expected user navigation cost to reach the desired target objects.

Based on this framework, we prove that the problem is NP-hard

and we present an efficient approximate algorithm that

computes the best set results to display, by dynamically

balancing relevance and diversity at each query step. We

experimentally evaluate the performance of our proposed

algorithm and show that it outperforms state-of-the-art

algorithms. A Mechanical Turk user study confirms our findings

and validates our navigation model. As a future work, we plan to

extend our navigation model where the user can update/delete

the selected conditions during the navigation process.

9. ACKNOWLEDGMENTS
This project was partially supported by NSF grants IIS-1161997,

IIS-1216007, and a Samsung GRO grant.

10. REFERENCES
[1] C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A.

Ashkan, S. Buttcher, I. MacKinnon. Novelty and Diversity

in Information Retrieval Evaluation. In SIGIR 2008.

[2] H. Tong, J. He, Z. Wen, R. Konuru, and C. Lin. Diversified

Ranking on Large Graphs: An Optimization Viewpoint.In

KDD 2011.

[3] E. Demidova, P. Fankhauser, X. Zhou, and W. Nejdl.

DivQ: Diversification for Keyword Search over Structured

Databases. In SIGIR 2010.

[4] R. Santos, C. Macdonald, and I. Ounis. Selectively

Diversifying Web Search Results. In CIKM 2010.

[5] M. Vieira, H. Razente, M. Barioni, M. Hadjieleftheriou, D.

Srivastava, C. Traina, and V. Tsotras. On Query Result

Diversification. In ICDE 2011.

[6] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying Search Results. In WSDM 2009.

[7] F. Radlinski, P. Bennett, B. Carterette, and T. Joachims.

Redundancy, Diversity and Interdependent Document

Relevance. In SIGIR Forum, 43(2):46-52, 2009.

[8] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum.

Probabilistic Ranking of Database Query Results. In

VLDB 2004.

[9] K. Raman, P. Shivaswamy,and T. Joachims. Online

Learning to Diversity from Implicit Feedback. In KDD

2012.

[10] J. Carbonell and J. Goldstein. The Use of MMR, Diversity-

Based Reranking for Reordering Documents and Producing

Summaries. In SIGIR 1998.

[11] L. Qin, J. X. Yu, and L. Chang: Diversifying Top-K

Results, In VLDB 2012.

[12] A. Kashyap, V. Hristidis, and M. Petropoulos. FACeTOR:

Cost-Driven Exploration of Faceted Query Results. In

CIKM 2010.

[13] M. J. McGill, G. Salton. Introduction to Modern

Information Retrieval. McGraw-Hill, 1986.

[14] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and

S. A. Yahia. Efficient Computation of Diverse Query

Results. In ICDE 2008.

[15] K. Liu, E. Terzi, and T. Grandison. Highlighting Diverse

Concepts in Documents. In SDM 2009.

[16] Y. Yue, and T. Joachims. Predicting Diverse Subsets Using

Structural SVMs. In ICML 2008.

[17] M. Drosou, E. Pitoura: DisC Diversity: Result

Diversification based on Dissimilarity and Coverage, In

VLDB 2013.

[18] C. Yu, L. Lakshmanan, and S. A.Yahia. It Takes Variety to

Make a World: Diversification in Recommender Systems.

In EDBT 2009.

[19] R. Boim, T. Milo, S. Novgorodov. Diversification and

Refinement in Collaborative Filtering Recommender. In

CIKM 2011.

[20] C.-N. Ziegler, S. McNee, J. Konstan, G. Lausen: Improving

Recommendation Lists through Topic Diversification, in

WWW 2005.

[21] S. B. Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania.

Minimum-Effort Driven Dynamic Faceted Search in

Structured Databases. In CIKM 2008.

[22] K. Chakrabarti, S. Chaudhuri, and S. Hwang. Automatic

Categorization of Query Results. In SIGMOD 2004.

[23] M. Hasan, A. Mueen, V. Tsotras and E. Keogh.

Diversifying Query Results on Semi-Structured Data. In

CIKM 2012.

[24] M. Hasan, A. Mueen and V. Tsotras. Distributed

Diversification of Large Datasets. In IC2E 2014.

[25] C. Brandt, T. Joachims, Y. Yue and J. Bank. Dynamic

Ranked Retrieval. In WSDM 2011.

[26] Amazon Mechanical Turk. https://www.mturk.com

[27] eMarketer Report

http://www.emarketer.com/Article/Smartphones-Tablets-

Drive-Faster-Growth-Ecommerce-Sales/1009835, 2013

[28] Extended Version of the paper appears at:

http://www.cs.ucr.edu/~hasanm/adadiv.pdf

212

https://www.mturk.com/
http://www.emarketer.com/Article/Smartphones-Tablets-Drive-Faster-Growth-Ecommerce-Sales/1009835
http://www.emarketer.com/Article/Smartphones-Tablets-Drive-Faster-Growth-Ecommerce-Sales/1009835
http://www.cs.ucr.edu/~hasanm/adadiv.pdf

