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ABSTRACT 

Ambiguous queries, which are typical on search engines and 

recommendation systems, often return a large number of results 

from multiple interpretations. Given that many users often 

perform their searches on limited size screens (e.g. mobile 

phones), an important problem is which results to display first. 

Recent work has suggested displaying a set of results (Top-k) 

based on their relevance score with respect to the query and their 

diversity with respect to each other. However, previous works 

balance relevance and diversity mostly by a predefined fixed 

way. In this paper, we show that for different search tasks there 

is a different ideal balance of relevance and diversity. We 

propose a principled method for adaptive diversification of 

query results that minimizes the user effort to find the desired 

results, by dynamically balancing the relevance and diversity at 

each query step (e.g. when refining the query or viewing the 

next page of results). We introduce a navigation cost model as a 

means to estimate the effort required to navigate the query-

results, and show that the problem of estimating the ideal 

amount of diversification at each step is NP-Hard. We propose 

an efficient approximate algorithm to select a near-optimal 

subset of the query results that minimizes the expected user 

effort. Finally we demonstrate the efficacy and efficiency of our 

solution in minimizing user effort, compared to state-of-the-art 

ranking methods, by means of an extensive experimental 

evaluation and a comprehensive user study on Amazon 

Mechanical Turk. 
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1. INTRODUCTION 
Now-a-days mobile devices have become increasingly popular 

for searching. The majority of ecommerce sales are currently 

performed through smartphones or tablets, and specifically 

about 35% exclusively through smartphones [27]. Keyword-

based interfaces have been widely adopted as the preferred 

query method because they are simple and intuitive. 

Nevertheless, keyword queries are often ambiguous, that is, they 

have multiple interpretations, and consequently generate many 

results. As an example, consider the query “memory” which 

might refer to computer memory (RAM, ROM, Flash etc.) or the 

song Memory from the acclaimed musical Cats. For such 

ambiguous queries, a ranking that considers only relevance (e.g., 

[8]) might return a large number of similar results from just one 

interpretation of the query, e.g. DDR3 RAM, and a user with 

different search intent (say music) might not find any result that 

is relevant to her in the first page (Top-k) of the results. 

To deal with query ambiguity, recently several search 

applications have incorporated diversification while ranking 

results to improve the user experience. Examples of such 

applications include web search [4][6], recommendation systems 

[9][18][19][20], semi-structured databases [23], graph search 

[2], and document summarization [15]. A diversified ranking 

includes not only relevant (as judged by the underlying ranking 

function) results, but also results that may be less relevant and 

are diverse with respect to other results in the ranked list. By 

covering results from multiple interpretations of a query, 

diversified ranking thereby increases the probability of the user 

finding desired results based on her query intent [1]. Of course, 

just focusing on diversity and displaying the set of most diverse 

results is ineffective since some of these results may have low 

relevance. In its most general form, the problem of query result 

diversification is modeled as a bi-criteria optimization problem 

[1][5], which uses a trade-off parameter (   to tune the relative 

effect of relevance and diversity factors during ranking. Using  , 

the impact of the diversity factor can be increased for highly 

ambiguous queries so as to include more diverse elements in the 

result set; whereas for very specific (non-ambiguous) queries, 

this factor can be decreased to prevent inclusion of results of 

lesser relevance.  

As an example, consider Figure 1a which depicts the result set 

returned for the query „Camera‟ (on a structured dataset like 

Amazon.com). As seen in the figure, the result set includes 

products from several categories including DSLR, Compact 

cameras and Accessories. Each result has a set of features (e.g. 

Brand, Megapixel, Zoom etc.). Note that the Lenses of DSLR 

cameras are considered in the Accessory category, therefore 

DSLR cameras do not have a Zoom feature. Since there is a 

limited paginated interface available to the user for displaying 

the results (mobile screen size etc.), Figures 1b-1d show the 

Top-3 results (first page) selected by varying the trade-off 

parameter between diversity and relevance. Note that the 

relevance ranking in this example assigns a higher score to 

DSLRs.  For a user shopping for DSLR cameras, the ranking 

shown in Figure 1b, which prefers relevance over diversity, 

might be sufficient. However, a user looking for a camera Lens 

would prefer the highly diversified ranking shown in Figure 1d, 

where she could click on the Lens attribute value for attribute 

Type in the Accessory category to see more camera lenses. 
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Note that, for a given query, the user navigation cost (the user 

“effort” or actions required to find the desired results) varies for 

different choices of the trade-off parameter (see Figure 2, for the 

query “Camera” using the MMR algorithm [10] to implement 

diversified ranking). Moreover, in Section 5 (Figure 7), we show 

experimentally, that the best value of the trade-off parameter   

varies for different queries. However, no previous work 

addresses the problem of computing a trade-off parameter that 

will minimize the user effort. Instead, many hard-code it to a 

reasonable value (fixing the relative weight between relevance 

and diversity). Recently, several methods have been proposed 

[4][16] to learn the trade-off parameter  . Unfortunately, these 

methods depend on training data provided by the experts which 

are expensive to collect or might not be available. Further, they 

compute a single trade-off parameter for a query, whereas we 

show how this trade-off changes as the query refinement or 

results viewing progress. 

Because of the display interface, finding the desired result to a 

particular query might involve several steps. If the user does not 

find her desired result on the first page, then she might take 

additional actions to find the result, such as: (a) scan additional 

pages looking for the results of interest, or, (b) refine the query 

by clicking on a displayed attribute value to focus on a subset of 

the original results. Our goal in this paper is to compute at each 

step a set of k results (corresponding to a page in the user‟s 

interface) that dynamically balances diversity and relevance 

such that the expected user navigation cost is minimized. 
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Figure 2:  Navigation Cost vs.   for Query Camera 

What makes the problem difficult is that when the query is 

posed, neither the target result nor the sequence of actions the 

user will execute to find it, are known. Therefore, to compute 

the best set of results to display at each step, we must 

probabilistically consider all the unknown future user actions, 

which is a key challenge of our solution. For example, if the user 

poses the (highly ambiguous) query Camera while her target 

object is Lens, she will need further actions if we provide the 

results in Figure 1b (high relevance) in the first page. A higher 

diversified result set (like the one in Figure 1d) would have been 

more appropriate. If instead, a more specific query is posed, like 

DSLR Camera, then higher relevance and lower diversity is 

preferable, because the user may (with high probability) satisfy 

her search with just one page. Note that this dynamic balancing 

of relevance versus diversity can also occur, within the 

subsequent navigation steps of the same query, as it is 

progressively refined by the user (e.g. after posing the Camera 

query and getting the results in Figure 1d, a user interested in 

lens might refine by selecting the condition Type: Lens). 

To this end, we propose a user navigation model that considers 

factors such as the characteristics of the query result, the user‟s 

familiarity with various refine conditions, the number of pages 

the user would have to navigate and the expected number of 

navigation steps required to reach a result of interest. The 

resulting model is adaptive to user actions and constructs a 

diversified result that minimizes the expected user effort. This is 

in contrast to the fixed diversity vs. relevance trade-off achieved 

by previous techniques, which leads to a much higher navigation 

cost, as shown in our experiments. In summary, we make the 

following contributions:  

1. A user navigation cost model that captures the actions of a 

user navigating a result set (Section 2).  

2. The cost model is necessarily probabilistic since it 

computes the cost based on possible future actions taken by 

the user while navigating a result set.  We propose ways of 

estimating the expected cost in Section 3.  

3. We show that the problem of computing the best set of 

results to minimize the expected user effort is NP-hard and 

propose efficient approximate algorithms to compute an 

appropriately balanced diversified result-set that minimizes 

the expected user navigation cost (Section 4).   

4. We present the results of an extensive experimental 

evaluation of the proposed techniques compared to state-of-

the-art ranking methods using two real datasets (Section 5).      

5. We validate our cost model and measure user navigation 

time with a user study at Amazon Mechanical Turk, which 

Figure 1:  A subset of results of the query Camera and associated ranked list of results 

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

4 Camera DSLR Brand: Nikon Megapixel: 12.0 0.6

5 Camera DSLR Brand: Sony Megapixel: 12.0 0.6

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

7 Camera Compact
Brand: Panasonic Zoom: 5x

0.6
Megapixel: 16.0

8 Camera Compact
Brand: Fujifilm Zoom: 5x

0.4
Megapixel: 12.2

9 Camera Compact
Brand: Kodak Zoom: 3x

0.2
Megapixel: 10.0

10 Camera Accessory Type: Lens
Focal Length: 

18 – 55 mm
0.3

11 Camera Accessory Type: Lens
Focal Length: 

55 – 300 mm
0.2

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

3 Camera DSLR Brand: Canon Megapixel: 14.0 0.7

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

2 Camera DSLR Brand: Nikon Megapixel: 16.0 0.8

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

ID Product Category Features Rel

1 Camera DSLR Brand: Canon Megapixel: 18.0 0.9

6 Camera Compact
Brand: Panasonic Zoom: 7x

0.6
Megapixel: 14.0

10 Camera Accessory Type: Lens
Focal Length: 18 

– 55 mm
0.3

(b) High Relevance and Low Diversity

(c) Moderate Relevance and Moderate Diversity

(d) Low Relevance and High Diversity(a) Result Set
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shows that our methods outperform the state-of-the-art 

(Section 6). 

Related work is discussed in Section 7 and we conclude in 

Section 8. 

2. PROBLEM DEFINITION 
We proceed with the problem setting (Section 2.1), and describe 

our navigation cost model (Section 2.2), which mimics the 

actions of a user navigating query results and quantifies the user 

effort, that is, assigns cost to the user actions. We then conclude 

with a formal problem definition (Section 2.3).  

2.1 Preliminaries 
Database: Let   {       } be a database consisting of   

tuples and   {       } be a set of attributes. Each attribute 

has an associated domain          consisting of un-

interpreted constants. The database   is heterogeneous and each 

tuple      has a value for a subset      of attributes and a 

null     value for the rest.  

Query: The user exploring  , navigates the results      of a 

query   which could be a keyword query. Each attribute-value 

combination in the results of   , denoted by        , is a 

condition and can be used to refine the query. We denote the set 

of all conditions of    by  (  ). 

Example: Figure 1a shows a result-set    for Q: Camera, where 

the user could refine the query by selecting condition     Brand 

= Canon, which would return the two Canon cameras (#1, #3). 

Paginated Result Subset   : Typically, the result set    is too 

large to fit into a single page on the user interface. These results 

are therefore paginated and only a small subset       of size 

  is presented to the user at a time. The size   of the result 

subset depends on the display size of the device. For example, e-

commerce and web-search interfaces typically show 10-15 

results at a time on desktop browsers and 5 on mobile devices. 

The latter are the key focus of this paper, which are even more 

challenging because the screen size does not allow displaying 

other result information like facets (see discussion in Section 7). 

Example: Figures 1b-d show examples of various paginated 

result subsets (with    ) for the query results in Figure 1a.  

The choice of the subset    is critical in determining the 

effectiveness of a search interface. In particular,    should 

contain relevant and a diverse set of results. 

Let          be the relevance score of a result     , where a 

higher score means the result   is more relevant to query  . 

Existing object relevance ranking functions like [8] can be used 

to compute         . Also, let             be the distance 

between two results         . For instance,             can be 

the Euclidean distance between the vectors representing    and 

  . Currently, most systems model search result diversification 

as a bi-criteria optimization problem that balances the effect of 

relevance and diversity using a trade-off parameter           

as follows: 

              | |  

(

 
 

           ∑            

    

   ∑     (     )

       )

 
 

    

In Section 1, we described several scenarios where this bi-

criteria optimization is problematic. The primary reason is the 

difficulty in selecting a value of   for a given navigation step of 

a query.  

Instead of fixing the trade-off between relevance and diversity, 

we model the diversification problem in terms of the user 

navigation effort. We do this by designing a holistic model of 

the user navigating a list of paginated results that considers all 

the actions taken by a user, discussed next.  

2.2 Navigation Cost Model 
Users execute queries on a search interface to satisfy a certain 

information need, which may be satisfied by a certain objects in 

the query result.  Given a user query   and corresponding result 

set   , the query interface presents the first page of results 

      of size   to the user.  Each result consists of a set of 

attribute-value conditions. These conditions are selectable (e.g. 

by clicking on the associated link), thereby refining the query. 

Note that the search interface does not provide any facet 

conditions to refine the results, but the results serve this dual 

purpose. Such an arrangement is desirable especially in mobile 

devices where there is not enough space to show both results 

and facet conditions. 
 

NAVIGATE (    ) 

1.     COMPUTE-PAGE(      

2. READ-RESULT     

3. If search need satisfied by    

4.      TERMINATE 

5. Choose one of the following:  

6.  (a): Select a condition         to refine; 

              REFINE     :         

 (b):     NEXT-PAGE(     ):           

7. NAVIGATE(    ) 

Figure 3:  Diversification Navigation Model  

In particular, the user chooses among the following possible 

actions at each step:  

1.            If the user‟s search need is satisfied on the 

current page, the search is terminated.  

2.          (     )  The user can navigate to the next 

page of the result set in the hope of satisfying her search 

need there. In this case, the search interface computes the 

next page of results and presents these results to the user. 

3.              Typically, a user has a notion of the 

properties or conditions that a target (desired) object must 

have. If one of these conditions is found in one of the 

displayed results, then the user can refine her query by 

selecting (clicking) this condition c. The query is then 

refined to    . For example, if a user is looking for 

Compact cameras while reading through the result subset in 

Figure 1d, she could click on the Compact attribute value. 

This user repeatedly executes REFINE and NEXT-PAGE 

actions until the target object is found, at which point the 

user TERMINATEs the navigation. This iterative result 

navigation process is captured by the recursive navigation 

model presented in Figure 3. At the beginning of each step 

(line 1), the system computes a page of   results to be 

presented to the user. The user reads all the results, 

represented by READ-RESULT(  ) and the rest of the 

navigation repeats recursively.  

In our model, the user executes an action based on the displayed 

result set. Such navigation models, where the user only selects 
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actions proposed by the system, have been used extensively in 

the navigation of keyword-based query results [12][21][22]. 

Each user action (REFINE, READ-RESULT, NEXT-PAGE) is 

an effort on the part of the user. The total effort of the user to 

satisfy her search need is the navigation cost.  

As an example, consider the user navigating the result set in 

Figure 1a using the initial pagination in Figure 1d. Further 

assume that the user is interested in Lenses with 55-300 mm 

Focal Length (#11). As a first step, the user would read (READ-

RESULT) the first page of 3 results. Next, the user REFINEs by 

Type: Lens to see only the Lens results, since she is interested in 

Lenses. Up to this point the navigation cost consists of 3 READ-

RESULT actions and 1 REFINE. Upon REFINE, the interface 

presents the 2 lens results (#10,#11), which the user reads and 

finds the desired object, thereby TERMINATING the 

navigation. The overall navigation cost is    READ-RESULT + 

   REFINE. 

If we assume that reading a result incurs unit cost (as was 

assumed in [12]), and the cost of REFINE (click) action is a 

constant greater than one          , the total cost is 5 1 + 1 3 

= 8. This assumption about the constant   reflects our belief that 

REFINE incurs more user effort than reading a result, since the 

user has to consider all the conditions and then decide on a 

condition to click on. Similarly, the user could do NEXT-PAGE 

instead of REFINE if she does not find any useful condition to 

refine on. The cost of NEXT-PAGE is β.  

2.3 Problem Statement 
The overall navigation cost depends on the result subset    that 

is presented to the user at each step. For example, if the user in 

the example above is presented with a paginated result subset 

containing the Camera Lens with 55-300 Focal Length (#11), 

then she would find the desired target object on the first page 

and TERMINATE the search.  In this case, the total navigation 

cost is 3 (3 READ-RESULTs).  

Therefore, we need to compute a paginated result subset 

     , that will minimize the expected navigation cost, by 

appropriately balancing relevance and diversity. Let 

    (       ) denote the cost of navigating the result set    of 

a query  , using the paginated result subset   . Then the 

minimal cost of navigation,             , is the cost of the   

paginated result set   
   

, amongst the (
|  |

 
) k-subsets, that has 

the minimum cost. Formally, 

Problem 1: Minimum Cost Diversification(      ): Given a 

query   and its result set    |  |    , compute the result 

subset   
   

 of size   (|  
   

|   ) such that the expected 

navigation cost incurred to satisfy the user‟s search need is 

minimized. 

    (      ) =          
    (       )   (2) 

Next, we show how to estimate     (       ), the cost of a 

result subset    for a result set   . 

3. NAVIGATION COST ESTIMATION 
The navigation cost of a result set   , computed as discussed in 

Section 2.2, depends on the actions taken by the user in reaching 

a target object and can be exactly determined after the 

navigation is complete. However, solution to the minimum cost 

diversification problem (Problem 1) requires the selection of 

result subset    before knowing what sequence of actions the 

user will perform after viewing   . In this section, we propose a 

way to estimate the cost of navigating a result subset    by 

means of a probabilistic cost model that assigns uncertainty 

measures to each possible action a user can take and computes 

the expected navigation cost for a given   .  

We begin by introducing the probability measures that capture 

the uncertainty in user action. In the user navigation model in 

Figure 3, the user, at each navigation step, has three choices – 

(1) TERMINATE the navigation (line 3) (2) REFINE by a 

condition (line 6a) and (3) to go to the NEXT-PAGE of results 

(line 6b), and we introduce probability measures for each of 

these actions.  

    (                       : This is the probability 

that the user finds the result she is looking for in   , and 

therefore terminates the navigation process. 

                        : This is the probability that 

the user chooses to refine the result set    by adding a 

condition   to the query  . On the other hand, the user 

could instead choose to see the next page of the results. 

Since these are the only two choices supported by the 

navigation model, the probability that the user chooses the 

NEXT-PAGE action is     .  

                                       : If the user 

chooses to REFINE, then she also has to select a condition 

        to refine by. The probability    captures the 

probability that the user selects a condition  .  

Given the probabilities defined above, the entire navigation 

process, which contains several iterations, can be expressed by 

the following recursive cost equation (cost(.,.,.) is overloaded): 

    (       )     |  |            

[
 
 
 
 
  {    ∑        (           )

         

}

          (        (         )) ]
 
 
 
 

      

This cost equation can be described as follows: 

1. The user reads the results in   , and decides about her next 

action. The cost for reading the results is |  | (assuming 

unit cost for the READ-RESULT action). If the user finds 

the target object then she terminates the navigation.  

2. Otherwise, with probability         , she can either refine 

the query or go to the next page, 

a. The user decides to refine the query with probability 

    Let   be the cost for a REFINE action. As the user 

can select any condition         we consider the 

cost associated with each selection candidate   (shown 

as     (           )) weighted by the    value.  

b. With probability    the user decides to go to the next 

page.   is the cost of a NEXT-PAGE action, and the 

cost entailed by the NEXT-PAGE action and the cost 

of the rest navigation is                . 

The cost equation (Equation 3) depends on the key probability 

terms   ,    and   . We present specific and reasonable 

methods to compute the probabilities used in our cost model. 

Depending on the specific application, other computation 

methods may more closely model the user. The computation of 

these probabilities is orthogonal to the algorithms presented in 

Section 4, which are the key contributions of this paper. 

Computing   : This is the probability that the user finds the 

target object in    and therefore terminates the navigation. Since 
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the target object is not known before navigation, a reasonable 

assumption is the probability of a potential target object is 

proportional to its relevance score         . If the user finds the 

target object amongst the result subset   , then she can 

terminate the navigation. Therefore, we estimate the probability 

of termination as being proportional to the sum of relevance 

scores in the paginated result subset    and normalize it with 

sum of relevance scores of all the results in    as    

∑             
∑             

⁄ . The choice of the relevance 

function is orthogonal to this paper and can be computed in 

various ways such as TF-IDF [13] for keyword queries or by 

using Probabilistic Information Retrieval models [8]. 

Computing    : The key assumption we make is that the user 

has a high likelihood of refining the query when the results in  

   are diverse. This is because a diverse    covers multiple 

aspects of the query by containing results from different 

interpretations [7], [24]. For example, the result subset in Figure 

1d contains results from different categories and also contains a 

variety of attribute values, and hence offers many refinement 

opportunities, which translated to a high      In contrast, the 

result subset of Figure 1b would translate to a low     

To compute the diversity of a result subset   , we need to 

compute the distance between all pairs of results           [5]. 

Distance measures like Euclidean distance, Cosine Similarity 

can be used for this purpose and again the choice is orthogonal 

to this paper. The diversity of    can be defined as          

        ∑                    
. Hence,    can be computed as 

     
∑                    

        | |  ∑                   
, where the denominator is 

used for normalization and is equal to the maximum possible 

diversity of a k-result set from   . Finding the maximum 

diversity in the denominator is similar to the maximum clique 

problem, and therefore known to be NP-Complete [5]. We use 

    [10] to compute the maximum diversity for our 

experiments (in Section 5). 

Computing   : This probability shows how likely the user will 

refine the query by selecting condition     , which depends 

on the user‟s preferences or her familiarity to this condition. A 

reasonable choice is that    is proportional to the frequency of 

condition   in the result set as described in [12]. 

4. ADAPTIVE DIVERSIFICATION 
Exact Algorithm: To compute the paginated result set such that 

cost of navigating    is minimized, it is necessary to compute 

the cost, using Equation 3, of each subset       of size   and 

selecting the subset   
   

 that has the minimum cost. We show 

that this problem (Problem 1) is NP-hard [28], by reducing Set 

Cover to a simplified version of this problem. There are two 

sources of complexity that make the exact algorithm 

computationally expensive: 

1. Computing the navigation cost of each subset       of 

size   requires evaluating Equation 3 for  (|  |
 
) 

subsets. 

2. Since Equation 3 is recursive, to solve it we must compute 

for each condition c in    (more formally        ), the 

minimum cost (according to Equation 2), which in turn 

requires computing the minimum cost over all subsets of 

   (Figure 4(a)). This process continues recursively for 

deeper levels of the recursion tree. The depth of the 

recursion is |  | in the worst case, since each refinement 

may eliminate just one result in   . The width of each 

recursive step, i.e., the cardinality of the summation, can be 

up to    , which is the number of attribute values 

displayed at each step. 

Approach overview: We attack the problem by proposing 

efficient techniques to approximate both sources of complexity. 

We first show how to effectively eliminate the recursion from 

Equation 3 using a sequence of two relaxations. Then we show 

how to avoid evaluating the simplified equation for every 

combination of result subsets using a greedy algorithm. 

Our approach starts by eliminating recursion from Equation 3 

using two relaxations. Figure 4 shows the recursive tree to 

compute Equation 3 and the simplifications achieved through 

the two relaxation steps.  

Relaxation 1 (Eliminate Conditions from Recursion Tree): 
The navigation cost function (Equation 3) has two recursive 

calls – one each for REFINE and NEXT-PAGE actions, 

respectively to compute the navigation cost for subsequent 

navigation steps.  

Intuitively, the navigation cost of a result-set    is proportional 

to its size |  |,  since for a larger result-set the user must 

explore more results to reach the results of interest.  This 

assumption is backed by our experiments in Section 5 

(specifically Figure 6) and we use this observation to simplify 

the cost equation. Formally, 

    (      )  |  |                             

The cost associated with REFINE actions, denoted by     (  

         ), is the navigation cost incurred to reach the target 

results from the refined result set     . Based on the 

observation above, this cost is proportional to size of     , i.e.  

    (           )  |    |             

Based on observations    and    and ignoring the constants of 

proportionality, the cost of the REFINE by a condition   can be 

estimated as:  

    (           )   (|    | |  |⁄ )     (      ) 

Analogously, the cost of NEXT-PAGE action (    (     

    )) can be approximated as 
|     |

|  |
     (      ), since the 

user is left with       of the original result-set    after a 

NEXT_PAGE action.   

By plugging in these approximations and rearranging terms, our 

cost equation can be rewritten as: 

    (       )  |  |           

{
 

 
             

     (      ) [  ∑   

|    |

|  |
         

       
|     |

|  |
]

}
 

 

    

Equation 4 replaces the recursive calls of REFINE and NEXT-

PAGE actions (in Equation 3) with     (      )(Figure 4(b)). 

However, it still requires evaluation of all possible k-subsets of 

RQ to compute     (      ) according to Equation 2. We 

address this by the next relaxation. 

Relaxation 2 (Eliminate Result Subsets from Recursion 

Tree): Our goal is to find the result subset    that minimizes 

Equation 4. But note that this same optimal Sk is used to 
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compute     (      ) according to Equation 2. Hence, we can 

replace     (      ) by     (       ) in Equation 4. 

Then, by solving for     (       ), Equation 4 can be further 

simplified as:  

    (       )                                                                                                

  
|  |           {              }

           {     ∑     
|    |

|  |
                

|     |

|  |
}
        

Equation 5 has no recursion, and can be easily computed for a 

given   . Note that Relaxation 2 does not incur any 

approximation error, in contrast to Relaxation 1. 

Given the relaxed cost Equation 5, we still need to compute the 

cost of all possible k-result subsets    of    to find the optimal 

  
   

 with minimum cost.  

  

  

  

   

N-P 

  
  

       

Relax. 1 Relax. 2

(a) (b) (c)  

Figure 4:  Elimination of Recursion Using Relaxations 1&2 
 

Algorithm:          

Input: Query   and Result Set    

Output: Set of   results,       

1.      

2.      

3.              
          

4.         
5.       
6. for p   2 to k do 

7.                   (           ) 

8.           

9.       
10. return    

Figure 5:  Adaptive Diversification Algorithm 

For that, we present an efficient greedy algorithm, called 

Adaptive Diversification Algorithm (ADA), which incrementally 

builds the result set    by adding at each step the result with 

minimum incremental navigation cost.  At each iteration p 

(     ),     makes use of two sets: the set of remaining 

results   and the set of selected results   , with |  |   . Note 

that     =   , the set of all the results. Initially      and 

    . At each iteration,     computes     (           ) 

(using Equation 5) for each result     and moves the result 

with minimum navigation cost to   . This process continues 

until we select   results (i.e.     ). 

Figure 5 shows the pseudo-code of our diversification 

algorithm    . The first result is chosen as the object with 

highest relevance score (line 3) since we want to provide to the 

user the most relevant object. After that, in each iteration,     

ranks the results in   according to Equation 5 with    replaced 

by       , removes the result with minimum navigation cost 

from  , and adds it in the selected result set (line 6-9). The 

algorithm terminates when we select   results. 

Complexity: The running time of     depends on the cost 

computation time in line 7, which is invoked up to     |  |  

times. To compute     (           ) using Equation 5, we 

need to calculate   ,        the cost of all possible 

REFINEments (∑     
|    |

|  |         ) and of NEXT-PAGE action 

(
|     |

|  |
). Computation of    and    (Section 3) is dominated by 

their denominators, which depend on the result set    and  . 

However, in ADA we only need to compute these probabilities 

for the original result-set   , which takes time   |  |  and 

 (  |  |)(using         ), respectively. The computation of 

all       ments cost  ∑     
|    |

|  |           requires       

|  |   time. The cost of NEXT-PAGE and    can be computed 

in      time. Therefore, the total running time of     is 

O   |   |   (assuming |   |     ). In practice, the 

execution time is much faster than this worst case bound 

(Section 5). 

Example: Let us apply     to the result set in Figure 1a. We 

are interested to find the 3 results returned by    . But before 

that we analyze Equation 5 more closely to infer the implication 

of the cost equation. The cost of a result set    is minimized 

when the denominator of the right hand side in Equation 5 is 

maximized, which implies having higher    value. But when the 

result set size |  | is high, we have smaller    value (since the 

denominator part of    in Section 3 is high). Therefore, the 

navigation cost depends on the cost of        and NEXT-

PAGE actions. Since the NEXT-PAGE cost (denoted as 
|     |

|  |
) 

is the same for all result sets, the navigation cost is minimized 

for the result set    containing highly diverse results with 

popular selective conditions (i.e., with high Pc). As |  | 

becomes smaller,    dominates cost equation, therefore cost is 

minimized for highly relevant results. 

The conclusion of the above discussion is that, initially when 

|  | is large (small   ), ADA prefers diversity over relevance. 

As |  | becomes smaller (higher   ) in the next iterations, ADA 

increases preference to relevance, and provides highly relevant 

results. 

Returning to the running example,     initially prefers 

diversity over relevance in Figure 1a since |  | is relatively 

large. The first result is the result #1 as it has the highest 

relevance score (diversity is not a factor when selecting the first 

result, which is always selected by relevance). The second result 

would be from Compact or Accessory categories. Assuming all 

the conditions in Compact and Accessory categories have similar 

selectivity (similar Pc and similar diversity with respect to #1), 

the second result is #6 because of its high relevance score. The 

third result would be from the Accessory category to increase 

diversity, and specifically #10 since it has higher relevance score 

than #11. Thus     would return result set in Figure 1d. In the 

next iteration, as RQ becomes smaller, ADA will return more 

relevant result-set snippets like the one in Figure 1c, and in the 

last iterations like the ones in Figure 1b. 

5. EXPERIMENTAL EVALUATION 
In this section, we describe the results of an extensive 

experimental evaluation of our approach. The setup, including 

methodology, datasets, baselines and metrics used, is described 

in Section 5.1. Sections 5.2 and 5.3 demonstrate the quality and 

performance of diversification algorithms in terms of user 
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navigation cost and CPU time. All experiments were performed 

on a 2.5GHz Intel Core i5 CPU, 8GB RAM machine running 

Windows 7. We used MySQL as our database and all algorithms 

were implemented in Java. 

5.1 Setup 

Datasets: We evaluated our approach on two datasets: 

1. UsedCars: This dataset consists of a listing of 15,191 used 

cars, extracted from a popular car-trade website. Each tuple 

has 10 attributes, 4 categorical and the rest numeric.  

2. Electronics: This dataset consists of 65K products from the 

Electronics product catalog of a popular e-commerce 

website. The products were sampled from various 

Electronics categories, such as Laptops, Desktops, 

Cameras, Printers etc. and therefore the dataset is highly 

heterogeneous in nature. The dataset has a total of 86 (51 

categorical and 35 numeric) attributes, but each product has 

values for a small subset (avg. 12) of these attributes and 

null for the rest.   

Queries: We selected 8 queries each from the two datasets. 

These queries are shown in Table 1 along with result-set sizes. 

Note that we are interested optimizing the navigation of diverse 

result sets, and therefore these queries were selected to be 

deliberately ambiguous so as to include results from a variety of 

categories. For that, we use single-keyword queries, although 

our methods support any number of keywords or query 

conditions; more keywords could be used if larger e-commerce 

datasets were available. For each query, we select a target 

object, which we assume the user is looking for, i.e. the 

navigation terminates when the user locates this target object. 

Table 1: Query Set 

Electronics UsedCars

Query ID Query # Results Query ID Query # Results

Q1 Kodak 193 Q9 Honda 789

Q2 Dell 125 Q10 BMW 730

Q3 Canon 1097 Q11 2001 2034

Q4 Nikon 511 Q12 2005 920

Q5 Camcorder 789 Q13 Dallas 2932

Q6 Speaker 737 Q14 Irving 1064

Q7 Desktop 394 Q15 Black 2163

Q8 Laptop 518 Q16 Blue 1183
 

State-of-the-art: Current approaches to diversification use a 

fixed relevance-vs.-diversity trade-off parameter (  in Equation 

1) to diversify rankings. However, as we argued in Section 1, 

setting this parameter is not always obvious and depends on the 

characteristics of the result set. In Section 5.2, we provide 

evidence to further support this claim. We compare with two 

commonly used approaches for ranking results:  

1. Baseline 1 (REL): In this approach, the results were 

ranked solely based on relevance, i.e. by setting     in 

Equation 1.  

2. Baseline 2 (MMR-      ): As a second baseline, we 

choose the Maximal Marginal Relevance (MMR) 

diversification algorithm [10]. MMR computes a diversified 

result-set by balancing relevance and diversity based on 

Equation 1. MMR is an approximation algorithm since 

computing a diversified set based on Equation 1 is NP-

Complete [5]. In our experiments, we set       giving 

equal weight to diversity and relevance factors. 

Note that, for a fair comparison, we used MMR both as a 

baseline and to compute    in ADA algorithm. We chose MMR 

since it outperforms other algorithms in terms of time and 

generates quality results [5]. However, our use of MMR does not 

preclude the use of other diversification algorithms, e.g. GMC, 

GNE [5], which may produce better quality results but take 

more time compared to MMR [10]. 

Next, we describe the relevance       and diversity        

measures used in our experimental evaluation. We reemphasize 

that computing these measures is orthogonal to our problem and 

any suitable     and      versions can be plugged in to our 

approach. Due to space limitations we omit experiments with 

additional measures.  

Computing     : Computing diversity involves computing 

distance        between two results. We use the sum of 

distances between the attribute values 

    (     )  √∑ (             )
 

    . For numeric 

attributes, we used the Manhattan distance and for categorical 

attributes, the Kronecker delta function was used between the 

values of attribute.  

Computing    : In a structured result-set, the relevance of a 

result depends on relevance of its attribute values. We estimated 

the relevance of each attribute value by computing the Google 

Trends scores (see [8] for more details). The rationale for using 

Google Trends is based on the idea that the relevance of a term 

can be based on its frequency in a query workload [8]. 

Since results in    satisfy all conditions in  , the relevance 

scorewas computed using the unspecified attributes in   by  , 

as was proposed by [8], where unspecified refers to an attribute 

that does not match any query condition. For example in Figure 

1a, all the records satisfy the query condition "Camera" with 

their Product attribute. Therefore, we compute the relevance 

score using the unspecified attributes (e.g. Category, Brand).  

Methodology: For each query in Table 1, we picked a result 

     as the target object. The chance of selecting a result as 

the target object is proportional to its relevance score, which 

means the results with high relevance scores have a higher 

chance to be selected as the target object. We then simulated the 

user navigation until target   is reached. Since multiple 

navigation paths can lead to the target object  , we used a 

randomized simulation [12] to select navigation paths. Note that, 

given a set of displayed results   , the set of conditions that can 

lead to   is           . We assumed that the user will select 

one of these conditions, or go to next page, according to the 

navigation probabilities (Section 3).  For example in Figure 1a, 

if the target object is #4, and we select Figure 1c as the 

displayed result subset, the conditions that lead to #4 are 

"Product=Camera", "Category = DSLR" and "Brand = Nikon". 

The user would go to the next page if she does not like or know 

these three conditions. Therefore, in our simulation, we 

computed    as ∏                    (the probability that the 

user would not like any condition in           ) and     as 

      . In case of refinement, the user could refine the query 

by selecting any condition in           . The choice of 

selecting a condition                is proportional to   . 

We used      in the experiments in Section 5.2, 5.3, and 

showed the findings averaged over 1000 runs (50 random target 

objects, and 20 runs per target object) for each query. 
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5.2 Qualitative Analysis 

In this section, we present the experimental results of the 

qualitative evaluation of the three different algorithms (REL, 

MMR and our algorithm ADA). Figures 6(a), 6(b) show the 

average navigation cost and average number of        and 

          actions incurred respectively by each algorithm to 

reach the target object for the queries of Electronics dataset. 

Note that, all algorithms require similar number of REFINE 

actions (i.e. selection of target object conditions) to filter out 

enough undesired objects (Figure 6b). Since     displays 

results from popular categories, it requires a larger number of 

          actions to display the conditions of the less 

relevant target objects.     has a fixed ratio of relevance and 

diversity, which happens to work well for some queries with 

small number of results like Q1, Q2 and Q4, but is ineffective for 

other queries like Q3, Q6, where more NEXT PAGE actions are 

required to find the target object conditions.  

ADA outperforms the other two algorithms, because of its 

adaptive nature. As discussed in Section 4, when |  | is high, 

ADA prefers diversity over relevance to pick the Top-k results. 

As    becomes more selective over iterations, ADA switches to 

preferring relevance. Therefore, by balancing diversity and 

relevance based on the result set at hand, ADA displays the 

target object conditions much earlier compared to the other two 

algorithms. This results in fewer           actions, and thus 

reduces the navigation cost of ADA algorithm (Figure 6a). The 

improvement of ADA over the other two algorithms is more 

pronounced for the queries that have large number of results 

(e.g. Q3, Q5, Q6).  

Figures 6(c), 6(d) show the average cost and actions respectively 

for the queries of          dataset. Similar to the Electronics  

dataset, ADA outperforms the other two algorithms for all the 

queries of         . Since the          dataset is 

homogeneous,     and     perform slightly better as 

compared to Electronics dataset, due to less variability in 

attribute conditions.  

Table 2: Average Navigation Cost for the Datasets 

Datasets

Average Navigation Cost (α=1, β=1)

REL ADA
MMR 

(λ = 0.5)
Expected 
Optimal

Electronics 48.25 30.625 38.75 28.525

UsedCars 30.5 19.15 24.375 18.512
 

We also compare the average navigation cost incurred by the 

three algorithms, REL, MMR and ADA, with the expected 

optimal navigation cost computed by solving Equations 2 and 3. 

Due to the exponential complexity, we compute the expected 

optimal cost for smaller sizes of initial result sets (RQ) and query 

parameter (k). Table 2 shows the average navigation costs for 

|RQ| = 100 and k = 5 across all queries for the two datasets 

Electronics and         . We see that our algorithm ADA is 

only 1.07 and 1.03 times worse than the optimal for the 

Electronics and          datasets respectively. For MMR and 

REL, these factors are 1.36 (1.32) and 1.69 (1.65) respectively 

for the Electronics (        ) dataset.  

Figure 7 shows average navigation cost of     with increasing 

trade-off (λ) values (high λ value implies preference to diversity 

over relevance) for four queries from Table 1. The results of the 

other queries are shown in [28]. Since ADA is independent of   

value, therefore the cost of     is shown as a straight line. We 

skipped     since it incurs higher cost compared to ADA and 

   . As seen from Figure 7, there is no value for λ that is 

optimal for a given dataset or even for a particular query. 

Intuitively λ should change adaptively, at each navigation step, 

depending on the characteristics of the result set. By balancing 

the relative importance of relevance and diversity adaptively at 

each step, ADA shows better performance (on average) 

compared to     with a fixed  .  
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Figure 7:  Average Navigation Cost vs. Tradeoff (λ) values 

We also perform experiments while varying the model 

parameters (   ). The results depict that the overall cost of ADA 

increases at a slower rate with the model parameters compared 

to     and     [28]. 

5.3 Performance Analysis 

We now present the performance results of REL, MMR and our 

ADA algorithms. Table 3 shows the average (across all queries) 

computation (CPU) times taken by each of these algorithms to 

reach the target object. As expected, the relevance-only 

algorithm (REL) takes the shortest time among all the 

algorithms. Computing diversity is a costly operation since it 

involves computation of distance between all pairs of results. As 

a result any algorithm that incorporates diversity is much slower 

as compared to REL; our implementation of MMR is three times 

slower as REL. Our algorithm (ADA) performs this distance 

computation over all future navigations and therefore is slower 

than MMR by a factor of 1.6. While ADA takes more time to 

compute the set of paginated results, it is very effective in 

reducing the time or effort incurred by users to navigate such 

diverse result sets (discussed in Section 6). 

Table 3: Avg. CPU Time for the Datasets 

Datasets
CPU Time (sec)

REL ADA MMR (λ = 0.5)

Electronics 0.02 0.106 0.066

UsedCars 0.058 0.156 0.107
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Figure 6:  (a) Avg. Navigation Cost (b) Avg. Number of Refine and Next Page actions incurred for Electronics Dataset using  =1, 

β=1. (c), (d) show the same figures respectively for UsedCars Dataset 
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Figure 8.  (a) Avg. User Navigation Time, (b) Avg. number of Refine and Next Page Actions incurred by the users for 10 different 

queries using UsedCars dataset (for  =1, β=1) 

We also examine the scalability of our algorithm (ADA) by 

applying it to large result set and find that our algorithm scales 

almost linearly with result set size [28].  

6. USER STUDY 
In this section, we present the results of a user study that we 

conducted at Amazon Mechanical Turk (MTurk) [26]  using the 

         dataset. We selected three keyword queries (e.g., 

‘Ford’), and for each query we created a set of search tasks; 

each search task specifies a set of target conditions (e.g., find a 

car with Color = Green). We asked the users, starting from the 

results of the initial keyword query, to find the best car 

(according to the relevance score defined in Section 5.1) that 

satisfies all the target conditions. 

Table 4: Query Set for User Study 

Query
ID

Initial 
Query

Initial Result 
Set Size

Target Conditions
# of Results contain all 

Target Conditions

Q17 Toyota 1470 Color = Green 86

Q18 Ford 2747 City = Grand Prairie 133

Q19 Ford 2747
Model = F150 Regular CAB,
State = MD, Color = Maroon

1

Q20 Ford 2747 Color = Maroon 42

Q21 Ford 2747 City = Ashland 75

Q22 Ford 2747 Color = Beige 40

Q23 Toyota 1470 City = Richmond 88

Q24 Toyota 1470 Color = Red; 79

Q25 Ford 2747 Color = Gold; 116

Q26 BMW 730
Model = Convertible,

City = Fairfax, Color = Grey;
1

 

We repeated the experiment for the four different ranking 

algorithms: REL (λ   ), MMR (λ     ), ADA (λ-

independent) and a diversity-only baseline, DIV, which 

constructs the k-result subset greedily at each step by 

maximizing the score function (Equation 1); i.e. with λ   . 

The reason that we asked users to find the best and not any 

result is to avoid giving an unfair advantage to methods biased 

towards diversity like DIV which may help the user to find a 

satisfying result, but this result may have low relevance. Table 4 

shows the list of initial queries, their results‟ cardinality, the 

target conditions, and the cardinality of results that satisfy all the 

target conditions. The page size     is set to 10. Each task was 

completed by 36 MTurk users; we present the average results.  

Figures 8(a) and 8(b) show the average time taken and average 

number of actions executed respectively, by users to find the 

best target object. As seen in Figure 8(b), if we have more target 

conditions (e.g. Q19, Q26), using DIV (diversity-only), the 

chances of getting a desired target condition on a given page 

increases. This increases the probability of REFINE action and, 

therefore, DIV performs better (Figure 8(b)) than the other two 

baselines REL, MMR, and slightly worse that our algorithm 

ADA, which prefers diversity over relevance during the initial 

steps. If we decrease the number of target conditions, the 

performance of DIV degrades, especially if multiple results 

satisfy all target conditions (as seen for the other queries), since 

the user needs to find the best and not any object. For Q17 and 

Q24, MMR (     ) and ADA perform similarly, which 

intuitively shows that 0.5 happens to be the ideal balance 

between relevance and diversity for these two queries. This is 

clearly not that case for other queries such as Q23, where MMR 

takes longer time even compared to the relevance-based REL.  

As shown by the average values in Figure 8(a), ADA reduces the 

navigation time significantly compared to all other algorithms. 

On average, ADA is faster by a factor of 2.04 (p-value 0.004), 

1.97 (p-value 0.001) and 1.66 (p-value 0.0002) over REL, MMR 

and DIV, respectively. This significant improvement is because 

of the smaller number of actions incurred by ADA compared to 

the other three algorithms (Figure 8(b)). 

Figure 9 shows the actual user navigation time vs. the estimated 

cost (using our cost model in Section 3) for the 10 different 

queries using the four different algorithms, where for each query 

we average over all users. The figure and the trend line show a 

clear correlation, and specifically a linear relationship, which 

confirms the validity of the cost model. 
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Figure 9.  Estimated Cost vs. Actual Time 

7. RELATED WORK  
Diversification has recently been introduced in search engines 

and recommendation systems to increase user satisfaction. 

[6][17] use coverage approaches to cover diverse aspects of 

search space. [17] expresses the degree of diversification by a 

setting a parameter which also determines the size of final result 

set.  [6] operates on Web documents and selects diverse 

documents to cover many different interpretations  of the query. 

[18] provides diversity using the content of the 

recommendations and the past history of the user. [19] presents 

a method based on medoids clustering to select a set of diverse 

and highly-ranked items to recommend to a user. However, none 

of these approaches considers the problem of how to minimize 

the total navigation cost incurred by the user to find the target 

object by considering subsequent navigation steps. In this paper, 

we have addressed this concern by introducing a navigation cost 

model (Section 2). 

Diversification is being used along with relevance in 

[1][3][5][10]. Most of these approaches (e.g. [5]) consider 
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diversification as a bi-criteria optimization, which uses a fixed 

trade-off value for relevance and diversity. In Section 5, we have 

shown that different search tasks require different ideal trade-off 

value. Some learning methods [4][16] have been proposed to 

learn the trade-off value. However, these methods rely on 

training data provided by the experts which is expensive and 

difficult to obtain in all cases. [25] proposes a dynamic ranking 

model for interactive user feedback. The ranking is based on the 

history of other users. In contrast, our ranking function aims to 

minimize the expected user effort. Threshold based techniques, a 

variant of the optimization problem, have been proposed in [11] 

to solve the diversification problem. These approaches consider 

a threshold value of relevance and maximize the diversity 

between results (or vice versa). Setting a threshold value is hard, 

and depends on the domains. Moreover, [5] shows a comparison 

between several diversification approaches where MMR (the 

baseline used in this paper) clearly outperforms the threshold 

based approach in both quality and time. Our approach does not 

require the threshold value, and can adaptively set the balance 

between relevance and diversity for different tasks.  

Faceted Search has been shown to be effective in reducing the 

user effort and time required to navigate large result sets of 

structured databases. For a given query, these approaches 

compute the best facet conditions and matching results to 

display to the user [12][21][22]. However, this model is not 

suitable for our setting of limited screen size, where we cannot 

display separately faceted conditions and results. Instead, our 

results serve a dual purpose, since a user can click on results‟ 

conditions to refine her navigation. 

8. CONCLUSIONS 
We described a novel framework for adaptive diversification of 

query results that dynamically adjusts the relevance and 

diversity of displayed results with the aim to minimize the total 

expected user navigation cost to reach the desired target objects. 

Based on this framework, we prove that the problem is NP-hard 

and we present an efficient approximate algorithm       that 

computes the best set results to display, by dynamically 

balancing relevance and diversity at each query step. We 

experimentally evaluate the performance of our proposed 

algorithm and show that it outperforms state-of-the-art 

algorithms. A Mechanical Turk user study confirms our findings 

and validates our navigation model. As a future work, we plan to 

extend our navigation model where the user can update/delete 

the selected conditions during the navigation process. 
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