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ABSTRACT
We are interested in organizing a continuous stream of sparse
and noisy texts, known as “tweets”, in real time into an on-
tology of hundreds of topics with measurable and stringently
high precision. This inference is performed over a full-scale
stream of Twitter data, whose statistical distribution evolves
rapidly over time. The implementation in an industrial set-
ting with the potential of affecting and being visible to real
users made it necessary to overcome a host of practical chal-
lenges. We present a spectrum of topic modeling techniques
that contribute to a deployed system. These include non-
topical tweet detection, automatic labeled data acquisition,
evaluation with human computation, diagnostic and correc-
tive learning and, most importantly, high-precision topic in-
ference. The latter represents a novel two-stage training
algorithm for tweet text classification and a close-loop infer-
ence mechanism for combining texts with additional sources
of information. The resulting system achieves 93% precision
at substantial overall coverage.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

1. INTRODUCTION
Twitter [1] is a global, public, distributed and real-time

social and information network in which users post short
messages called“tweets”. Users on Twitter follow other users
to form a network such that a user receives all the tweets
posted by the users he follows. Tweets are restricted to
contain no more than 140 characters of text, including any
links. This constraint fosters immense creativity leading to
many diverse types of styles and information carried in the
tweets. As of early 2014, Twitter has more than 240 million
monthly active users all over the world. These users send
more than 500 million tweets every day, which corresponds
to an average of 5700 tweets per second, with spikes at up
to 25 times of that velocity during special events [2].
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Tweets generated from all over the world are expected to
be about a variety of topics. Figuring out exactly which
tweet is about which topic(s) is interesting to us at Twit-
ter in our goal to serve our users better as it enables per-
sonalization, discovery, targeted recommendations, organi-
zation of content, as well as aiding in studies and analyses
to gain better insights into our platform as a whole. Such
broad usefulness, and the potential of affecting and being
visible to real users, however, propose demanding precision
requirement. In this paper, we consider the problem of high-
precision topic modeling of tweets in real-time as they are
flowing through the network. This task raises a set of unique
challenges given Twitter’s scale and the short, noisy and am-
biguous nature of tweets. We present how we address these
challenges via a unique collection of techniques that we have
employed in order to build a real-time high-precision tweet
topic modeling system that is currently deployed in produc-
tion inside Twitter. Our system achieves 93% precision on
∼300 topics and 37% overall coverage on English tweets.

2. OVERVIEW & RELATED WORK
Given a tweet, and all the information associated with it

(e.g., author, entities, URLs, engagements, context), we are
interested in figuring out what topic(s) this tweet is about.

Topic modeling tasks have been commonly approached
with unsupervised clustering algorithms (e.g., k-means, pLSI
and LDA [5]), information filtering approaches (e.g., lan-
guage models [19]), or weakly supervised models (e.g., su-
pervised LDA [5], labeled LDA [22]). These approaches are
effective in grouping documents into a predefined number
of coarse clusters based on inter-document similarity or the
co-occurrence patterns of terms (with help from very mild
supervision). They are also cheap to train as no or very few
labeled data is required. Nevertheless, they are not suit-
able for our use because it is very difficult to align the topic
clusters produced by these approaches to a predefined on-
tology and perform low-latency topic inference with measur-
able and decent precision. In fact, none of these approaches
could attain the precision close to what we demand.

Instead, we primarily consider supervised approaches that
classifying tweets into our taxonomy with controllable high-
precision. Figure 1 illustrates the overview of our system.
On the training path, our“training data collector”constantly
listens to the tweet stream to automatically acquire labeled
training data, which, once accumulated to a certain amount,
are fed into the “trainer” module to produce classification
models; These models are then validated and calibrated to
be used in our service. On the operation path, the classifier
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Figure 1: Overview of tweet topic inference system.

models are replicated and served in parallel, together with
knowledge about users and entities, in a “integrative infer-
ence” module to provide high-precision topic annotation of
tweets in real time. The inference results are used to gener-
ate and refine the user-and-entity knowledge, making this a
close-loop inference. The results are also scribed and used
to evaluate and monitor the quality performance with help
from crowd-sourced human annotation. Once the service is
exposed to the user, we also employ a “feedback collector”
and a “diagnosis module” to gather high-precision user cu-
rated data, which are fed back into the trainer module to
fine-tune the trained models.

Related Works & Contributions. Topic modeling of
tweets has been examined extensively in the literature. Most
existing research has been based on un- or weekly supervised
techniques such as variations of LDA [17, 27]. The inference
in these approaches usually takes considerable latency, and
the results are not directly controllable when precision is
concerned. Recent studies employ information filtering ap-
proaches to detect tweets on specific topics of interests[19, 9].
These approaches usually have low latency and can perform
inference in real-time; and when configured properly, the
top-ranked results obtained by them can usually achieve a
reasonable precision target. Nonetheless, because they iden-
tify only a small fraction of tweets that are apparently rel-
evant to a given topic while disregarding the majority rest,
the recall and coverage of these approaches are very poor,
yielding heavily biased inference results that are less useful
in many of our use cases. Information filtering approaches
are also only good at specific topics, usually topics of rela-
tively focused meanings (e.g., “San Francisco” and “NBA”),
and not directly applicable to a broad spectrum of topics
such as an ontology, as what we study here. To the best of
our knowledge, this is the first published documentation of
a deployed topic modeling system that infers topics of short
noisy texts at high precision in real-time.

3. TAXONOMY CONSTRUCTION
We create a taxonomy represented as a fixed (and poten-

tially deep) ontology to encode the structure and knowledge
about the topics of our interest. The goal is to find a topic
structure that is as complete as possible to cover as many
semantic concepts (and their relationships) as we can, while
focusing on topics that are frequently discussed on Twitter

Top

Sports

Technology

Entertainment Movie & TV

Performing Arts

Visual Arts

Action & 
Adventure

Horror

Romance

Sci Fi & Fantasy

DramaAnimation

Music & Radio

Government & 
Policics 

Business & 
Finance

… … …

Figure 2: A subtree of our taxonomy. The deepest
node is 6 hops way from the root node “Top”.

and are less likely to be transient. Starting from existing tax-
onomies such as ODP and Freebase, we undertook a num-
ber of exploratory approaches and manual curations. For
example, by building topic filters based on ontology corpora
(e.g., ODP, Wikipedia), we can estimate coverage of top-
ics on Twitter and trim or merge topics that are too niche;
unsupervised models such as LDA were also used to map
clusters to well defined ontology (e.g., ODP, Freebase) in
order to estimate coverage. This process has been iterated
through multiple refinements and over different time periods
to avoid bias. The current taxonomy consists of ∼300 topics
with a maximum of 6 levels, a fragment of which is shown
in Figure 2.

4. TWEET TOPIC MODELING:
TEXT CLASSIFICATION

A tweet can be associated with multiple modalities of in-
formation such as text, named entities, users (the author and
people who engaged with the tweet), etc. In this section, we
consider topic classification of tweets based solely on its tex-
tual features, which will be combined with other sources of
information for integrative topic inference in Section 5.

High-precision tweet classification faces unique challenges
because unlike ordinary documents, tweets are much sparser
and noisier and the scale is daunting. The demanding preci-
sion criteria make this even more challenging. A tweet may
belong to multiple topical categories at the same time, or
be non-topical, which makes this a multi-label classification
problem. To meet quality criteria, the participating classi-
fier needs to be abstaining, i.e., providing topic labels only
if the expected precision or confidence is sufficiently high.

4.1 Chatter detection
One key challenge for high-precision tweet classification

is that a substantial proportion of tweets are non-topical
[3], or at least their topics are not clear in the context of
a single tweet. We use the term chatter to denote tweets
that often primarily carry emotions, feelings or are otherwise
related to personal status updates. While they are clearly an
important part of user expression on Twitter, it is necessary
to reject classifying these tweets (e.g., to save system latency
and to control quality) and restrict the domain of interest to
tweets that are not chatter. To that end, we build content
filters to eliminate chatter tweets, as described in previous
work [3].
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4.2 Training data acquisition
Training high-quality tweet classification requires high-

quality labeled data. Use of human annotation is prohibitive
for a number of reasons. First, it is too expensive: for the
scale we consider (i.e., 300 topics, millions of features) and
the sparseness (i.e., only ∼10s feature presence per tweet),
any reliable estimation would require hundreds of millions
of labeled tweets and cost millions of dollars even with the
cheapest crowd-sourced service in the market. Moreover,
even human-assigned labels could be too noisy. A big tax-
onomy like ours presents considerable cognitive overload to
human annotators, for example, when asked to assign rele-
vant topic labels (out of the 300 candidates) to each tweet,
human raters turn to identify only a fraction of the true pos-
itive labels. While it is possible to obtain samples of data
within each category, such samples are likely to be biased
and to the extent that some of these instances also belong
to other categories, most of these memberships will remain
unknown. Human labeled data are also subject to expertise
bias because a lot of niche topics (e.g., “data mining”) ex-
ceed the literacy of crowd-source workers, forcing them to
respond with random-guess annotations. Because of these
concerns, in our system, human labeled data (with enhanced
quality assurance) are only used in quality evaluation (Sec-
tion 4.7). For model training, we devise scalable algorithms
to collect labeled data automatically from unlabeled tweets.

The labeled data acquisition pipeline is illustrated as Fig-
ure 3. First, tweets are streamed through a set of topic
priors to prefilter tweets that are weakly relevant to each
topic. These topic priors are white-list rules that include:

User-level priors: users who tweet predominantly about
a single topic (e.g., @ESPN about “Sports”).

Entity-level priors: unambiguous named entities and hash-
tags that are highly concentrated to one or a few topics
(e.g., #NBA about “Basketball”), see Section 5.2.

URL-level priors: for tweets containing URLs, the URL
string usually contains topic information about the
webpage it links to (e.g., sports.yahoo.com/nba/*.html).

We also leverage the social annotation functionality to ex-
tract topic priors. Many Twitter users represent authorities
on a small set of topics by virtue of their profession, experi-
ence, and the fact that they tend to publish on those topics
on/off Twittter. This is recognized by other Twitter users
who sometimes group users “known for” a particular topic
using Twitter’s List feature.

The data coming through the topic prior filters are only
weakly relevant to each topic and thus very noisy. To obtain
high-quality positive data for each topic, we employ a co-
training [6] based data cleaning algorithm. In particular, we
consider only these tweets containing URLs, and iteratively
apply the following for each topic c:

1. train a webpage classifier to remove tweets whose asso-
ciated URLs satisfy: p(c|URL) is below ε1-percentile.

2. train a tweet classifier to remove URLs whose associ-
ated tweets satisfy: with p(c|tweet) is below ε2-percentile.

The key assumption here is that when a URL is embedded
in a tweet, the webpage that the URL links to is highly likely
to be on the same topics as the tweet. To make this proce-
dure more scalable and less coupled with the final classifier
models, we use Naive Bayes classifiers in this step.
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Figure 3: Training data acquisition pipeline.

Once we have positive data, for most topics, negative ex-
amples are very easy to collect, e.g., by using large-amount
of randomly sampled tweets or using “one-vs-all” splitting of
the positive data. However, for a considerable number of rel-
atively broad topics that receive high velocity of coverage on
Twitter (e.g.,“Sports”, “Technology” and “News”), randomly
sampled negatives are very noisy. One-vs-all doesn’t work
well for topics that are intercorrelated (e.g., “Sports” and
“Basketball”), because semantically equivalent documents
can be presented to a learner as both positive and nega-
tive examples. To this end, we employ algorithms devel-
oped for learning from positive and unlabeled data (or PU-
learning [12]) to acquire high-precision negative examples
for each topic. In particular, we select tweets / webpages
as negative instances for a particular topic only when the
similarity scores with the centroid of that class are below
(1-ε3)-percentile, i.e., via a Rocchio classifier [20].

4.3 Feature extraction
The effectiveness and efficiency in feature extraction are

vitally important to the success of our system given our scale
and quality requirement. Conventional unigram text fea-
tures cannot meet our needs in both regards. First, tweets
are short (bounded with 140 characters), and amount to
merely ∼7 unigram terms (including common stop-words)
on average – very difficult for any machine learning model to
infer topics with high confidence. Second, traditional imple-
mentation of unigram extraction can take considerable com-
putational resources and dominate our system latency espe-
cially for webpages which could exceed 10K terms, which is
problematic as we require real-time scoring. The latter fac-
tor is actually more critical and essentially prohibits us from
using potentially more effective features such as n-grams,
word2vec [21], or other time-consuming feature processing
such as term pre-selection and stemming. Instead, in our
system, we use the following two types of feature extrac-
tions for tweets and webpages respectively:

Binary hashed byte 4gram We use a circular extractor
that scans through the tweet text string1 with a slid-
ing window of size four: every four consecutive bytes
(i.e., UTF8 chars) are extracted and the binary value
(4-byte integer) is hashed into the range of 0 to d− 1,
where d is chosen to be a prime number to minimize
collision (e.g., d = 1, 000, 081 in our experiment). The
occurrence of these hashed indices are used as binary
features in tweet classifiers. This extractor (Byte4Gram)
yields significantly denser feature vectors than uni-
gram, e.g., for a tweet of length l, it produces exactly
l feature occurrence.

1Tweet texts are preprocessed at the time of scoring such
that less meaningful strings such as URLs and @mentions
are stripped off and all strings are converted to lower case.
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Hashed unigram frequency Term unigrams are extracted
and hashed to integers at an extremely fast speed [13],
with also a feature size d of ∼1 million. The term
frequencies of the indices are then transformed to log-
scale, i.e., log(1 + tfw) and the feature vectors are
normalized so that each webpage has the same `1-
norm. This extractor (Unigram-logTF-norm) is ex-
tremely fast and it doesn’t require any string prepro-
cessing as Unicode conversion, lowercasing and word
boundary detection are automatically taken care of.

We found that these feature extractors achieve the best bal-
ance of effectiveness and efficiency in our system.

4.4 Model pretraining
Both tweet and webpage topic inference can be casted

naturally as multi-class multi-label classification problems,
making regularized logistic regression a perfect fit. Given
a set of n training instances xi ∈ Rd together with their
corresponding labels yi ⊂ {1, 2, ..., C}, where C is the total
number of topics, we consider two types of LR models:

Multinomial logistic regression (MLR) also known as
Multinomial logit or Softmax Regression model, which
models the conditional topic distribution given an in-
stance x as the following multinomial distribution:

p(c ∈ y|x) =
exp(w>c x+ bc)∑C

c′=1 exp(w>c′x+ bc′)
, ∀c = 1, . . . , C.

One-vs-all logistic regression (LR) models “whether x
belongs to a topic class c” as a Bernoulli variable:

p(c ∈ y|x) =
1

1 + exp(−w>c x− bc)
, ∀c = 1, . . . , C.

Let l(w, b|x, y) be the log-likelihood of parameter (w, b) given
example (x, y). To estimate the parameters (w, b), we mini-
mize the negative log likelihood plus a penalty term:

min
w,b

λ(α||w||1 +
1− α

2
||w||22)− 1

n

n∑
i=1

l(w, b|xi, yi), (1)

where the parameter λ controls the strength of regulariza-
tion. Here we consider the ElasticNet regularization which is
a hybrid of `1 and `2 regularization types and includes both
as special cases (when α takes 1 or 0). The non-differentiable
nature of this regularization, when α > 0, enforces sparsity
of the model w, which is valuable to us because (1) a com-
pacter model consumes less memory, loads faster and has
better latency in real-time scoring; and (2) less useful (e.g.,
redundant or noisy) features will be automatically ruled out
in training, which is important to us as we do not do at-
tribute prepruning or stemming.

In our machine learning library, we provide a number of
versatile model trainers on Hadoop, including distributed
streaming training via SGD [18], and batch-mode training
based on L-BFGS, conjugate gradient (CG) or coordinate
descent (CD) algorithms. We also provide full regularization
path sweeping for `1 and ElasticNet regularization.

The major difference between the two LR models lies in
the Softmax function MLR employs to normalize the poste-
rior scores p(y|x). There are both pros and cons for doing
so. On the one hand, MLR provides comparable topic scores
which enables us to apply max-a-posterior inference to in-
crease topic coverage. As topics are competing against one

Table 1: Streaming training (e.g., Pegasos) gen-
erates models with lower AUCs than batch-mode
training. Increasing the number of iterations (i.e.,
number of scans over the data) slowly improves the
AUCs but makes the training time much longer.

#iteration Avg AUC Training time
Batch NA baseline baseline
Streaming 1 -1.9% -62%
Streaming 3 -1.2% +57%
Streaming 10 -1.0% +663%

Table 2: Comparison of MLR and LR 1-vs-all classi-
fiers, in terms of average AUC across topics and the
% of topics with improved AUCs (%topic win).

Model Avg AUC %topic win
Tweet MLR baseline baseline
Tweet LR +3.9% 86%

Webpage MLR baseline% baseline
Webpage LR +1.7% 77%

another, the inference results of MLR are less ambiguous
(e.g., if topic c fires for a tweet x, topic c′ 6= c is less likely
to fire for x due to the “explaining-away” effect). On the
other hand, however, MLR requires the label space to be
exhaustive (i.e., a tweet must belong to at least one of the
topics), and it discourages usage of examples with missing
label, which is not perfectly compatible to our setting. Also,
because topics are coupled with one another in MLR, it is
hard to train models for multiple topics in parallel, or retrain
model for a subset of topics without affecting others.

Experiment Results. We use AUC (i.e., area under the
ROC curve) for model validation for its independence of the
choice of decision threshold – evaluation of calibrated models
at their desired thresholds are reported in Section 4.9. We
test models on a held-out subset of the “training data ac-
quisition” output data, and estimate AUC with confidence
intervals using standard Bootstrap. Because the standard
errors are very small, we report here only the AUC scores.

Historically, our classifiers are trained in streaming-mode
on Hadoop [18] via stochastic optimization, such as Pega-
sos [26]. Streaming training consumes a constant amount
of memory regardless of the scale of the training data, and
it is very fast when the data is scanned through only once.
However, we noticed that the model generated by stream-
ing training are significantly worse than batch-mode trained
ones (e.g., via L-BFGS, CD or CG). For example, on tweet
classification (with Byte4Gram feature), Pegasos-trained mod-
els, with 1 scan over the data, are 1.9% worse on average
than batch-mode trained model, as seen in Table 1. Increas-
ing the number of iterations helps to make the gap smaller,
but at the same time, also makes the training time much
longer (e.g., overhead in data I/O and communication). As
we note in Section 4.10, we were able to scale up batch-
mode training on massive data with distributed optimiza-
tion. Hence, in the following experiments, the models are
all trained in batch-mode unless noted explicitly.

Besides the advantages we mentioned previously, we found
that 1-vs-all LR also performs better than MLR on both
tweet and webpage classification. The results are summa-
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Figure 4: Effect of text length on LR classifier pos-
terior score and precision of webpage classification.
Left: longer texts receive higher posterior scores re-
gardless of relevance; Right: precision drops as texts
get longer when no feature normalization is used.

rized in Table 2, where all the models use Byte4Gram fea-
tures. On tweets, using LR improves the AUC on 86% of
the topics and by 3.9% on average across all topics. Interest-
ingly, the improvements on webpage is relatively small, i.e.,
only 1.7%. This is due to LR’s sensitivity to the variations
in document lengths. Recall that here we use Byte4Gram

features without normalization. When this is used in MLR,
the softmax function automatically normalizes the posterior
scores. However, in LR, if a text is getting longer, it gets
more feature occurrences and in turn receives higher pos-
terior scores regardless of the relevance of the documents.
This effect is negligible on tweets as the lengths are bounded,
but it is very dramatic on webpage and significantly dete-
riorates the prediction quality (e.g., precision) on lengthier
webpages, as shown in Figure 4. Indeed, when we added
feature normalization to webpage classifier, we observed up
to 1.5% more improvement on AUC, bringing the overall
improvement to 3.2%. The comparative results on feature
extractors2 are summarized in Table 3. Because of their su-
perior performance, we use HashedByte4Gram for tweets and
Unigram-logTF-norm for webpages as default features.

Finally, using ElasticNet with regularization path sweep-
ing (i.e., optimized λ), further improves average AUC by
0.75–0.98%, as shown in Table 4. Due to the sparse na-
ture of tweets, we found that relatively dense models have
slightly better AUCs – models that are too sparse tend to
generalize poorly on Byte4Grams that are not seen in train-
ing data. In our experiments, we found α ≈ 0.05 provides
the best trade-off between test set AUC and training speed
(smaller α turns to slow down the regularization sweeping).

4.5 Relational regularization
The ontological relations among topics, as defined by the

hierarchical tree structure of our taxonomy, can be used to
make our models smarter in learning classifiers for concep-
tually related topics. We consider three approaches here:

Label expansion This approach regularizes the learner by
applying ontology-based label propagation to the train-
ing data, i.e., via: (1) ancestor inclusion: if x belongs
to topic c, then it should also belong to topic c′ if c′

is an ancestor of c; and (2) offspring exclusion: if x
belongs to c, then it should not be used as an nega-
tive example of c′ in 1-vs-all splitting unless labeled so

2For webpages, Byte4Gram consumes far more extraction
time than Unigram and could slow down our system in real-
time classification especially for very long documents.

Table 3: Comparison of feature extractors, where
*-norm denotes instance-level `1-normalization.

Feature Avg AUC
Tweet Byte4Gram baseline
Tweet Unigram -5.7%
Tweet Byte4Gram-norm +0.0%

Webpage Byte4Gram baseline
Webpage Unigram -0.1%

Webpage Unigram-norm +1.2%
Webpage Unigram-logTF-norm +1.5%

Table 4: Comparison of regularization type. Elastic-
Net, with automatic regularization strength tuning,
improves overall model AUC.

Regularization Avg AUC %topic win Sparsity
Tweet `2 baseline baseline baseline
Tweet `1 -0.33% 36% 1.7%
Tweet EN, λ∗ +0.98% 100% 5.1%

Webpage `2 baseline baseline baseline
Webpage `1 -0.23% 29% 1.4%
Webpage EN, λ∗ +0.75% 100% 4.6%

Table 5: Using relational regularization significantly
improve model quality.

Method Avg AUC %topic win
Tweet Flat baseline baseline
Tweet Label Exp. +3.6% 70%
Tweet Cost Sens. +3.3% 66%
Tweet Hie. Reg. +3.6% 69%

Webpage Flat baseline baseline
Webpage Label Exp. +2.3% 79%
Webpage Cost Sens. +2.2% 73%
Webpage Hie. Reg. +2.2% 81%

explicitly, where c′ is an offspring of c. This method
enables relational shrinkage via data sharing.

Cost-sensitive learning The structure of the taxonomy
indicates that we should penalize mistakes involving
different topic pairs differently, e.g., misclassifying a
“movie” tweet as “entertainment” should receive less
cost than misclassifying it as “sports”. This can be
done by encoding the ontological relations into a cost
matrix E, where the (c, c′)-th element, ecc′ , represents
the cost of misclassifying an instance of topic c into
topic c′ and optimizing the regularized expected cost
E[e(y, ŷ)|x)] =

∑k
c=1 eycp(ŷ = c|x), where we use as

ecc′ the tree-distance between c and c′ in the taxonomy.
Hierarchical regularization [28, 15] We can encode the

hierarchical dependency among topics into the regu-
larization so that the model of a topic c is shrunk to-
wards that of its parent node parent(c), e.g. by adding

a penalty term, 1
2
η
∑k
c=1 ||wc −wparent(c)||22, to Eq(1).

These approaches, while tackling relational regularization in
three different aspects (i.e., data sharing, relational objec-
tive, parameter sharing), usually achieve equivalent effects.
Note that“cost-sensitive optimization” is more versatile as it
can also handle label dependencies that are discovered from
data (e.g., topic correlations) rather than prior knowledge.
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Experiment Results. In Table 5, we compared LR with-
out relational regularization (denoted “Flat”) vs the three
approaches we described above. Relational regularization
significantly improve model quality, e.g., over 2% boosts of
average AUC. The differences among these three methods
are nevertheless very small. For simplicity of implementa-
tion, hereafter, we primarily use label expansion.

4.6 Model calibration
LR models return soft probabilistic scores p(y|x) in the

range of [0, 1]. In order to apply them to label the top-
ics of tweets/webpages, we need to calibrate the models to-
wards specific quality criteria in need, i.e., a precision target
in our case. There are two key questions here: (1) “over
what distribution should precision be measured?” and (2)
“how to find the optimal decision threshold?”. For precision
measurement, stratified sampling in the range of posterior
scores produced by a classifier has been advocated as a way
to reduce the variance of precision estimates [4]. While this
method is very effective once the decision threshold are set,
it is not straightforward to use when one seeks to determine
the optimum thresholds.

Given a topic c, a small seed set of positive examples Pc,
an unlimited stream of unlabeled data Uc and a labeling
oracle O, we use the following method to tune threshold θc:

Initial threshold Use Pc to estimate a rough lower bound
θlc for θc by using a much lower precision target.

Stratified sampling Apply the model to the output distri-
bution and divide the interval [θlc, 1] to equal-percentile
bins3. Apply stratified sampling to Uc according to
these bins and send the samples to O for confirmation
labeling (Section 4.7), with results denoted Lc.

Threshold estimation Let θj represent the posterior score
of bin j, estimate the precision πj for each bin j based
on Lc. The optimal threshold is the minimum break-
point at which calibrated precision exceeds the preci-
sion target π̃, i.e.,

θc = arg min θ, s.t.:

∑
θj>θ

sjπj∑
θj>θ

sj
> π̃

where sj represents the size or prevalence of examples
in bin j, which can be estimated using Uc.

Note that, other than the above one-side calibration ap-
proach, a two-side approach is also possible, i.e., by ini-
tially narrowing down the range with both upper and lower
bounds and applying golden section search to find optimal θc
by progressively dividing bins (rather than fixed-size bins)
and sub-stratified sampling. Although this two-side method
can produce threshold estimations with arbitrary resolu-
tions, we found in our experiments that one-side approach
performs well enough and is much simpler to implement.

4.7 Quality evaluation
As we strive to achieve 90% or higher precision, high-

quality gold standard data and accurate evaluation is critical
to assess whether we achieve that goal. We use crowdsource
human labeled data for quality evaluation. As we previously
discussed in Section 4.2, human annotation is less accurate
in a multi-label setting due to the cognitive overload caused

3The boundaries of the bins can be defined based on the
percentiles of the posterior scores of Pc or Uc.

by any nontrivial taxonomy. We instead ask for confirma-
tion labeling. That is, rather than presenting the whole tax-
onomy to crowdsource workers and asking them to select
whatever labels are relevant to a given tweet, we present a
(tweet, topic) pair and ask them to provide binary answers
to “whether or not the supplied topic is correct for the given
tweet”. As our primary goal is to estimate precision, binary
judges on a sample output of our system are sufficient for
our purposes. In principle, this protocol would require a lot
more questions (i.e., labeling tasks) and in turn incur more
costs if we were to estimate recall, e.g., for a given tweet and
a 300-topic taxonomy, we need 300 labeling tasks in order to
know the ground-truth topic of the tweet, compared to one
task in the multi-label setting. Nevertheless, for precision
assessment, this protocol has better quality assurance and
it is more economical – because binary tasks are much eas-
ier, we found crowdsource workers are more willing to take
the tasks at a much lower price, and more importantly, they
are less likely to provide mistaking judgments.

To effectively control cost, we assign each (tweet, topic)-
pair sequentially to multiple workers; once the standard er-
ror of the responses is below a certain threshold, the label
is considered final and the task will be frozen without being
assigned further. The quality of the response varies worker
by worker. To ensure quality, when assigning tasks, we also
incorporate a small set of randomly-sampled probe tasks for
which we already know the true answers with high confi-
dence. Those workers whose response accuracy consistently
falls below our requirement will not be admitted for future
tasks, and their response in the current batch are ignored.

Recall estimation faces challenges due to the nature of our
labeling protocol, the needs for unbiased corpus and the fact
that the distribution of our data evolves over time, which is
the subject of another paper [7]. Instead, we use primarily
precision and coverage for quality evaluation.

4.8 Diagnosis and corrective learning
Once the system is deployed in production to label the

topics of tweets, it is important to be able to identify cases
where the model fails, and provide diagnostic insights as
well as corrective actions to fix it on the flight. To this end,
we instrumented a mechanism that associate topic labels as
tags to tweets and expose them to the users. When users
scroll on a topic tag, two buttons will show up to allow
users to provide “right or wrong” feedback about the topic
tag. Clicking on a topic tag will also take you to a channel
consisting of tweets all about that topic, which is useful for
diagnosis of a topic model as tweets are flowing through.
The UI of this feature is shown by the top chart of Figure 5.
This feedback collection module makes it easy to exploit the
wisdom of crowd in an ad hoc way to receive instantaneous
feedback on the performance of our topic models and pro-
vide opportunities to identify patterns for correction. Once
failing cases or trouble areas are identified, another tool is
used to visualize which parts of the tweet contributed to
the offending decision the strongest, as shown in the bottom
charts in Figure 5. This is useful to allow the modeler to
manually zoom into the model and identify potential ove-
fitting patterns. With all the diagnostic patterns, we then
employ corrective learning [25, 23] to correct the mistakes
of an existing topic classifier either manually or automati-
cally on the flight. Corrective learning is used because it is
desirable to adjust models gradually using a relatively small
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Figure 5: The diagnosis, corrective learning and
feedback collection modules.Top: the feedback col-
lection UI; Bottom: the corrective learning UI
(Left), and visualization of an example tweet, which
was misclassified as “rowing” before (Mid) but cor-
rected after (Right) corrective learning.

number of new examples, and in such a way that the correc-
tive action is limited to the area of the input space where the
current models are actually misbehaving, while leaving the
remainder unaffected. In Figure 5 (bottom), we show the
UI for manual corrective learning, and one particular exam-
ples. The tweet was misclassified into the topic “Rowing”
because of overfitting to the Byte4Grams extracted from the
substring “-rowing”, as shown in the bottom left chart (pos-
terior score p(c|x) = 0.97). Fortunately, once we identify
this pattern and adjust the model with corrective learning,
this mistake can be corrected, as shown in the bottom right
chart (p(c|x) = 0.41).

4.9 Model fine-tuning
Although we strive to turn down the noise in our labeled

data by employing various techniques such as topic prior
based pre-filtering, co-training and PU-learning, the data
coming out of our training data acquisition pipeline still con-
tains substantial noises. As a result, very few of our topic
classifiers, if trained on these data, can achieve 90% preci-
sion. On the other hand, the labeled data collected from
“feedback collection” and “quality evaluation” processes, al-
beit expensive and in relatively small amount, has very high
precision as it is produced by human with controllable qual-
ity assurance. Can we use this small set of high-precision
data together with the the large set of relatively noisy data
to train better models? Naively training models on the com-
bined data set is ineffective as only negligible AUC improve-
ments were observed in our experiments (i.e., high-precision
data is diluted/polluted by noisy data which is dominant in
amount). We propose here a two stage training process:

Pretraining Train LR model on the larger set of noisy data
as described in Section 4.4.

Fine tuning Tune the model on the small high-quality data
set in the neighborhood of the pretrained model.

To fine tune the model, we use the pretrained model, de-
noted w0, as prior and shrink w towards w0 while minimiz-

Table 6: Comparative evaluation of models on
crowdsource confirmation-labeled data.

Model Avg AUC %topic win
Tweet baseline 0.7292 –
Tweet stage-1 0.8004 89%
Tweet stage-2 0.8415 97%

Webpage baseline 0.7496 –
Webpage stage-1 0.7845 85%
Webpage stage-2 0.8051 99%

Table 7: Quality metrics of the calibrated classifiers.

precision coverage topic coverage
Tweet 89.7% 33% 81%
Webpage 91.2% 53% 73%

ing the regularized loss on the high precision data:

min
w,b

δ

2
||w − w0||22 −

1− δ
n

n∑
i=1

l(w, b|xi, yi)

+ λ(α||w||1 +
1− α

2
||w||22), (2)

where δ ∈ [0, 1] controls how much the model w is shrunk
towards its prior w0 vs w∗ (i.e., the maxima of the regu-
larized likelihood on high-precision data), we sample δ from
Beta(δ|n0, n), where n is the number of examples seen in
the training set and n0 is a positive number quantifying how
strong we trust the prior4. This way, the shrinkage adap-
tively finds a balance between the prior and the likelihood
such that the more high-precision data we supply, the less
the model will be shrunk towards the prior and vice versa.

Experimental Results. In Table 6, we report the quality
of the models produced by the two-stage training process.
As a reference, the very first baseline(i.e., the third row of
Table 1) and the stage-1 model (i.e., the third row of Ta-
ble 5) are used for comparison. For more accurate assess-
ment, we use crowdsource confirmation-labeled data (Sec-
tion 4.7) in this evaluation and report the exact AUC scores.
The fine-tuning (stage-2 ) consistently and significantly im-
proves the quality of the model on both tweet and webpage,
e.g., average AUC is improved by over 5% on tweets.

In Table 7, we also report the quality metrics of the cali-
brated models as seen in our service. The fine-tuned tweet
model achieves ∼90% precision with 33% tweet converge
and over 80% topic coverage, a huge improvement from our
first baseline, which, for example, with ∼70% precision only
achieves 8% tweet coverage and 21% topic coverage.

4.10 Discussions
Large-scale data. We discuss here two approaches, en-
abled by the prior shrinkage framework5, which scale up our
learning capability to massive data set in terabytes:

• Sequential mini-batch learning. With this ap-
proach, we partition the data set into multiple small
segments {D1, . . . ,Dm} and train the model on each

4The best choices of n0 and n can be decided by applying
Laplacian approximation to the likelihood. We use cross-
validation in our experiments for simplicity.
5Note that hierarchical regularization is also enabled by
prior shrinkage.
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partition sequentially with prior shrinkage, i.e., sup-
pose wk is the model trained on Dk, wk+1 will be
trained on Dk+1 with wk as prior. Compared to the
two extremes, i.e., pure streaming learning and single-
thread batch-mode learning, this approach provide a
good trade-off between computational and statistical
efficiency (i.e., it takes less time than batch-mode and
requires few examples to converge than streaming)[10].
Moreover, when the quality of the data is progressively
improved in the partitions (e.g., sampled and labeled
via active learning), we found this approach can pro-
gressively improve the quality of the model.
• Distributed batch-mode learning This approach

is populated with the recent advances in operational
research on alternating direction method of multipli-
ers (ADMM) [8]. The basic idea is to maintain a
global consensus w̄ and iterate between (1) maximiz-
ing the (unregularized) log likelihood on each partition
Dk with shrinkage towards w̄, to obtain a local solution
wk, usually done in a distributed manner or in parallel,
and (2) updating the consensus w̄ to minimize the reg-
ularization penalty and the deviations from the local
solutions {wk}, which is usually very cheap to obtain
(e.g., close-form solution in our case).

Active learning. One question one may ask is: since high-
precision human labeled data is so effective in improving
the model quality yet it is so expensive to acquire, would it
be more efficient to apply active learning, i.e., to train the
model from scratch with a minimum amount of iteratively
acquired training data? Unfortunately, the answer is “no”.
First, active learning requires integration of our machine
learning capability into the API of the crowdsource agent,
which is not supported by any crowdsouring services on the
market. More importantly, the feature vector for each tweet
is extremely sparse (e.g., only∼70 binary occurrence in a 1M
space). At such sparsity, even if we were to see each feature
to occur once (for each of the 300 topics), it would require
millions of tweets for querying and incur a cost that easily
exceeds our budget. In contrast, we find corrective learning
(Section 4.8) is more suitable to our case – it provides useful
diagnosis and corrective feedback to an (underperforming)
existing model, and allows us to quickly fix it on the flight;
moreover, it also takes advantages of the large user base of
Twitter to acquire high-quality labeled data at virtually no
cost by using the wisdom of the crowd.

5. BEYOND TEXT CLASSIFICATION:
INTEGRATIVE TOPIC MODEL

Up to now, the topic models we present infer topics solely
based on the text of tweets. However, a tweet is an envelope
of different things, for example, besides (1) the text, a tweet
can also contain (2) author, (3) embedded URL, (4) entities
(e.g., #hashtag, @mention and named entities), (5) engagers
who have interacted with the tweet (e.g., favorite, retweet,
reply), (6) multi-media (e.g., image, video) and (7) other
context information such as geographic, temporal and social
contexts. The question is, how to harness all these sources
of signals to achieve highly accurate topic inference when
each single signal might fall short?

One approach is to extract feature from each source of sig-
nals and train LR models in the augmented feature space.
There are some drawbacks with this approach. First, not all

the features are available for every tweet (they may available
at different stages or not available at all, e.g., engagements),
leaving a lot of missing values. Second, the significant in-
crease in feature dimensionality raises a lot of complications,
e.g., it requires more labeled data for training and incurs
significant overhead in memory consumption and runtime
latency. Experiments also suggest that this approach is less
effective in our system. An alternative approach is to use a
hierarchical model similar to a feed-forward neural network,
e.g., train a set of LR models on each input signal alone, and
another layer of LR model on top of the output of these mod-
els. The structure doesn’t have to be three layers. If needed,
more hidden layers can be used to capture higher-order cor-
relations among different features to further improve gen-
eralization performance as suggested by recent advances in
neural network research [16]. Unfortunately, this model re-
quires more complicated machine learning capabilities which
are not currently supported by our infrastructure.

Instead, we present here an integrative inference approach
based on decision aggregation (DA), where each of the sig-
nals is used as a weak decision maker to provide noisy topic
labels for tweets, and the final topic labels are decided by ag-
gregating these noisy predictions, e.g., via weighted majority
voting. There is no restriction on what types of predictors to
be used by each weak predictor as long as they all produce
predicted labels for a given tweet. Similar methodologies
have been applied successfully in the literature to handle
tasks that involve multiple noisy experts or highly hetero-
geneous data [11, 24]. In this section, we first describe how
we derive topic decisions from users and entities, we then
present the integrative inference algorithm in details.

5.1 User topic model
A user is usually interested in only a few topics out of

the 300+ topic space. When associated with a tweet via
authorship or engagement, the user’s interest topics provide
a valuable signal for inferring the topic of the tweet. User
interest modeling is itself an important topic. In fact, one
primary use case of tweet topic modeling is to understand
the interest intent of Twitter users so as to enable topic-
based personalization.

Based on what a user has produced and consumed on Twit-
ter, we derive two types of interest topics. Particularly,
if a user u prominently tweets about a topic c, we call u
is ”Known-for” (KF) c. Likewise, if a user u consistently
shows interest to tweets about topic c as indicated by his
engagements (e.g. retweet, favorite, reply, clicks), we say
u is “Interested-in” (II) c. Note that KF of u is a subset
of u’s II. In our system, the distribution of interest topics
for each user (i.e., KF and II) are derived in real-time by
running a tfidf -style topic-ranking algorithm on a sliding
widow. The foreground model is a smoothed likelihood of
user u producing / consuming tweets about topic c, whereas
the background model is a population-level mean of the for-
mer. Let rt(c|u) denote the tfidf score of topic c to user u
at time t, the topic distributions are rolled-over with a time-
decay weight via pt(c|u) ∝ 1

K(t)

∫ t
0
k(t − s)φ(rs(c|u))ds =

(k(1)pt−1(c|u) + k2(0)φ(rt(c|u)))/(k(1) + k2(0)), which is
then normalized (over all the topics) and memcached for
real-time access. Here k(·) is a time-decay kernel (e.g., the

Exponential PDF k(t) = βe−βt), K(t) =
∫ t
0
k(s)ds is the

CDF of k(t), φ is a feature transformation function (e.g.,
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Table 8: User interest models are evaluated in terms
of precision at n (P@n) on user survey data.

Definition of positive interest P@1 P@2 P@3 P@5
somewhat interested & above 0.81 0.85 0.85 0.85

interested & above 0.69 0.71 0.73 0.73

when φ(x) = exp(x) is used, the distribution p(c|u) will be
a weighted softmax transformation of rt(c|u)).

Another source of information for deriving user interest
topics is to leverage the social annotation mechanism en-
abled by Twitter List. In particular, if a user u is consis-
tently labeled by other users with lists that can be mapped
to topic c, we call u is known-for c. II topics are derived
from KF by using the follow graph, i.e., if a user u directly
follows a user v who is unambiguously known-for topic c, we
say u is interested-in c.

Interest topics derived from authorship and engagements
are dynamic, and can adapt over time as users’ interests
evolve. In contrast, interests derived from social annota-
tion are static. Nevertheless, we found that, especially for
celebrities who don’t tweet proactively, social annotation is
more accurate. In our system, these two approaches are
combined linearly with weight tuned on validation data.

Experimental Results. To evaluate the derived user in-
terest topics, we conducted an online survey to collect ex-
plicit feedback from users. For each participating user, we
select a set of∼ 10 topics, consisting of a subset of topics pre-
dicted by our model and a few randomly-sampled probe top-
ics. We present these topics to users in a random order and
ask them to rate how much they are interested in tweets on
each topic. Users are allowed to provide their answers on 7
scale from “strongly interested (7)” to “strongly uninterested
(1)”, and one additional option of “not sure”. Irresponsible
or noisy answers which apparently conflict with what users
explicitly stated in their profiles or other strong behavioral
signals were filtered to reduce the noise. Based on ∼ 5000
survey responses, we assess our model in terms of precision
at the top-n topics (or P@n). The results are reported in
Table 8. The average score of the top-5 predicted interest
topics is around 6 (i.e., interested), significantly higher than
the average score of the probe topics, which is around 3 (i.e.,
somewhat uninterested), indicating that the predictions by
our model are consistent with what users perceive about
their true interests. Overall, our model achieve up to 80%
precision, and on 34% tweets, the top-5 predicted interest
topics overlap with the ground-truth interests of a user.

5.2 Hashtag topic model
We present here an algorithm to infer topics from #hash-

tags, although the algorithm is applicable to other types of
entities (e.g., named entities, @mentions) as well. Hashtag
is one of the key features that define Twitter. In its essence,
“hashtag = topic”, i.e., hashtags are user-defined topics to
better organize conversations. Hashtags are also way more
predictive than ordinary text strings. Most hashtags span a
rather narrow bandwidth out of a large spectrum of topics,
e.g., #ObamaCare, #TheVoice and #NBA.

A straightforward approach is to use hashtag as features
and train a LR model to classify tweet solely based on hash-
tags. This approach is, however, inherently flawed due to the
huge volume (e.g., the number of hashtags are inO(100Ms)),

Table 9: Performance of hashtag topic model: pre-
cision at n (P@n), tweet coverage, and the ratio of
output overlap with tweet classifier.

P@1 P@2 P@3 P@5 coverage overlap ratio
32% 49% 57% 64% 6.6% 53%

the transient nature (i.e., hashtags are continuously evolving
over time with new hashtags emerging every second) and the
extreme sparseness (i.e., the majority of tweets usually con-
tain no more than one hashtag). Indeed, our experiments
indicate that, when hashtags are used as special unigram fea-
tures together with regular text strings, only a very marginal
(on some topics even negative) improvements were observed.

Instead, we infers hashtag topics via a retrieval algorithm,
i.e., take a hashtag as a query, we aim to find the most repre-
sentative topics for it. Unfortunately, because the hashtag-
to-topic retrieval task is very different from conventional
query-to-document retrieval, standard retrieval models such
as pointwise mutual information (PMI), tfidf , BM25 and
χ2-test did not perform well in our experiments. To this
end, we present a learnable retrieval model supervised by
the output of our high-precision tweet text classifiers.

Feature For hashtag h and topic c we use the following

p(h|c), p(h|¬c), p(c|h), p(c|¬h)

and their corresponding complement probabilities, to-
gether with the occurrences p(h) and p(c) as features,
where ¬a means the absence of a. Standard retrieval
models such as PMI, tfidf , BM25 and χ2 are all pre-
scribed functions of some subsets of these 10 features.

Model We train a linear model using the logarithms of the
aforementioned features: r(c|h) = 〈θ, log(f)〉. The pa-
rameter θ is tuned such than a retrieval metric (e.g.,
nDCG) is maximized on the training subset of high-
precision tweet classifcation results.

Note that we can turn the direction of the retrieval model
around, i.e., to find the most predictive hashtags for each
topic, which is useful for a number of features such as hashtag-
based topic summarization, topic-aware trends, as well as
topic priors for training data acquisition (Section 4.2).

Experimental Results. In evaluation, we randomly sam-
pled ∼ 500 hashtags with 10 example tweets for each hash-
tag, and asked crowdsource workers whether the ground-
truth topic is within the top-n topics retrieved from hash-
tag. The results are reported in Table 9. Overall, the model
achieves 64% precision at position 5 (compared to 34% of
user II topics). Moreover, hashtag topics overlap with tweet
classification results on only 53% of the tweets, suggesing
that they are also potentially useful for improving recall.

5.3 Integrative inference
We now have five topic predictors for a tweet, i.e,

• Tweet text: classification based on tweet content
• Webpage: classification of webpage (embedded URL)
• Author KF: known-for topics of the author,
• Hashtag: topics from the embedded #hashtags,
• Engager II: aggregated interested-in topics of the users

who engaged with the tweet.
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Table 10: Quality metrics of integrative inference.

Precision Tweet Coverage Topic Coverage
93% 37% 81%

Table 11: Importance ranks and scores of the 5 in-
gredient predictors in integrative inference.

1 2 3 4 5
Tweet text Webpage Hashtag Author KF Engager II

1.0 0.92 0.68 0.55 0.47

We derive the final topics for each tweet by aggregating topic
labels provided by each of these predictors via decision ag-
gregation. In settings where there are multiple experts pro-
viding noisy (possibly conflicting) decisions yet none of them
is good enough alone, decision aggregation has been shown
to beat or perform comparably to the best expert in hind-
sight [11, 24]. As we are primarily concerned with precision,
we aggregate the noisy topic labels providing by each pre-
dictor using weighted majority voting : we assign a weight for
each predictor and take all the topic labels to form a com-
mittee to vote, where each topic takes the sum of weights
from the predictors who activate it. These topics together
with their weights are then propagated according to the tax-
onomy tree to arrive at the final topic predictions. In our
experiments, the weights are trained using the AdaBoost al-
gorithm [14] on human confirmation-labeled data.

The integrative algorithm brings a close-loop inference
mechanism and enables our system to dynamically adapt
itself to cope with data drift, an importantly ability that a
static LR classifier lacks. This is due to the fact that, by do-
ing integrative inference, our system is running in real-time
a close-loop iteration between (1) inferring topics about enti-
ties and users from tweet topics and (2) refining tweet topics
using entitiy and user topics based on emerging signals.

Experimental Results While we can configure the inte-
grative inference algorithm to improve precision and cover-
age (or recall) at the same time, here we exemplify with a
rather conservative configuration to optimize precision (i.e.,
eliminate maximum false positives). The results are de-
picted in Table 10. At 12% higher coverage (compared to the
tweet classifiers), the integrative model achieves 93% preci-
sion. Table 11 also shows the rank and importance score
(normalized against the maximum score) of the 5 ingredient
signals, as learned by the AdaBoost algorithm.

6. SUMMARY
We have presented a deployed large-scale topic modeling

system that infers topics of tweets over an ontology of hun-
dreds of topics in real-time and at stringently high precision.
We have proposed a unique collection of topic modeling tech-
niques that effectively helped us to address the challenges in
implementing the system and satisfying the quality require-
ment.
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