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ABSTRACT
In this paper, we report the first empirical study and live
test of the reserve price optimisation problem in the con-
text of Real-Time Bidding (RTB) display advertising from
an operational environment. A reserve price is the minimum
that the auctioneer would accept from bidders in auctions,
and in a second price auction it could potentially uplift the
auctioneer’s revenue by charging winners the reserve price
instead of the second highest bids. As such it has been
used for sponsored search and been well studied in that con-
text. However, comparing with sponsored search and con-
textual advertising, this problem in the RTB context is less
understood yet more critical for publishers because 1) bid-
ders have to submit a bid for each individual impression,
which mostly is associated with user data that is subject to
change over time. This, coupled with practical constraints
such as the budget, campaigns’ life time, etc. makes the the-
oretical result from optimal auction theory not necessarily
applicable and a further empirical study is required to con-
firm its optimality from the real-world system; 2) in RTB an
advertiser is facing nearly unlimited supply and the auction
is almost done in “last second”, which encourages spend-
ing less on the high cost ad placements. This could imply
the loss of bid volume over time if a correct reserve price is
not in place. In this paper we empirically examine several
commonly adopted algorithms for setting up a reserve price.
We report our results of a large scale online experiment in a
production platform. The results suggest the our proposed
game theory based OneShot algorithm performed the best
and the superiority is significant in most cases.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and
Retrieval - Online Information Services
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1. INTRODUCTION
In display and mobile advertising, the most significant de-

velopment in recent years is the growth of Real-Time Bid-
ding (RTB) [34], which allows selling and buying online dis-
play advertising in real-time one ad impression at a time.
It is projected to reach $8.49 billion in US alone in 2017,
accounting for 29% of all digital display advertising [12].

In RTB, a publisher generates a bid request for each indi-
vidual impression in real time and then sends a request to
advertisers via ad exchanges [23]. In practice, the reserve
price may be disclosed or not. Advertisers would submit
bids for this impression based on their bidding algorithms.
Usually they do so even when the bids are lower than the
disclosed reserve to avoid the time-out penalty which re-
duces the bid request volume over time. Those bidding
algorithms usually enquire third-party data providers to ob-
tain the user’s interest segments to assist in computing bids.
When the time limit expires (usually 100ms) the exchange
holds a second price auction [2], and the publisher gets the
winner, saves the final price, and displays the ad from the
winning advertiser to the user. The whole process is repre-
sented in Figure 1.

Along with other fixed-price advertising channels [29, 4],
revenue from RTB makes an important source to support
various (online) publishers, including but not limited to con-
tent providers, social networks, and personal blogs. They
provide free services or content and subsidise the maintain-
ing cost by ad revenue. Therefore, uplifting revenue by em-
ploying various yield management tools makes one of the key
topics on the publisher side. An important tool among them
is the reserve price optimisation. A reserve price defines the
minimum that a publisher would accept from bidders. It re-
flects the publisher’s private valuation of the inventory: bids
will be discarded if they are below the reserve price. In the
second price auction, which is commonly used in RTB, the
reserve price could potentially uplift the revenue. Figure 2
illustrates how the final price is calculated from bids with a
reserve price. Let b1, . . . , bK denote the descending bids and
α the reserve price. Then, the desirable case is b1 ≥ α > b2
where the publisher gains extra payoff of α − b2; the neu-
tral case is b1 > b2 ≥ α where the publisher has no extra
gain; and the undesirable case is α > b1 where the publisher
suffers from a loss of b2. These cases directly motivate our
work.

The optimisation problem has been previously studied in
the context of sponsored search [11, 13, 26, 31]. However, the
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Figure 1: The simplified process of Real-Time Bidding ad-
vertising. Major entities are coloured in blue where pro-
cesses are transparent. One iteration usually finishes in less
than 100ms to achieve users’ satisfactory.

problem in the RTB context is different and unique. Firstly,
the optimal auction theory requires to know the distribu-
tion of the advertisers’ private yet true assessments of the
impression before calculating the optimal reserve price [11].
In RTB, it becomes a lot harder to learn the distribution.
In RTB an advertiser is required to submit a bid for each in-
dividual impression using his own algorithm, which is never
disclosed to publishers and could rely heavily on privately-
owned user interest segments. Besides, various practical con-
straints such as the budget, campaign life time, irrationality,
divert advertisers from bidding at private values. This dif-
ference makes the private value based algorithm inefficient in
practice. Thus, it is of great interest to empirically study the
subject and examine several commonly adopted algorithms
in the real-world as we report in the paper. Secondly, unlike
sponsored search, an advertiser does not have the keyword
constraint and faces almost unlimited supply of impressions
in RTB. Setting up an aggressive reserve price would easily
move the advertisers away from those placements and force
them to look for something cheaper.

We analyse this possible consequence in the online ex-
periment and reject the significant attrition hypothesis in
today’s RTB marketplace, which could be due to the com-
plexity of our scheduling or less sensitivity of common bid-
ding algorithms. The little attrition fact implies good chance
of implementing the optimisation in the current eco-system.

In this paper, we represent the first field study of reserve
price optimisation in the RTB context. It is based on the
analysis of real-world data and online experiments on a pro-
duction platform. We provide thorough discussions about
the commonly adopted algorithms for reserve price optimi-
sation including both the private-value-free and the private-
value-based ones [24, 11, 26], and their variations.

2. RELATED WORK
Up to now the reserve price problem is mainly studied

for sponsored search (SS). For instance, in [26], the authors
first studied the reserve price problem in a real-world online
advertising system (Yahoo! sponsored search). The authors
test optimal auction theory on 450k keywords and the re-
sults diverge by number of impressions: for keywords with
high search volume the uplift on revenue is good and sta-
tistically significant. However, for other keywords the total
revenue declines by 2.2% on average. We find this result

Figure 2: The decision process of second price auctions on
the publisher side. The desirable case is b1 ≥ α > b2 where
the publisher gains extra payoff of α − b2. We ignored soft
floor prices which make the process a lot more complicated.
Interested readers may refer to [34] for further discussion.

consistent with our work, although the optimisation is not
helpful when there are few bidders. Additionally, we also
perform the bidders’ attrition analysis which is a more sig-
nificant problem in RTB.

In [11] the optimal auction problem is characterised for
sponsored search. The authors demonstrate the calculation
of optimal reserve price for multi-item auctions and conclude
that it is independent of the number of bidders. However,
in [31] the authors conclude that both the number of bid-
ders and the number of ad links affect the optimal reserve
price. Some assumptions are made in the first pape: adver-
tisers know their value per click; they have the same Click-
Through Rate (CTR) at a given position; they share the
common knowledge of position CTRs; they all maximise the
expected profit. These assumptions might be realistic when
search engines bids for advertisers, but however are far from
achievable in RTB. Also in the SS context, in [13] the adver-
tiser specific reserve prices are discussed within the gener-
alised second-price auction (GSP) and the Vickrey-Clarke-
Groves (VCG) auction [10] settings. As proved in the pa-
per the bidder specific reserve prices could result in losing
truthfulness in the VCG pricing; but could lead to envy-free
equilibrium in the GSP pricing.

We plan our work in a RTB environment. In [23] the
abstract model of the ad exchange is proposed and several
problems are discussed, including auction mechanism, call
out optimisation [8], publisher revenue optimisation [15], ar-
bitrage bidding and risk analysis [7] etc. As mentioned by
the authors, the reserve price problem taking an essential
role in yield optimisation yet remains unsolved. In this pa-
per, we study the problem at placement-level (a group of
impressions) and leave the impression-level dynamic reserve
prices to future work.

There is also rich literature from bidders’ perspective on
how to bid when a randomised reserve price in ad network
is present [16, 14]. The optimal auction design is stud-
ied in [14] with two layers: central seller to intermediaries
and intermediaries to bidders. The authors conclude that
revenue-maximizing intermediaries will use an auction with
a randomized reserve price chosen from an interval in equi-
librium, and the optimal reserve price decreases with the
number of buyers. In our paper, although no intermediary
is employed, we also observe and discuss the relationship of
the optimal reserve price and number of bidders.

Due to the similarity in mechanisms, RTB also can bor-
row a lot from established research on auction theories [19,
28, 22], esp. electronic commerce [3, 32]. In [18] the detec-
tion and reaction towards reserve prices cheating are first
discussed for online auctions. The authors of [22] discuss
the situation that an item could be resold if previous auc-
tions fail due to high reserve price. An equilibrium reserve
price was proven to approach the one in an optimal static
auction. Meanwhile, there are papers on scoring invento-
ries [27] considering unique characteristics of RTB auctions
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(e.g., number of bidders, bid time, bidders’ identity). How-
ever, few of them take the reserve price into account.

3. THE RESERVE PRICE PROBLEM AND
ALGORITHMS

Suppose a publisher tries to maximise the ad revenue for
a single placement (i.e., single-item). Impressions from this
placement are sold using the second price auction in RTB.
The publisher could set a reserve price (also known as the
hard floor price) α before an auction is conducted.

To simplify the discussion, we assume there is only one
impression at each step t and the publisher is optimising
the revenue over horizon T . We also assume that at each
step t there are K ≥ 2 bidders participating in the auction.
If there is only one bidder it is equivalent to having the
second highest bid equals to the minimal bid (usually $0.01).
Note bidders could be different each time and could change
quite a lot—this introduces great noise into the system and
challenges the estimation of the distribution of the private
evaluation values from the advertisers, where most auction
theories assume there is a fix distribution of bids.

For each auction, we denote the final bids of the place-
ment as b1(t), b2(t), · · · , bK(t). Without loss of generality
we assume b1(t) ≥ b2(t) ≥ · · · ≥ bK(t). Therefore, with-
out a reserve price (α = 0) the payoff could be denoted
as r(t) = b2(t). Now suppose the publisher sets a non-zero
reserve price at each step, denoted by α(t). The payoff func-
tion becomes:

r′(t) =


α(t), b1(t) ≥ α(t) > b2(t)

b2(t), b2(t) ≥ α(t)

0, α(t) > b1(t)

(1)

The overall income is R(T ) =
∑T
t r
′(t). We assume it is zero

payoff when the reserve price is too high. In practice, pub-
lishers usually redirect these impressions to managed cam-
paigns or other ad marketplaces for re-selling. This reduces
the risk of over-optimisation.

Comparing with the original payoff function, the case r′(t) =
α(t) provides an extra gain, whereas the case r′(t) = 0 in-
curs a loss. We plan our work at the placement level; in
other words, we set up the reserve price periodically. From
a control theory’s point of view, throughout the planning
horizon the publisher wants to explore (learn) the optimal α
of the placement; the same time the publisher also exploits
(predict) the known best α to get as much payoff as possible
and to compensate the loss.

3.1 Optimal Auction Theory
Regardless of the existence of reserve price, bidders are

encouraged to bid their private values in the second price
auctions [24, 21]. Note that this dominant strategy does not
hold in modern sponsored search where quality scores are
generally used [10] in ad ranking. Without quality scores,
the strategy of bidding at the private value forms part of
the Nash equilibrium of the system, meaning as time elapses
advertisers have no incentive to change their bids, given that
all other factors remain the same. In this non-cooperative
game [25], the winner could, but would not, lower his bid to
let other competitors win because losing the auction is not
beneficial in either short-term or long-term (lowering the bid
while still winning has no effect since the winner always pays
the second highest bid).

Suppose the publisher knows the bidders’ private value
distribution. The optimal auction theory mathematically
defines the optimal reserve price [19, 20, 31, 24]. There is
also a large scale experiment in sponsored search to test this
theory [26]. We briefly introduce the theory to make the pa-
per self-contained. Again suppose there are K bidders and
they are risk-neutral and symmetric, i.e. having identical
value distributions. Each bidder k ∈ K has private informa-
tion on the value of an impression, drawn from distribution
Fk(x), where Fk(x) denotes the probability that the adver-
tiser’s private evaluation value is less than or equal to a
certain number x. Usually it is assumed Log-normal [26] or
Uniform distribution [24]. Assuming private values are in-
dependently distributed, the distribution over value vector
is

F (·) = F1(·)× · · ·FK(·),

and then the optimal reserve price is given as (see [25] for
details):

α =
1− F (α)

F ′(α)
+ vP , (2)

where F ′(α) is the density function, the first order derivative
of F (α) and vP is the publisher’s private value. In practice,
vP could be obtained from a guaranteed contract with a
flat CPM, or from another ad network where the average
revenue is known.

In the experiment we implement this theory as OptAuc
and follow the Log-normal distribution assumption of bid-
ders’ private values. We also adopt the symmetric assump-
tion, i.e., there is only one distribution for all bidders. Under
these assumptions the optimality of the auction under GSP
is proved in [11]. The estimation of Log-normal’s mean and
standard deviation was obtained using the training dataset
(impression-level logs from 14 Dec 2012 to 18 Jan 2013).

3.1.1 Drawbacks in RTB Practice
In practice, there are drawbacks of the optimal auction

theory mostly due to the difficulty of learning bidders’ pri-
vate values, e.g., F (x). Firstly, a bidder could have a com-
plex private value distribution for impressions. In RTB an
advertiser computes a bid for each individual impression
based on the contextual [6] and behavioural [33] data. The
data is fed into their private valuation models which are
never disclosed to publishers or other advertisers. This is
especially true in RTB comparing with SS where search en-
gines run bidding algorithms for advertisers and host auc-
tions as a publisher at the same time. Also, in SS the auc-
tions are based on keywords, so the population of the bidders
are relatively more stable, whereas in RTB, the auctions are
in the impression level and the advertisers are more flexible
in terms of choosing the impressions to bid.

We tested the Uniform distribution at placement level and
Log-normal distribution at both placement and impression
level. Although these distributions are widely adopted in
research literature [24, 26], only a small portion of tests re-
turned positive results as shown in Figures 7 and 8.

Secondly, it is assumed that advertisers bid at their pri-
vate values in the second price auction [19, 26]. However,
in practice, an advertiser may not know clearly his private
valuation of an impression. Instead, he wants to achieve the
best possible performance. Also in different stages (learning,
prospecting, retargeting, etc.) of an advertising campaign,
the bidding strategy could change. This makes the bidding
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activity vary greatly across the limited flight time of a cam-
paign. See a plot from our experiment in Figure 5.

Thirdly, there are other practical constraints including ac-
cessibility of auction details, noise introduced by the fre-
quent change of auction winners, c.f. Figure 6. We believe
these drawbacks lead to undesirable performance of an op-
timal auction theory based algorithm in our real-world ex-
periment.

3.2 A Simplified Dynamic Game
To address the above-mentioned issue, in this paper, we

take an alternative view and propose a simple auction game
between the publisher and auction winners and identify the
dominant strategies. We simplify the game by dropping the
repeated nature of auctions. Thus the publisher only consid-
ers the current auction and do not learn the private values
from historical knowledge. In fact, the result of this simpli-
fication follows the instinct and is easy to implement; it also
performs the best in most of cases in our online large scale
real-world experiment.

First we give the extensive form representation of this dy-
namic game:
• Player: the winner of auctions (advertisers) w and the

publisher p.
• The information set I before acting is the same for the

winner and the publisher. It has two decision nodes:
I1, the winning bid b is equal to or higher than the
current reserve price α;
I2, the winning bid is lower than the reserve price.
• The action set of the winner Aw:
aw1, to increase b to higher than α;
aw2, to increase b to lower than α;
aw3, to decrease or hold b to higher than α;
aw4, to decrease or hold b to lower than α.
• The action set of the publisher Ap:
ap1, to increase or hold α to higher than b;
ap2, to increase or hold α to lower than b;
ap3, to decrease α to higher than b;
ap4, to decrease α to lower than b.
• The sequence of move: first the publisher, then the

winner.
The game tree representation, as well as the payoff func-

tion, is given in Figure 3. Note for some nodes the payoff
of the winner consists two numbers, e.g. 30/− 10, when the
winner choose to increase the bid, i.e., the action aw1. The
positive value stands for the case where it is still profitable
to increase the bid, while the negative value stands for the
possible loss if increasing the bid, since the advertiser has
reached the maximum affordable price. In the latter case, an
advertiser would choose other actions like aw2 or aw4. These
values have been carefully selected to reflect the positions of
bidder. For example, I1 → I1|ap2 → I1|aw1 would give less
payoff to the advertiser than I1 → I2|ap1 → I1|aw1 because
he has been increasing bids to win auctions.

When deducing dominant strategies we assume both cases
happen with an equal chance since both publishers and ad-
vertisers do not use historical knowledge but only the last
state. Therefore, payoff of the publisher in these cases is dis-
counted by 0.5 since a rational advertiser would not choose
a negative payoff.

3.2.1 The Publisher’s Dominant Strategy
Based on the formulation above we analyse the case where

the publisher and the winner play the game for only one

Figure 3: The game between the winner and the publisher
in the reserve price problem. At the leaf nodes we give
the result information set as well as the payoffs of (winner,
publisher). Note for the action aw1 the payoff of the winner
could be negative if he has already been bidding the maximal
affordable price. We assume these cases happen at a chance
of 50% due to no utilisation of historical data. Thus, the
payoff of the publisher is discounted by 0.5 in these cases.

round. We claim the dominant strategy for the publisher is:

s∗p(I) =

{
ap2, if I = I1

ap4, if I = I2
(3)

which gives the expected payoff:

R(s∗p|I) =

{
60 if I = I1

40 if I = I2
(4)

We eliminate the proof here since it could be easily ac-
quired by following nodes iteratively in the game tree, c.f.
Figure 3. This strategy will serve as the foundation of the
OneShot algorithm we propose in the following section. On
the other hand, the dominant strategy for the winner is

s∗w(I) =

{
aw3, if I = I1

aw1, if I = I2
(5)

which indicates that the bid price should be gradually re-
duced but increased again when lost the auction.

Based on these analysis we have the Nash equilibrium of
the game: s∗ = (s∗p, s

∗
w). This indicates the publisher should

keep the reserve price below the winning bid, while trying
to approach the winning bid gradually. If the reserve price
is too high, it should be reduced drastically to make sure it
will be below the winning bid. Following these actions, the
final state of the system comes to the second price auction
without a reserve price, i.e., the reserve price is always equal
to the second highest bid. In this state, the publisher does
not need to lower α any more. The winner will not lower the
bid otherwise he would lose the auction which gives a zero
payoff. However, this state has never been observed in our
experiment due to the frequent change of bidders, variation
of bids, possibly different strategies adopted by advertisers
(e.g. always bid at the private value).

3.2.2 Introducing the Randomness
One may argue that since the winner of auction is con-

stantly changing this is no longer a game between two play-
ers, but between a player and a group. The frequency of
changing is indeed high. See Figure 6 from the experiment
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Table 1: The payoff matrix of the publisher if the new winner
bid randomly. I1 and I2 denote the starting information set.
ap∗ stands for publishers’ actions. The publisher’s dominant
strategy remains the same and is illustrated in bold font.

I1 I2

ap1 1/3 * 70 1/3 * 70

ap2 1/3 * 80 + 1/3 * 60 -

ap3 - 1/3 * 60

ap4 1/3 * 70 + 1/3 * 40 1/3 * 50 + 1/3 * 40

section. But, since the knowledge of auctions is not shared
among the bidder group, each player of this group only pos-
sesses an imperfect information set. This could result in
the randomness of winner’s actions: the new winner does
not have the outcome of the last auction, so has to bid ran-
domly, which is usually based on private valuation of the
impression or simply instinct.

In this case we claim that the dominant strategy of the
publisher is still the one defined in Equation 3. We remove
the negative payoffs of the winner from the game tree in
Figure 3 and allow him to bid randomly regardless of what
action has been chosen by the publisher. We remove the neg-
ative payoffs because the new winner should not bid above
his private valuation of the impression in the first time step.
The single-step payoff matrix of the publisher is shown in
Table 1.

By playing this auction game with advertisers’ random
actions the publisher has the payoff:

R′(s∗p|I) =

{
1
3
∗ 80 + 1

3
∗ 60, if I = I1

1
3
∗ 50 + 1

3
∗ 40, if I = I2

(6)

We consider this case describes the real-world marketplace
more closely. In fact, the convergence to the second price
auction state hardly happens due to two reasons. Firstly, the
winner of auctions keeps changing constantly as illustrated
in Figure 6, especially when there are many bidders in auc-
tions. Secondly, the detection of the reserve price could be
difficult (when it is not disclosed) and costly. It becomes
even harder if certain randomisation is introduced to the fi-
nal reserve price setting as we did in the experiment. The
winner could suffer from distinguishing a reserve price from
his competitors’ bids. From the bidder’s perspective, the
dominant strategy of competing with other bidders (bidding
the private value) and with the publisher (keep lowering the
bid before losing) is clearly different.

3.2.3 The OneShot Algorithm
We design an algorithm based on the dominant strategy

analysis above. For the publisher, if the winning bid is higher
than the reserve price, slowly increase the reserve price; oth-
erwise, decrease drastically. We make the actual implemen-
tation slightly different by introducing parameters to control
the magnitude of the change under different situations. We
describe the algorithm as follows.

α(t+ 1) = (1− εtλh)a(t) if α(t) > b1(t)

α(t+ 1) = (1 + εtλe)a(t) if b1(t) ≥ α(t) ≥ b2(t)

α(t+ 1) = (1 + εtλl)α(t) if b2(t) > α(t)

where ε ∈ (0, 1] and λh, λe, λl ∈ [0, 1]. ε is a decay factor
w.r.t. time, allowing the reserve price to converge if needed.

λh controls the cooling speed when the reserve price is too
high; λe controls the continued exploration when the reserve
price is successfully; λl controls the heating up speed when
the reserve price is too low.

Note the values of these parameters depend on targeting
combinations (placements, date and time, geography, etc.).
They need to be tuned to achieve the best result. For ex-
ample, in experiments we found an effective setting of these
parameters as ε = 1.0, λh = 0.3, λe = 0.01, and λl = 0.02
for placement 834119 and hour-of-day=8. We obtain these
parameters using the training dataset (impression-level logs
from 14 Dec 2012 to 18 Jan 2013). This algorithm is denoted
as OneShot in the experiments.

3.3 Other Private Value Based Algorithms
Although not optimal in theory, there are other algorithms

which make use of private value distributions in practice.
Here we propose two simple methods, which are based on
Bayes’ rules. An advantage of such algorithms is they could
be easily tuned to be more aggressive or less according to
the greediness (or risk preference) of the publisher. A dis-
advantage is that it does not take the future into account,
so only the current payoff is maximized.

3.3.1 Bivariate Log-normal Distribution
To make the algorithm easier to understand we keep the

Log-normal distribution assumption of private values. First
we capture the first and second highest bids using a bivariate
Log-normal distribution:[

B1

B2

]
∼ lognorm(µ,Σ) (7)

where µ and Σ stand for mean and variance respectively.
For simplicity we consider Σ known and use a bivariate
Gaussian distribution as the conjugate prior for µ:

µ(t) ∼ N (θ(t),∆(t))

The priori could be learned using historical data. In our
experiment, impression-level logs from 14 Dec 2012 to 18 Jan
2013 were used. During evaluation, each time the publisher
observes the highest and 2nd highest bids in an auction, then
updates the belief using Bayesian inference [30]:[

B1

B2

]
|b(t) ∼ lognorm(θ(t+ 1),∆(t+ 1) + Σ)

where

θ(t+ 1) = (∆−1(t) + Σ−1)−1(∆−1(t)θ(t) + Σb(t))

∆(t+ 1) = (∆−1(t) + Σ−1)−1

Then with p(B1, B2) estimated at current time t, we can
solve for a reserve price which has the maximum probability
of sitting between the two bids:

α(t)∗ = arg max
α(t)

P (B1 ≥ α(t) ≥ λB2) (8)

where α(t)∗ is the current reserve price and B1
B2
≥ λ ≥ 1 is

the risk preference parameter. It pushes the result closer to
the winning bids. In experiments we set λ = 1 to mimic a
risk-averse choice. The maximum could be achieved by let-
ting the first derivative equal zero. We use a numerical solu-
tion and approximate the result in algorithm’s implementa-
tion using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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method, the most popular one in Quasi-Newton methods
class. The BFGS method uses the first derivative and has
proven good performance for smooth optimizations [5] and.
We refer to this algorithm as BayesianB in experiments.

3.3.2 Univariate Log-normal Distribution
The most greedy choice from Equation 8 is to let λ = B1

B2
:

regardless of the second highest bidder, the publisher could
always learn and approach the highest bid directly. It is
equivalent to modelling the winning bids using a univariate
Log-normal distribution, which has a simpler solution

B1 ∼ lognorm(µ, σ2)

µ(t) ∼ N (θ(t), δ2(t))

and still we assume that σ2 is known. Every time we observe
the highest bid b1 we obtain

θ(t+ 1) =
θ(t)δ2(t) + σ2b1
σ2 + δ2(t)

δ2(t+ 1) =
δ2(t)σ2

σ2 + δ2(t)

where the priori was obtained using the training dataset.
Then the publisher simply chooses

a(t+ 1) = log(θ(t+ 1)) + β(σ2 + δ2(t+ 1)) (9)

as the new reserve price where β is the risk preference for
this model which could be either positive or negative. In
experiment we set β = 0 for simplicity.

We refer to this algorithm as BayesianU. Again, the fit-
ting of private value distribution is beyond the scope of this
paper but the ideas and algorithms always hold, allowing
different models being implemented easily (it is highly likely
that different models would be used for different placements,
hour-of-day, and etc.).

3.4 Private Value Free Algorithms
There are algorithms based on common knowledge or intu-

ition and do not require the assumption that each advertiser
has their own private fixed valuation about the impression
at hand. In fact, they play a major role in reserve price
set up in real-world. Among those choices, we present two
simple methods as our baselines.

The most basic one is the Fixed algorithm which sets a
static reserve price for all time steps, regardless of outcome
of auctions. Formally it is α(t) ≡ a where a denotes the
pre-chosen fixed reserve price.

When α = 0 it becomes Zero which totally relies on the
auction mechanism, in our case the second price auction,
assuming that quality score (or similar factors like bid bias)
is absent. It is apparently the most altruistic one in our
strategy space which does not try to gain any extra benefit
and could be used as a baseline to measure bidders’ attrition.

The Fixed (including Zero) is the most straightforward
and easy to implement. Besides, it directly reflects the pub-
lisher’s private valuation of the inventory. Before adopting
the automated selling, publishers are used to negotiating
contracts with advertisers or their representatives. The con-
tract price could be easily converted to a reserve price. Also,
due to simplicity this is probably the most widely adopted
algorithm in today’s ad marketplaces. In experiments, we
consider Fixed and Zero the most naive baselines. We

show that, under certain circumstances, although simple,
they performed surprisingly well.

Another family of private-value-free algorithms is based
on historical payoff of auctions. For example, the Average
sets the reserve price to the average of past payoff. Formally
it is

α(t) =
1

M

t−1∑
i=t−M

r(i) (10)

where r(t) is the payoff at time step t and M is the averaging
window.

A natural extension is the weighted average variation,
which values more of recent payoff. Formally it is

α(t) =
1

M

t−1∑
i=t−M

w(i, t)r(i) (11)

where w(·) is the weighting function, which could take var-
ious forms. In our experiments we used linear weights and
denoted it as WeightedL.

Average and WeightedL share the similar insights with
Fixed, except recognizing the fluctuation of demand and
supply in the market. This fluctuation could greatly affect
the reserve price setting especially at hour-of-day level. It is
discussed in details in Section 4.1.

4. AN EMPIRICAL STUDY
Understanding the bidder behaviour in RTB auctions is

crucial to the reserve price problem. In this section we first
report our findings from an empirical study of bidders’ be-
haviours in RTB auctions, focusing on the daily bidding pat-
tern, the bidders’ lifetime, the change of bidders and win-
ners, and bids’ distribution. Based on real-world statistics,
we discuss their impact on setting reserve prices. Then we
report a large scale online experiment in the same produc-
tion platform to test various algorithms proposed before.

4.1 Live Experiment Setups and Dataset
First we highlight the dataset used for this empirical study:
• The dataset is obtained from a production platform in

UK;
• The dataset contains 13,478,591 impressions from Dec

2012 to Feb 2013;
• These impressions are sampled from 39 placements be-

longing to 16 websites of different categories (e.g., fi-
nance, sports, pc & console games, news, technology
& gadgets).

On average, these websites receive 1.8m impressions daily.
We roughly sampled one impression every 10 seconds to con-
struct the dataset due to the limit of computing power and
storage. For each auction we have logged the following infor-
mation: the venue (URL, position and size of the placement,
above or below fold), date and time, demographics of visi-
tor (geographical location, IP, browser agent, language, and
segments if available), bidding activities, and current reserve
price.

Parameters of tested algorithms were obtained during the
training stage (14 Dec 2012 to 18 Jan 2013) then they were
evaluated during the testing stage (19 Jan to 21 Feb 2013) in
the live system. There were 6 placements having few bidders
(less than 5) or small traffic (less than 10k impressions per
day). They were dropped from the online experiment but
were compared with in bidders’ attrition analysis.
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Figure 4: The average number of bidders varies across hour-
of-day and placements. The error bars show standard devi-
ation. A clear pattern emerges that for all placements the
number of bidders peaks at 8-10am.

Besides, we selected 8 placements as the control group to
which the optimisation had never been applied. Although
we evaluated the Zero in the experiment, having a zero re-
serve price at some hours is not equivalent to no optimisation
at all. Having the control group makes it easier and more
accurate to understand the buyers’ reaction or attrition. Of-
fline evaluation had been performed on these placements too
(not reported here due to space limit).

4.2 Bidders’ Behaviours
Statistically speaking, the more bidders, the higher win-

ning bids would be. Thus, the competition level (the de-
mand) is the first important factor we use to group the
placements. In Figure 4 we illustrated the number of bidders
varies across a day on different placements. By using the ba-
sic mean, std, max, and min statistics we divided placements
into groups:
• Group High, 10 to 30 bidders, 6 placements;
• Group Medium, 5 to 20 bidders, 16 placements;
• Group Low, 2 to 10 bidders, 11 placements;
• Dropped, 1 to 5 bidders, 6 placements.

The experiment results confirm that for different compe-
tition levels the same policy would perform differently. An-
other finding is that almost on all placements the number of
bidders peaks at 8-10am. With low level of competition it is
still noticeable (c.f Figure 4, right). This is hard to justify
from the publishers’ perspective; however, we assume this is
due to daily budget settings of campaigns and hour-of-day
targeting.

Note that the number of bidders does not always align
with the number of impressions across hour of day. It is
commonly known that the number of impressions peaks at
evening hours (6-11pm) as reported in [34]. Having more
bidders at the morning hours (8-10am) when there are less
impressions results in even higher winning bids. It implies
the possibility of optimisation from both demand and supply
side. In this paper, we argue it is necessary to perform at
least hourly optimisation and report the results later.

Another observation is on the lifetime of bidders, some-
times referred to as the flight time of campaigns. There are
755 bidders (Note again that we consider each campaign a
bidder) in total in the dataset. As illustrated in Figure 5
we can see two clear patterns: “learners” and “4-week cam-
paigns”, as well as a less clear pattern “6-week campaigns”.
This plot of lifetime is a reflection of how online advertising
work: most of the campaigns are relative short, limited to

Figure 5: The histogram of 755 bidders’ lifetime across all
placements. We consider each campaign a bidder. From the
figure we observe three patterns: two created by common
flight-time of campaigns (4 weeks and 6 weeks) and one cre-
ated by exploration of learning algorithms (0-2 days). Due
to limited time of data collection there are some instances
lying between 0-25 days because these bidders started their
activities before the start date of our experiments.

4 weeks or 6 weeks by advertisers. Meanwhile, we observed
spikes around days 0-3 that indicates the activities of learn-
ers: advertisers spend budget on a placement to learn its
performance against a specific campaign, which is essential
in demand-side optimisation.

The pattern between days 6-20 is less clear due to the lim-
ited time span of data collection. There were good quantity
of campaigns already running at the beginning of the collec-
tion, and they ended randomly several days later. This could
be due to the holiday effect, too (the data collection started
on 14 Dec 2012). It is hard to identify and remove these
campaigns from the dataset; however, they do not affect
the result of auctions with reserve prices, and would become
less significant when more data is available. The figure was
created by aggregating logs across all placements. Although
not reported, placements with different levels of competition
showed the similar pattern; when aggregated they become
easier to identify.

The impact of bidders’ lifetime on reserve price algorithms
is mostly indirect. However, since the optimal auction the-
ory models auctions as iterated and dynamic games, it is
preferable that bidders keep bidding for a while so that both
players could learn and act properly. On the other hand, the
publisher might want to set different reserve prices with re-
spect to ages of bidders (or at least winners), esp. when
lots of learners are present. We leave this discussion to the
future work.

Another factor that would affect reserve prices is the change
of winners of auctions, as illustrated in Figure 6. The in-
stances of such change are in fact not negligible. Combining
with the bidders’ lifetime plot, a significant impact emerges.
Since the winner of auctions on the same placement is con-
stantly changing, it is difficult for buyers to detect if a reserve
price is place, esp. when the reserve price is changing, too.
This in turn favours publishers in the repeated and dynamic
game setting, since advertisers may have only incomplete
information set.

4.3 Bids’ Distribution Test
An important assumption made by optimal auction theory

is that bidders draw their private values from a monotoni-
cally increasing distribution. In second price auction they
bid on their private values; thus the distribution of bids
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Figure 6: The change of winners for placements with differ-
ent levels of competition in 4 days. The fact that a bidder
does not always win could add difficulty to reserve price de-
tection if undisclosed. The result also implies the change
rate does not necessary relate to the competition level.

Figure 7: Only bids from 3 out of 44 placements (6.82%) ac-
cept the Uniform distribution hypothesis. The Uniform dis-
tribution is tested by Chi-Squared test and the Log-normal
distribution is tested by Anderson-Darling test.

reflects their individual valuations of an impression. As in-
troduced in Section 2 researchers often assume bidders are
symmetric, and bids follow Log-normal distribution or Uni-
form distribution. This assumption then becomes the core
of optimal auction theory based algorithms of computing
reserve prices [24, 26, 31].

In our empirical study, bids are fitted to these two distri-
butions. For the Log-normal distribution we check their nor-
mality using Anderson-Darling test [1] after taking the log-
arithm. We do this test at both auction level and placement
level. For the Uniform distribution we use the Chi-squared
test [17] only at the placement level. We use p-value< 0.05
to reject the null hypothesis.

The results are reported in Figure 8 and 7. Clearly only
the acceptance of Uniform distribution assumption at place-
ment level is noticeable yet still at a low ratio of 6.82%. The
poor results are probably due to the bursts and randomness
of bids as illustrated in Figure 9. However, to be consistent
with the research literature, we still adopt the Log-normal
assumption when implementing the optimal auction theory
based algorithm in the experiment. The undesirable fitting
could be the main reason that the OptAuc does not perform
the best.

4.4 Live Test Results and Discussions
We carried out the online experiment in the same produc-

tion platform. The experiment includes 25 placements as the
treatment group and additional 8 as the control group. For

Figure 8: Only bids from less than 0.1% of all auctions ac-
cept the Log-normal distribution hypothesis. The plot shows
a randomly sampled of 1000 auctions. Only the Log-normal
distribution is tested by Anderson-Darling test.

Figure 9: The plot of hourly average winning bids and burst-
ing instances on a placement of high level of competition.
Due to these bursts the model-based algorithms fitted poorly
and did not perform well.

each placement we have collected RTB auction logs which
record bidders and their bids in every auction. The live
experiments lasted from 19 Jan to 21 Feb 2013. The param-
eters of algorithms were trained using logs from 14 Dec 2012
to 18 Jan 2013.

4.4.1 Algorithms and Scheduling
The following algorithms and configurations were evalu-

ated.
• Game, with publisher value set to $1.0;
• Zero, with a fixed reserve price set to $0.0;
• Average;
• WeightedL, with a looking back window size of 5;
• OneShot, with ε = 1 and λh, λm, and λl learned in-

dividually for each placement;
• BayesianB, with θ, Σ, and ∆ learned individually for

each placement;
• BayesianU, with θ, σ, and δ learned individually for

each placement.
Note that the private value of $1.0 of the publisher was cho-
sen based on the publisher’s suggestion.

We evaluated algorithms as the following: impression-
level logs were constantly sampled then fed to algorithms.
We ran the experiment for 30 days. The experiment used
a Round Robin scheduler at the hour level. For exam-
ple, at Hour=1 and Day=1 we used Algorithm=OptAuc
on Placement=1, Algorithm=Zero on Placement=2, etc.;
on Hour=2 and Day=1 we used Algorithm=BayesianU on
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Figure 10: A snapshot of main results of the online experi-
ment, on all placements, from 6am to 10am across all days.
The ∗ indicates the OneShot performed significantly better
than others (except the WeightedL) using Wilcoxon signed-
rank test. Considering the percentage of placements of high,
medium, low level of competition, the OneShot performed
significantly better in about 70% cases. On placements hav-
ing fewer bidders it is hard to distinguish the results. Al-
though not reported, at other hours the results are similar.

Placement=1, Algorithm=OptAuc on Placement=2, etc.
With this scheduling method the day-of-week factor does
not influence the evaluation of performance of algorithms.
In this way for every (hour-of-day, algorithm, level of com-
petition) tuple we obtained 10 sets of observations. We split
the results into 6 non-overlapping chunks and performed
Wilcoxon signed-rank test [9] to check significance.

4.4.2 Results
We report the performance of algorithms with respect to

levels of competition in Figure 10, where we find the private-
value-free algorithms performed better than private-value-
based ones. Note that the figure only includes data from
6-10am across all days but for other hours the results are
similar. Considering the percentage of placements of high,
medium, low level of competition, the OneShot performed
significantly better in about 70% cases. This is very consis-
tent with the findings made in [26].

Looking at the results and various analysis made before,
we believe the undesirable fitting of Log-normal distribu-
tion led to the poor performance of private-value-based al-
gorithms on placements with many bidders. Although there
is a steady hourly average winning bids pattern on these
placements, there are also lots of short periods of burst (both
upward and downward) around the curve as shown in Fig-
ure 9, which could have dragged the models away from the
curve easily. On the contrary the private-value-free algo-
rithms had better chance of capturing these bursts.

The OneShot shares the same intuition as the Weight-
edL: using the observations of recent future to infer the re-
serve price. More specifically, we replayed the auction logs in
training dataset against various parameter sets and adopted
the best performing one.

4.5 Bidders’ Attrition
As we argued before, a key difference of reserve price op-

timisation in RTB is that the inventory is not as limited
as ordinary auctions or sponsored search. Thus, it is also
interesting to study whether the reserve price optimisation
could result in bidders’ attrition [25] in long term (e.g., re-
duce their bid values or volume). Figure 11 compares win-
ning bids and number of bidders before and after the reserve
price optimisation experiment. It suggests that it may not

Figure 11: The comparison of winning bids and number of
bidders before and after the experiment. Both factors in-
creased after the experiment, which contradicts the attrition
hypothesis that bidders would reduce their bid or volume af-
ter reserve price optimisation.

Table 2: The change of number of bidders after the exper-
iment. On most of placements, especially ones with high
level of competition, the increment is observed.

≤ -10% -5% ∼ -10% 5% ∼ 10% ≥ 10%

High 3 0 0 3

Medium 4 2 4 6

Low 3 0 0 8

Control 1 0 0 5

Figure 12: Bidders’ attrition test after the optimisation,
comparing with the number of bidders before the experi-
ment. The t-test suggests the attrition is significant on 7
placements. 3 are placement of low level of competition and
4 of medium level. However, it is also worth noting that
many more placements see an increment of number of buy-
ers after the experiment, c.f. Table 2.

be the case in RTB. To test the statistical significance of the
change, we take the mean and standard deviation of number
of bidders for each placement before (12-18 Jan 2013) and
after (15-21 Feb 2013) the optimisation experiment. The
null hypothesis of the buyers’ attrition could be denoted as
H0: µ1 − µ2 > 0 where N1(µ1, σ1) and N2(µ2, σ2) are the
Normal distribution fitted from number of bidders before
and after the experiment respectively. The rejection of this
null hypothesis implies no significance of bidders’ attrition.

The result of t-test with p-value 0.05 is summarised in
Figure 12. There are only 7 placements out of 39 showed
significant drop of number of bidders after the experiment.
3 of them are placements of low level of competition and 4
of medium level, where a slight change of would be signifi-
cant. Interestingly, from Table 2 we see an opposite pattern
emerges: the publisher was actually seeing more bidders on
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most of placements. This could be due to three reasons: 1)
during holidays (the beginning of the experiment) there are
generally less bidders because of reduced amount of Internet
traffic; 2) bidders are not aware of the reserve price optimi-
sation so no reaction is taken; 3) the campaigns’ lifetime
introduces fluctuation.

5. CONCLUSIONS
In this paper, we discussed a specific problem for pub-

lisher revenue optimisation in Real-Time Bidding: to find
the optimal placement level reserve price for single-item dis-
play ad auctions. It is a problem of significant importance,
which has been studied extensively in the game theory, but
is relatively new in online advertising research literature, es-
pecially in RTB which has many unique features. In the
paper we analysed drawbacks of the optimal auction theory
in the RTB practice, derived dominant strategies from sim-
plified version of the auction game, and compared it with
other commonly adopted algorithms in a production plat-
form. We also discussed the challenges of optimising reserve
prices in RTB and analysed bidders’ attrition in the exper-
iment. Due to the complexity of the problem and practical
constraints there are unsolved issues in this paper, including
the fitting of bids, parameters tuning, and more comprehen-
sive attrition analysis. We would like to address these in the
future work.
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