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ABSTRACT
In this paper, we study a variant of the social network
maximum influence problem and its application to intelli-
gently approaching individual gang members with incentives
to leave a gang. The goal is to identify individuals who
when influenced to leave gangs will propagate this action.
We study this emerging application by exploring specific
facets of the problem that must be addressed when mod-
eling this particular situation. We formulate a new influ-
ence maximization variant - the “social incentive influence”
(SII) problem and study it both formally and in the con-
text of the law-enforcement domain. Using new techniques
from unconstrained submodular maximization, we develop
an approximation algorithm for SII and present a suite of
experimental results - including tests on real-world police
data from Chicago.

Categories and Subject Descriptors
Applied Computing [Law, social and behavioral sci-
ences]: Sociology

General Terms
Algorithms, Experimentation

Keywords
complex networks, network diffusion, propagation in net-
works

1. INTRODUCTION
Violent street gangs are a major cause of criminal activity

in the United States [2, 5]. A recent trend has been to-
ward development of “smart policing” tactics to reduce the
effectiveness of these gangs. Typically, these strategies have
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focused on the allocation of law enforcement resources to in-
crease arrests and deter criminal behavior. In this paper we
focus on a use of “smart policing” in a different manner: we
wish to intelligently target individual gang members with
incentives to leave a gang. While “pulling levers” or encour-
aging dis-enrollment from a gang, is already a tactic em-
ployed in cities such as Boston and Chicago, the selection
of which specific gang members to focus on is still largely
unanswered - and hence currently based on ad-hoc meth-
ods. In this paper, we study this emerging application as
a variant of a social network influence maximization prob-
lem [14] that we refer to as the “social incentive influence”
(SII) problem. We study this problem both formally and
in the context of law enforcement. Then, using new tech-
niques from unconstrained submodular maximization [7], we
develop an approximation algorithm for SII and present a
suite of experimental results - including tests on real-world
police data.

The paper is organized as follows. In Section 2 we discuss
some current methods in law-enforcement used for social
program targeting. In Section 3 we introduce the SII prob-
lem an associated technical preliminaries. This is followed
by a discussion of our algorithmic approach in Section 4 and
associated experimental results in Section 5. Finally, we
discuss related work in the literature in Section 6.

2. BACKGROUND
Recent successes with so called“pulling levers”(gang mem-

bership dis-enrollment) approaches to deterring violence in-
clude the Boston Gun Project and Operation CeaseFire as
well as Project Safe Neighborhoods in Chicago, and con-
tinue with the on-going Group Violence Reduction Strat-
egy in Chicago. Using this approach, law enforcement part-
ners work with social service providers and victims advocacy
groups to attempt to abate gang violence by ‘pulling’ what-
ever ‘levers’ need to be applied to street gangs. The types of
levers applied, and the degree to which they are employed,
depend upon the particular gang. Adjustments are made
so that the application is both customized to the specific
situation and, hopefully, more successful.

To facilitate these interactions between law enforcement,
social service providers, victim’s advocacy groups, and street
gang members, two approaches are commonly employed. In
the case of the first, law enforcement engages known street
gang members on the street as part of regular patrol activ-
ities. While performed under the auspices of focused de-
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terrence, this type of interaction is likely to have the least
impact. Time spent with the gang member may be lim-
ited, the remaining levers (social service providers, victims
groups, etc.) are absent so that the message conveyed to the
street gang member is incomplete or biased toward criminal
enforcement aspect. Moreover, the selection of target gang
members is often random – the result of opportunity as the
gang member is seen on the street.
In the second approach, gang members are subjected to a

“call-in.” The call-in sessions are prearranged meetings orga-
nized by law enforcement, social service providers, and vic-
tims groups during which messages of non-violence are con-
veyed. The call-in is a full-spectrum effort: law enforcement
makes clear to attendees that further violence will be met
with relentless police operations and enforcement efforts, so-
cial service providers offer information on how members can
exit the street gang and obtain educational and vocational
training, and victims groups tell stories of loss in an effort
to make an emotional plea for violence cessation.
Attendees for call-in sessions are typically chosen in two

ways: compulsory attendance and invitation. Gang mem-
bers currently on probation or parole are compelled to at-
tend. The remaining attendees are invitees, and it is here
where the selection criteria may become a bit vague. Invitees
may be selected via some form of social network analysis (as
in [5]) however such concerted efforts are not entirely relied
upon. Often, a large amount of discretion is afforded local
law enforcement in selecting invitees. This allows for local
gang experts and command staff members to identify those
gang members whom they know or suspect to be influential
or key members of the gang and invite them to the call-in.
This can be a very successful process if the agency has access
to these experts or knowledge of the gang’s organizational
structure. However, there is no guarantee that those per-
sons invited are, in fact, genuinely influential in the gang or
are just the “most well known to law enforcement”members
of the gang. In law enforcement, where financial, personnel,
and time resources are increasingly constrained, turning a
more objective and analytical eye toward invitee selection
grows more important.
A key aim of gang dis-enrollment programs is to enable

law enforcement to invite to call-ins those gang members
who, should the efforts to dis-enroll them be successful, are
most likely to pull additional gang members out with them.
However, there is a key challenge: are influential members
also easy to encourage to leave the gang? A recent empirical
study exploring non-criminal online social networks suggests
that highly influential individuals are typically not suscep-
tible [1]. However, we argue that taking both influence and
susceptibility into account are necessary; identifying individ-
uals (or groups of individuals) that possess both qualities is
needed for the behavior to spread.
Though, to the best of our knowledge, influence maximiza-

tion techniques have not been applied to law enforcement be-
fore, there is some anecdotal evidence that such approaches
could bear fruit. For instance, there have been cases where
gang members thought to be “influential” successfully con-
vinced others to dis-enroll from the gang. In one case, in
Chicago (in the summer of 20130, the district personnel (lo-
cal plainclothes gang officers) knew this person to be an
influential and as such targeted him for intervention. When
he was contacted he indicated that he had already gotten a
job, but knew several fellow gang members who could use

the offered social services and dis-enrollment opportunities.
He personally contacted 20 fellow gang members, of which
7 walked into the local social services facility.

In this paper we frame the problem of “pulling levers” for-
mally as a variant of the social network maximum influence
problem [14] in what we call the “social incentive influence”
(SII) problem. However, there are some key nuances of the
“pulling levers” strategy that we integrated into our frame-
work that are not inherently considered in the maximum
influence problem. We list these items here and address our
technical approach to each in the next section.

1. Duration of the diffusion process. One key differ-
ence SII has from other maximum influence formula-
tions is the length of time it takes for the diffusion
process to occur. The reason for this is that gang
dis-enrollment is a major life decision for an individ-
ual, hence the spread of this idea will likely take time.
Further complicating the matter is that there may be
changes to social network structure while the diffusion
process occurs - based on events such as arrests, homi-
cides, gang conflict and cooperation, etc.

2. Interaction with the population during the dif-
fusion process. Not only does the diffusion process
take time to occur in this domain, but also the law en-
forcement personnel will often make multiple attempts
to “pull levers” as the diffusion occurs.

3. Geographic locations and strength of connec-
tions. Often, law enforcement data has an inherent
geospatial component. In this work, we leverage this
information to inform the strength of connections in
the social network - as the street gangs are also inher-
ently territorial.

4. Notion of cost. Cost also becomes an important
factor in SII as the law enforcement personnel are at-
tempting to encourage a major change in the life of the
gang members. Conducting a call-in session with cer-
tain members costs time, money, and other resources.
We also note that not all gang members will be equally
susceptible to this type of intervention - some may re-
quire more or less effort to dis-enroll. Further, there
are real costs associated with encouraging dis-enrollment.
For example, in North Carolina personalized letters
are created for the gang members that show the in-
dividual how his association with others involved in
violence puts him or her at risk. A similar tactic is
used in Chicago, where the letters are often delivered
to the homes of the gang members. This utilizes police
manpower and resources hence further increasing the
cost.

5. Profit maximization. As we consider cost, we also
model “benefit” in SII - which is the value of each ex-
pected infectee to the diffusion process. This allows
us to adopt a profit-maximizing model (similar to the
ProMax problem of [15]) where we look to maximize
the expected benefit minus the cost.
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3. TECHNICAL PRELIMINARIES
AND ANALYSIS

Throughout this paper we assume the existence of a social
network G = (V,E) where V is a set of vertices and E is a
set of directed edges. We let n and m denote the cardinality
of V and E respectively. For any node v ∈ V , the set of
incoming neighbors is ηin

v , and the set of outgoing neighbors
is ηout

v . The cardinalities of these sets (and hence the in- and
out-degrees of node v) are denoted by kin

v , kout
v respectively.

For each node v, we assume a cost of marketing to that
node denoted by cv ∈ ℜ+. We let C denote the vector
of costs indexed by V . We let ⟨c⟩ denote the average cost∑

v cv/n. We also assume a benefit value, b ∈ ℜ+, which is
the associated benefit for having marketed to a given node.
We assume that each node in G has an associated geolo-

cation and there exists a distance function d : V × V → ℜ+

that meets the normal axioms: d(u, u) = 0, d(u, v) = d(v, u),
and d(u,w) ≤ d(u, v) + d(v, w).
Using this distance function, we shall assume a level of

influence puv for each edge (u, v) ∈ E that we define using
an exponential distance-decay model [23, 16, 22] as follows:

puv = e−(d(u,v)/γ)r

where γ, r are parameters in the interval (0,∞) and e is the
base of the natural logarithm. The parameter γ is used as
a scaling parameter - and we shall set it to be the average
distance between two nodes connected with an edge. The
parameter r controls the shape of the distance decay curve,
and we shall typically use r = 2. The use of the distance
decay function as a proxy for influence is the primary way we
address the geographic nature of the law-enforcement data
in this application.
Diffusion Process. A key property that we utilize in our
study is submodularity, which we review below:

Definition 3.1 (Submodularity). Function f : 2U →
ℜ+ is submodular if for every A ⊆ B ⊆ U and u ∈ U :
f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B).

Intuitively, the idea of submodularity represents a notion
of diminishing returns: adding an element u to a set B can
provide no greater benefit than that gained by adding it to
any proper subset of B.
Equivalently, function f : 2U → ℜ+ is submodular if for

every A,B ⊆ U , f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
A set function is supermodular if its negation is submod-

ular.
Next, we define a diffusion process function (dpf) which

accepts an initial set of vertices (called the “seed set”) and
returns the expected number of infectees once the diffusion
process completes. In this paper, we shall require this func-
tion to be sub-modular and normalized. We provide a formal
definition below.

Definition 3.2 (Diffusion Process Function). A dif-
fusion process function, dpf : 2V → [0, n], is any func-
tion such that: (1.) dpf(∅) = 0 and (2.) ∀V1, V2 ⊆ V :
dpf(V1) + dpf(V2) ≥ dpf(V1 ∪ V2) + dpf(V1 ∩ V2).

We argue that, in general, these are reasonable restric-
tions. For instance, the σ function of the independent cas-
cade and linear threshold models [14], the oracle of the MIA

model [11], and the value function of the logic-programming
framework of [20] are all valid diffusion process functions.
We also note that these previous studies focused only on
maximizing the number of expected infectees (subject to a
cardinality constraint). In this work, we disregard the cardi-
nality constraint and instead seek to maximize profit, which
we formally define below.

Definition 3.3 (Profit). Profit, pft : 2V → ℜ is de-
fined by pft(X) = b× dpf(X)−

∑
v∈X cv

The SII Problem. We now have all components neces-
sary to formally define the social incentive influence (SII)
problem:

Definition 3.4 (SII Problem). We are given diffusion
process function dpf, social network G = (V,E), cost vector
C and benefit value b. Find SII(dpf, G,C, b) = V ∗ ⊆ V
such that pft(V ∗) ≥ pft(V ′) for all V ′ ⊆ V .

Not surprisingly, the social incentive influence problem is
NP-hard.

Theorem 3.1. SII is NP-hard.

Proof. We show NP-hardness by reducing SIMPLEMAX
CUT [13] to SII. The SIMPLE MAX CUT problem takes as
input a graph G = (V,E) and returns sets V1, V2 ⊆ V such
that |{(u, v) ∈ E : u ∈ V1, v ∈ V2}| is maximized. The fol-
lowing construction can be performed in polynomial time.
Let dpf(X) =

∑
v∈X fv(X) where fv(X) = 1 if v ∈ X and

|ηin
v ∩ X| otherwise. Note that dpf(∅) = 0 and, because

each fv is submodular, dpf is submodular. For each v set
cv = 1 and set b = 1. Then pft(X) =

∑
v∈V \X : ηin

v ∩X| =
|{(u, v) ∈ E|u ∈ X, v ∈ V \X}|. Hence pft becomes equiva-
lent to the objective function for SIMPLE MAX CUT.

However, note that our profit function pft is submodular.

Proposition 3.1. pft is submodular.

Proof. It is well known that subtracting a supermodular
function from a submodular function yields a submodular
function. Since dpf is submodular (and b is positive) and the
sum of costs is supermodular, the proposition follows.

One-Step Diffusion. As stated earlier, two key challenges
in this domain are the duration of the diffusion process and
the effect of the law-enforcement personnel interacting dur-
ing the diffusion process. This has led us to model the diffu-
sion process as a “one-step” influence model where we only
consider the immediate effect of the diffusion process one
time step in the future. Our envisioned use case is that
the law-enforcement analysts will use the most current data
available to make a decision as to which gang members to
reach-out to based on this model. Attempts will be made
to influence those individuals, after which changes to the
social network (both resulting the outreach and other ex-
ternal factors) will be incorporated before repeating the cy-
cle. Because we expect the time for diffusion to generally
take longer, the repetition of the cycle will generally oc-
cur after about one time period. We formally define the
following“one-step” influence model.

Definition 3.5. The one-step diffusion model, σ1 :
2V → ℜ+ is defined as follows:

σ1(V
′) =

∑
u∈V

(
1−

∏
u∈ηin

v ∩V ′

(1− puv)
)
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Note that we also assume that a node v is infected by a
node u independently of which others of its incoming neigh-
bors were previously infected. An easy proof shows that σ1

is a valid diffusion process function.

Proposition 3.2. σ1 is a valid diffusion process.

Proof. Clearly, σ1(∅) = 0 by inspection. Next, we show
that the quantity

∏
u∈ηin

v ∩V ′(1−puv) is supermodular. Sup-

pose, by way of contradiction, that it is not, then we have
for V ′ and nodes q, r /∈ V ′ the following for each v ∈ V :∏
u∈ηin

v ∩(V ′∪{q,r})

(1− puv)−
∏

u∈ηin
v ∩(V ′∪{r})

(1− puv) <

∏
u∈ηin

v ∩(V ′∪{q})

(1− puv)−
∏

u∈ηin
v ∩V ′

(1− puv)

Let us assume that q, r are both neighbors of v (the other
cases cause both sides to be equal). This gives us the fol-
lowing:

(1− prv)
( ∏
u∈ηin

v ∩(V ′∪{q})

(1− puv)−
∏

u∈ηin
v ∩V ′

(1− puv)
)
<

∏
u∈ηin

v ∩(V ′∪{q})

(1− puv)−
∏

u∈ηin
v ∩V ′

(1− puv)

As
∏

u∈ηin
v ∩(V ′∪{q})(1−puv) ≤

∏
u∈ηin

v ∩V ′(1−puv), we have

1 < 1 − prv which is clearly a contradiction. Note that the
supermodularity of this quantity implies the submodularity
of 1−

∏
u∈ηin

v ∩V ′(1−puv). The rest of the statement follows

from the fact that σ1 is a positive linear combination of
submodular functions.

We note that we can cause nodes in the argument of this
function to be assigned a probability of 1.0 by simply adding
self-directed edges to each node in the network. We also
note, that with many diffusion processes functions, the cal-
culation of their outcome may yield an individual probabil-
ity of activation for each node. Further, the one-step model
also allows for the consideration of benefit as a vector - the
probability for each node can obtained by inspecting the in-
ner summation - this allows for a more customized setting
of benefit on basis of each node (we are currently discussing
this as a possibility with our law enforcement partners). In
this case, we can identify a specific benefit for each node.
The framework can be easily adapted for such a case.

4. APPROACH
While the submodularity of the pft function is encourag-

ing, we note that because marketing to each node incurs an
associated cost, it is possible to experience a loss by mar-
keting to additional nodes. For instance, if we market to
an additional individual who provides us no increase in the
diffusion process, this reduces our profit and could lead to a
loss. This is not considered in previous diffusion models de-
signed to maximize the expected number of infectees. Hence,
the greedy approximation of [17] no longer provides us an
approximation guarantee. Our case can instead be viewed as
an “unconstrained” submodualr function. Recently, a deter-
ministic approximation algorithm was introduced in [7] that
requires only a linear number of evaluations of the function.
We recall their algorithm here (adapted for SII).
For positive, unconstrained submodular maximization, [7]

proves that SII-Approx provides a result that is at least 1/3

Algorithm 1 SII-Approx[7]

INPUT: Social network G = (V,E), cost vector C, benefit
b, distance function d.
OUTPUT: Approximation V ′ to SII.

1: V ′ = ∅, V ′′ = V
2: for v ∈ V do
3: a = pft(V ′ ∪ {v})− pft(V ′)
4: b = pft(V ′′ \ {v})− pft(V ′′)
5: if a ≥ b then
6: V ′ = V ′ ∪ {v}
7: else
8: V ′′ = V ′′ \ {v}
9: end if
10: end for
11: return V ′.

of optimal. Note that pft can potentially provide a solution
with negative value. However, we can leverage their results
to provide the following approximation guarantee:

Corollary 4.1. Given VALG as returned by SII-Approx
for an instance of SII and optimal soluition VOPT we have
the following relationship:

pft(VOPT )

3
− n

3
(⟨c⟩ − b) ≤ pft(VALG)

Proof. In the proof of Theorem I.1 of [7], the authors
show that pft(VOPT ) ≤ 3pft(VALG) − pft(∅) − pft(V ). We
note that, by definition, pft(∅) = 0 and pft(V ) = bn−⟨c⟩n =
−n(c− b), which gives the result.

Note that if ⟨c⟩ ≤ b then we recover the 1/3 approximation
of [7].

5. EXPERIMENTAL RESULTS
All experiments were run on a computer equipped with an

Intel X5677 Xeon Processor operating at 3.46 GHz with a 12
MB Cache and 288 GB of physical memory under the Red
Hat Enterprise Linux version 6.1 operating system. Only
one core was used for experiments. Our implementation of
SII-Approx was written in Python 2.7 using the NetworkX
library1.

Police Dataset. We used a dataset consisting of arrest
records of individuals from March 2010 - March 2013 in a
single police district in Chicago. This data set included ar-
rest location and relationships among the individuals. From
this data, we were able to construct a social network (“arrest
network”) consisting of 1836 nodes and 2531 edges. Two in-
dividuals in the arrest network are connected if they were
arrested together. We note that this is likely an incomplete
picture of the full network, but as we move to deployment
of this approach by integrating it with our GANG/ORCA
analysis software [18], law enforcement personnel can easily
supplement or replace an arrest network with information
from additional intelligence sources, obersvations by police
patrolmen, and data from correctional facilities.

Additionally, for some experiments we also generated simu-
lated networks to supplement our analysis.

1http://networkx.github.io/
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Dataset Num. Avg. Min. Max. Avg. Std.
Sams. Size Appx. Appx. Appx. Dev.

Police 20 13.55 0.70 1.00 0.92 0.09
Compl. 2 22.5 1.00 1.00 1.00 0.00
E-R 9 20 0.84 1.00 0.93 0.05
SF 27 20 0.80 1.00 0.98 0.06
FF 1 15 1.00 1.00 1.00 0.00

Table 1: Empirically Determined Approximation
Ratios for SII-Approx (when compared to the opti-
mal solution)

Comparison with Optimal Solution. Our first test was
to evaluate SII-Approx compared to an optimal solution found
by enumeration. We did this by sampling the police dataset
and by generating simulated networks. We generated 20
connected samples from the overall police network ranging
in size from 11 to 20 nodes. We defined cost cv = 1 for all
v ∈ V and we set benefit b = 1. The worst approximation
ratio obtained in these tests was 0.70 - more than double
the theoretical bound of 1/3 in this case. The average-case
bound was better still at 0.92. Additionally, we also studied
the behavior of SII-Approx on several standard generated
graph types including complete graphs of size 20 and 25,
Erdos-Reyni (E-R) random graphs, preferential-attachment
generated scale-free graphs (SF), and the “Florentine Fami-
lies”(FF) network [6]. In all of these tests, we never achieved
an approximation ratio lower than 0.80. The results are
shown in Table 1.

Runtime Evaluation. We evaluated runtime in two ways:
(1) we compared the runtime of SII-Approx with an exact
enumeration based computation and (2) we studied how SII-
Approx scaled with network size. Both results are depicted
in Figures 1 and 2. For the comparison with the exact com-
putation, we studied the effect of runtime on our 20 samples
from the police dataset. We studied at the speedup provided
by SII-Approx (defined as the runtime for the exact approach
divided by the runtime for SII-Approx on the same input) as
a function of network size. We found a significant speedup
in all cases and that the speedup increased exponentially
with network size (R2 = 0.96) - which is clearly due to the
exponential runtime of the enumeration approach.
Runtime also scaled monotonically with the size of the

network (quadratic fit, R2 = 0.97). Hence, for the size of
the datasets used by the Chicago police department (order
103 nodes), this is a viable approach with the current im-
plementation. However, we think further improvement in
runtime for the heuristic is possible with further practical
modifications.

Cost Model Evaluation. One of the more useful char-
acteristics of our framework is the ability to consider node
costs. We studied two variants. First, we studied the case in
which all nodes have the same cost, considering several dif-
ferent values. Second, we set the cost to be proportional to
a network centrality measure. In both cases, we also varied
the value of the benefit. We used the entire police dataset
in these trials. The results for both sets of trials are shown
in Figures 3 and 4.

Figure 1: Network size vs. speedup obtained by
SII-Approx over exact approach.

Figure 2: Network size vs. runtime for the heuristic
algorithm.
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We examined a fixed/uniform cost model where all nodes
we assigned the same value. We examined cost values from
0.25 to 2.0 in intervals of 0.25 and compared them to uniform
benefit values in the same range. In general, there was a
linear relationship between the benefit and profit for all fixed
cost models examined (R2 values ranged from 0.97 to 0.99).
Further, as expected, decreased cost led to increased profit.
For our centrality-based cost trials, we studied degree cen-

trality (number of adjacent edges), closeness centrality (see
[24]), eigenvector centrality (see [4]), shell number (based on
shell-decomposition, see [19]), and clustering coefficient (see
[24]). Cost was set to be proportional to these values for
each node. We also normalized the cost so that the average
would be 1.0 in each case. Just as with the fixed-cost tri-
als, we compared the profit for various benefit values in the
range [0.25, 2.0] in intervals of 0.25.
For centrality-based cost models, we also observed a lin-

ear relationship between benefit and profit (R2 values ap-
proaching 1.0). In examining the difference among central-
ity measures, we found the most expensive centralities were
degree and shell-number followed by closeness. As these can
be considered radial measures of centrality, meaning they
measure centrality in terms of the number of paths that
originate from a given node, then this result should be ex-
pected. Clustering coefficient was less expensive than these
measures, which again was as expected as this measure is
less dependent upon the number of adjacent nodes and more
dependent upon the neighborhood. Perhaps most interest-
ing was that eigenvector centrality was the “least expensive”
cost model. We believe that this is due to the wide distribu-
tion of values assigned by this measure which ranged from
1.66 × 10−43 to 166.45 (compared to degree, which ranged
from 0.36 to 6.17).

We note that the idea of a cost model is an important fea-
ture in our model as it has previously been shown that in-
fluential nodes are often not those who most susceptible [1].
This may imply that an individuals who may be influential
in the network from a topological perspective may also be
of high cost. This is why we considered cost models in our
experiment where more central nodes were given a higher
cost.

Heuristic for Improved Solution Quality. SII-Approx,
as presented in this paper, does not take into account the
order in which the vertices are selected. We found that if
vertices are examined in descending order by their Cluster-
Rank [8] then the algorithm provided a higher-profit solu-
tion when compared to our random baseline (average over 10
runs) for the case of uniform cost (∀v ∈ V, cv = 1) and vari-
ous settings for benefit. The results are depicted in Figure 5.
In [8] nodes of high ClusterRank were shown to encourage
diffusion under the SIR model - which is related to the one-
step process of this paper. The ClusterRank of node v is
defined as follows:

crv = 10−Cv
∑

u∈ηout
v

(1 + kout
u )

Where Cv is the clustering coefficient for node v. This is par-
ticularly helpful as the computation of these measures relies
only on local information and can be calculated quickly. Ad-
ditionally, we examined ordering by degree, clustering coeffi-
cient, closeness centrality, shell number, and weighted degree
centrality (for each v ∈ V the quantity

∑
u∈V pvu). While

Figure 3: Profit obtained from SII-Approx for the po-
lice dataset for fixed/uniform cost models with var-
ious benefit settings.

Figure 4: Profit obtained from SII-Approx for the
police dataset for centrality-based cost models with
various benefit settings.

all of these measures showed some improvement over the
random baseline, they were out performed by ClusterRank
for all benefit values above 0.5. We are currently examining
the performance of centrality-based ordering heuristics on a
variety of inputs for the algorithm.

Iterative Application. We envision real-world police use
of SII-Approx to occur in an iterative manner. One way this
could be done is as follows: we initially consider a uniform
cost model and identify initial nodes to seed. Then, we
calculate the diffusion process function based on that seed
set in a manner that yields the probability pv of each node
v being activated. Then, for the next iteration, we remove
from the network all previously seeded nodes (or whichever
subset dis-enrolled from the gang) and set the cost for each
node v to be 1 − pv. The intuition is that it will be less
expensive to seed nodes that already obtained influence from
other members departing the gang. The process of re-setting
the cost function and social network prior to re-running SII-
Approx is then performed continually.

We applied SII-Approx iteratively five times to the police
dataset in the manner described above and studied the size
of the set targeted as well as the resulting profit (see Fig-
ures 6-7). We observed, under the assumption that all pre-
viously seeded members left the gang, that the profit gained
decreased monotonically with the number of iterations while
the number of targeted vertices increased slightly in the sec-
ond iteration, followed by a steep decrease and then con-
verged to zero. The success of the second iteration indi-
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Figure 5: Improvement to profit as returned by SII-
Approx when the vertices are ordered by Cluster-
Rank.

Figure 6: Iterative applications of SII-Approx – Num-
ber of nodes targetted at each iteration.

cated that viral marketing may be successful in encouraging
neighboring individuals to dis-enroll. However, beyond the
second step, there is limited profit to further marketing for
dis-enrollment. We note that at this point, if successful, ap-
proximately half of the gang members are dis-enrolled, which
would be a significant reduction. Further, we also note that
topological changes to the network may become more sig-
nificant after the second (and possibly even after the first)
round of dis-enrollment.
Iterative application of the algorithm also opens up some

new possibilities for future work. For instance, we can view
our problem as a sequential decision making problem. The
intuition in such an approach would be to not only to max-
imize the expected number of dis-enrolled gang members
but also to position the law enforcement personnel to more
easily influence the network in later iterations. Such an ap-
proach may also allow us to consider how the topology of
the network will change over time.

6. RELATED WORK
The maximum influence problem was introduced in [14]

and later studied in work such as [9, 11, 15, 21]. We refer
the reader to the book [10] for a summary of recent work
in this area. However, to our knowledge, no other work ad-
dresses all the challenges presented here for the SII problem
simultaneously. For instance, [11] presents a model where
the diffusion is restricted to shortest paths - which is a sim-
ilar restriction to our one-step model, but does not consider
the idea of profit. Likewise, [15] considers the idea of profit,
but only applies it to the linear threshold model - which

Figure 7: Iterative applications of SII-Approx – Profit
obtained at each iteration.

relies on the number of an individuals neighbors reaching
a certain threshold. Another issue is that in most of these
models, the diffusion process function is difficult to compute
- for instance the dpf for the independent cascade model is
shown to be #P -hard in [11]. As a result, in most other
pieces of work the diffusion process is approximated using
simulation, which is as expensive operation. (Most law en-
forcement agencies we work with have limited computational
power). One notable exception regarding this issue are de-
terministic models such as that described in [12, 21]. We
note that in our previous work we have looked at utilizing
this model in a law-enforcement setting [18, 3]. However the
results of that work were primarily used to describe charac-
teristics of the gangs and not to make operational decisions.
This work did not study the operational issues associated
with encouraging gang dis-enrollment as considered in this
paper.

7. CONCLUSION
In this paper we introduced the “social incentive influ-

ence” (SII) problem, a variant of the maximum influence
problem, designed to help law-enforcement personnel iden-
tify members of street gangs that they can encourage to
dis-enroll. We studied this problem both formally and ex-
perimentally in the context of the law-enforcement domain.
Utilizing techniques from unconstrained submodular maxi-
mization, we developed a heuristic technique to help police
better identify sets of influential individuals to target with
dis-enrollment incentives. We implemented our approach
and performed an experimental evaluation. We currently
have our approach to the SII problem integrated into our
GANG/ORCA analysis software [18] that is currently in use
by the Chicago Police. Our next goal is to work with law
enforcement personnel to better understand how SII is em-
ployed in practice - allowing us to identify components of
this framework that can be adjusted for improved results in
a real-world setting.
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