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ABSTRACT

On-street parking, just as any publicly owned utility, is used
inefficiently if access is free or priced very far from mar-
ket rates. This paper introduces a novel demand manage-
ment solution: using data from dedicated occupancy sensors
an iteration scheme updates parking rates to better match
demand. The new rates encourage parkers to avoid peak
hours and peak locations and reduce congestion and under-
use. The solution is deliberately simple so that it is easy
to understand, easily seen to be fair and leads to parking
policies that are easy to remember and act upon. We study
the convergence properties of the iteration scheme and prove
that it converges to a reasonable distribution for a very large
class of models. The algorithm is in use to change parking
rates in over 6000 spaces in downtown Los Angeles since
June 2012 as part of the LA Express Park project. Initial
results are encouraging with a reduction of congestion and
underuse, while in more locations rates were decreased than
increased.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications—
Data Mining

General Terms
Algorithms

1. INTRODUCTION

Advances in sensor technologies and advances in informa-
tion dissemination technologies, most notably the widespread
use of smartphones, allow for a radical change in the way
governments manage public infrastructure. The deployment
of sensors allows this to be data driven, and the information
channels allow this to be adaptive. It forms an interesting
application domain for data mining, machine learning, and
optimization techniques. And in line with this year’s KDD
special theme it is a good opportunity for data mining for
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social good since it allows scarce public utilities to be used
more efficiently and helps to reduce unwanted externalities
such as congestion and pollution. This paper introduces new
algorithms that leverage these new sensor and dissemination
opportunities to improve the way on-street parking is used.

On-street parking is in many city centers a scarce resource.
If on-street parking is free, or priced significantly below mar-
ket rates, it will be used inefficiently, because drivers are not
properly incentivized to avoid peak hours and peak loca-
tions. William Vickrey [9] argued that users of on-street
parking, and in fact users of any publicly owned utility,
should be charged as close as possible to the externality they
impose (i.e. the inconvenience they cause others).

Imagining a solution using 1950s technology, Vickrey pro-
posed to connect 20 meters and to make them turn faster as
the 20 spaces filled up. The meter could turn slowly if there
were less than 17 cars parked (anybody that would want to
park in the block could easily do so), would turn faster if
the block filled up from there, and would turn fastest if all
20 spaces were full.

There are several problems with these ex-post (pay at the
end) meters. The current infrastructure is not ready for it
and the upfront uncertainty about what parking costs might
not be acceptable to users. But perhaps more importantly,
the ex-post meters put the burden of predicting demand for
parking on the shoulders of every driver, while the overall
parking system has all the data to do this best!

Several parking specialists (e.g. [8]) have suggested a more
cautious approach: revise parking rates at regular intervals,
say every month, based on data obtained from parking sen-
sors. That way drivers can memorize the rates around their
office, favorite restaurant, etc. and adjust their behavior ac-
cordingly.

1.1 Contributions

This paper studies the problem of iteratively improving
on-street parking rates based on observed parking demand
data to increase the efficiency with which these scarce re-
sources are used and to reduce congestion and pollution. It
makes several contributions.

e [t describes why the often proposed straightforward
method of basing rate updates on average occupancy
data does not correspond to a reasonable utility model
and can lead to incorrect rate changes (Sec 3.1).

e It introduces an iteration scheme that is based on a
trade-off between congestion and underuse. This iter-
ation scheme is simple to communicate, fair, not based



on any model assumptions, and solves the problems
with the naive scheme (Sec 3.2).

The limiting behaviour of this iteration scheme is ana-
lyzed and proven to converge to a reasonable distribu-
tion under a very large class of models. This is partic-
ularly useful since there was no data available to build
and select models before the first deployment of our
methods (Sec 3.3).

An extension of the algorithm automatically deter-
mines time-of-day windows for rates trading-off the
closeness to the parking patterns and ease of commu-
nication (Sec 4).

The paper describes the real-world deployment of these
ideas. The developed methods have been used to ad-
just parking rates for 6300 on-street parking spaces
since June 2012 in Los Angeles (Sec 5).

2. VCG PAYMENTS, POSTED PRICES AND

FREE PARKING

Before we discuss iteration schemes in the next section, it
is interesting to study the motivations for demand manage-
ment in more detail. A simple stylized example to demon-
strate the impact of parking rates on efficiency is presented
in Figure 1.

This considers a single block with:

e capacity C = 10, a single time step

e n ~ Poiss(A = 15) parkers

e values for parking v; % P(v) = Gam(a = 5, 5 = 2) for
i=1,...,n.

Free parking implies a first-come-first-served mechanism.
A posted price mechanism will filter parkers with a very low
value for parking such that spaces are kept for parkers with a
high valuation. The figure shows the sum of values of parked
cars (social welfare) as a function of parking rate (blue, solid
line shows mean, dashed 25% and 75% quantiles). Whereas
we see that a non-zero posted price can indeed improve social
welfare, a too high price risks leaving spaces empty. The
horizontal line shows the expected social welfare under an
optimal allocation, e.g. if parking allocation could be done
using a Vickrey-Clarke-Groves mechanism [10]. The green
lines indicate revenue. As expected the revenue maximizing
rate is higher than the welfare maximizing rate [6]. The
second set of lines is added to emphasize the difference in
objectives: demand management aims to increase efficiency,
yield management to increase revenue.

A properly chosen take-it-or-leave-it price can provide a
constant factor approximation to the optimal revenue ([1],
where the same result is also claimed for social welfare). The
result depends on the assumption that valuations are drawn
independently. For parking several factors could break this
assumption. For instance in front of a stadium all parkers
will have a low-ish valuation if there is no match on, but all
will have a high-ish one if there is. So if we can only set
a single rate, parkers’ valuations are dependent. However if
we have a match-time rate and a non-match rate, for each of
the two cases independence is a reasonable assumption. So
for demand based pricing it is important to condition rates
on important factors that significantly influences valuations.
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Figure 1: Welfare (dark, blue) and revenue (light,
green) as function of price in a simple parking model.
Solid lines represent means, dashed lines 25% and
75% quantiles. The horizontal line is the expected
welfare under optimal assignment.

The work from [1] is studied in an on-line bipartite matching
problem inspired by the parking problem in [5].

The stylized example of this section also makes clear that
defining a utility model for a realistic parking scenario is not
straightforward. In the example only the interests of the
parkers have been taken into account. It could be argued
that the congestion caused by drivers circling for a space
should also be taken into account, or the interests of resi-
dents, shopkeepers, or others. Similarly any parking demand
model will be non-trivial in a realistic setting and cannot be
learned before several rate changes have been made. Even
if many years worth of data is available before the first rate
change, it will not distinguish between models that aim to
predict how demand changes after a rate change.

3. DEMAND BASED PRICING

To get robust improvements that do not rely on a partic-
ular parking model, we use a simple iteration scheme that
is inspired by stochastic approximation. Rates are on a dis-
crete pricing ladder (in LA rates are in {$0.5, $1, $1.5, $2,
$3,...,86}). At the end of every review period (say every
quarter, or every month) parking data is studied and for
every block-face (one side of a street in between two side
streets) it is determined if the rate should go up one step,
down one step, or should stay the same. The review period
cannot be too short, because drivers need to learn about the
new rates and change their habits, before data about the
new equilibrium becomes available. Intuitively if we have
observed that demand has been too high, rates should go
up, if demand has been too low, rates should go down. But
as we will see in the next section, care has to be taken to
implement that intuition.

3.1 The problem with updates based on aver-
age occupancy

It is interesting to observe that the simplest possible ap-

proach, used e.g. in a project running in parallel in San

Francisco (sfpark.org), basing rate changes on the average



occupancy in a review period, is not true to most reasonable
utility models. Most utility models would say that underuse
is bad (possible shoppers or other users have been discour-
aged and spaces remain unused that would be used at a
lower rate) and congestion is bad (parkers with a high val-
uation are blocked, drivers circling for a space congest and
pollute). If rates are changed based on average occupancy,
a period of underuse followed by congestion can lead to a
perfect “neither too empty, nor too full” (Goldilocks) situa-
tion — on average, and hence mask the problems that have
actually occurred. This is of particular importance if time
windows are determined algorithmically based on data: a
quiet morning followed by a congested afternoon risk to be
grouped together, since jointly they will have a perfect aver-
age occupancy. The data from the LA deployment indicates
that this is a common case in practice (See Figures 4 and
9).

3.2 Rate change rules based on congestion and
underuse patterns

A simple but effective alternative is to study the number
of minutes each block-face was congested and how many
minutes the block-face was underused. Several practitioners
(e.g. [8]) have considered 85% occupancy per block-face as an
ideal occupancy target. The city of LA has decided to treat
occupancies below 70% as underused, and above 90% as
congested. Such a discrete classification is a simplification,
but forms a reasonable and easy to communicate basis for
policy change.

0 0.1

0.2 7 08 09 1

%3 .04, .05 06, O
raction of time congested

Figure 2: A ternary plot demonstrating the rate
change rules. At the end of a review period each
block is represented by three numbers: the fraction
of time underused, the fraction of time congested,
and the fraction of time just right. Since these num-
bers add to one, a block can be represented in a
ternary plot. Blocks (dots) in the right region have
a fraction of time congested minus fraction of time
underused greater than 1/3 and see a rate increase.
Blocks in the left region see a rate decrease. Data
from April-May 2012.

At the end of every month, per block, the fractions of time
spent in each of the three categories (underused, just right,
congested) adds to one, and can be represented in a ternary
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plot. Figure 2 shows the 817 blocks in the LA project area
based on data from April and May 2012 before the first rate
change.

The blocks that fall close to the bottom right corner are
predominantly in congested state, and a rate increase would
be in order. Blocks close to the bottom left corner are pre-
dominantly underused, and rates should be reduced. Points
at the top are predominantly just-right and could keep the
same rate. Points in the middle close to the bottom demon-
strate both non-negligible problems of congestion and of un-
deruse. A change to a single rate can only try to improve
one of the two problems at the risk of worsening the other.
Studying the patterns of demand might reveal that the un-
deruse and congestion patterns consistently appear at differ-
ent parts of the day. In such cases charging different rates
at different parts of the day can target the two problems
appropriately. We will introduce algorithms to optimally
determine such windows based on data in Section 4.

A rate change rule based on the difference between the
fraction of time congested and the fraction of time under-
used, is a simple rule that agrees with the above sketched
ideas. Rates are increased only if congestion is the predom-
inant problem, reduced only if underuse is the predominant
problem, and conservatively kept the same if both conges-
tion and underuse form a problem. The rate changes in LA
are based on thresholds 1/3 and —1/3: the regions demarked
by the vertical lines in Figure 2. Algorithm 1 summarizes
the method and introduces notation.

Algorithm 1 The default rate change iteration
For all blocks b

e Compute the congestion index I” as the fraction
of operating hours in the review period that b is
congested (occupancy > %90).

e Similarly compute the underuse index Iﬁb) (underuse
defined as occupancy < %70).

e Define the congestion-underuse balance as

Bi) =1 ~ LY.

For all b with 12 > 1/3 (congestion dominant problem)
Increase the rate by one step in the ladder.
For all b with I} < —1 /3 (underuse dominant problem)

Decrease the rate by one step in the ladder.

3.3 Studying the limiting distribution

The iteration scheme has a resemblance to stochastic ap-
proximation [7]. A big difference is that the updates here
are restricted to a discrete set of easy-to-remember rates.
Whereas stochastic approximation relies on a specific cool-
ing schedule for the step sizes to guarantee convergence, the
discrete nature of the rates prevents such convergence to a
point.

In practice we observe significant mid- and long-term fluc-
tuations in demand. In LA we see seasonal effects, changes
apparently coming from the opening of new restaurants,
shops, etc., and from trends that could come form general
macroeconomic shifts. So one could argue that convergence
to a single “perfect” rate is not desired. However it is in-



teresting to understand the iteration scheme. To do so we
study it in the context of stationary demand.

Let us denote the demand distribution P(z|r), with z the
sequence of observed occupancies during a review period for
a particular block and r € {r; < r; < ... <rp} its hourly
rate. Together with the rate change rules represented in
Figure 2 this defines P; ;11, the probability of a rate increase
from i to ¢ + 1, and P;;—1, the probability of a decrease. If
the demand is stationary the iteration defines a stationary
Markov chain on the rates.

To be able to motivate rate changes to the general public it
is very reasonable, if not required, to consider only one step
up or down in the ladder. That is, the transition matrix
is tri-diagonal. Any non-pathological demand distribution
will have a non-zero (but possibly very small) probability of
increasing or decreasing any rate and will define an aperiodic
Markov chain. Hence the Markov chain will be ergodic and
will have a unique stationary distribution.

This stationary distribution can be characterized under
very general conditions. The only mild assumption we will
make is that the combination of demand distribution and
rate change rules are such that a suggestion to increase rates
becomes more likely as rates go down, i.e. Pit1,i+2 < Piit1.
For instance for the same location we expect to see a rate
increase sooner if parking costs 50 cents per hour than if it is
$1 per hour. Similarly we assume that rates are more likely
to go down if the current rate is higher: Pit1,i < Piyoit1.
These monotonicities are desired for any rate change rule,
and will for our choice hold under many models, but cannot
be formally guaranteed without specific knowledge of the
underlying demand distribution.

Under these assumptions the stationary distribution is
uni-modal. To show this we first observe that the station-
ary distribution for tri-diagonal Markov chains can be easily
characterized using the transition probabilities.

LEMMA 1. For every tri-diagonal transition matriz P there
ezists a vector s such that s;P; ; = s;Pj; for all i and j.

Proor. For all diagonal and for all off-tridiagonal ele-
ments the equality holds trivially. So the only non-trivial
equations that need to hold are s;P; ;11 = si41Pi41,; for
it =1,...,L — 1. These can be made to hold, and we can
get the stationary distribution (up to a normalizing con-
stant) by setting S1 = 1 and Si+1 = SiPi,i+1/Pi+1,i for
i=1,...,L—1. O

This allows us to demonstrate uni-modality of the station-
ary distribution and characterize its mode.

THEOREM 1. If the demand distribution is stationary and
the rate change rules are such that Pit1,i+2 < Piiv1 and
Pit1,i < Piyait1 for all i, the stationary distribution s;
over rates is uni-modal with a mode at the smallest © with
Bl — _uitl 1 or L if there is no such i.

s;

Pit1,i

PrOOF. To show unimodality of the stationary distribu-
tion we look at the likelihood ratio of subsequent states.

S P; ;
2L = ZHEL To check
g i1,

monotonicity we would like to have that as soon as this ra-
tio becomes smaller than 1, the ratio stays below 1. So
Piit1 < Piy1,i — Pigi1,i42 < Piy2i41. This holds since
PH_LH_Q g Pi,i+1 and Pi+1,i S Pi+2,i+1 from the mono-
tonicity of our pricing engine rules.

Since SiPi,iJrl = S¢+1P¢+1,¢ we have
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The ratio of the subsequent states and the unimodality
leads directly to the characterization of the (not necessarily
unique) mode which is given by the smallest ¢ with Z= =
Py it1 0 !

p-— < 1, or L if there is no such i.
i+1,i

With one year of data and only one or two changes up or
down allowed by city ordinance limits, we have not enough
data to study these properties in practice. Studies using ar-
tificially generated data demonstrate what we would expect:
the stationary distribution is sharply peaked around a value
that avoids both congestion and underuse (See Figure 3).
A longer period between rate changes (more observations)
leads, in a stationary model, to less variances in the parking
patterns observed, and therefore to a more peaked station-
ary distribution.

Stationary distribution with K=10 observations
0.45 T T T T T

0.4r

0.35F

0.3f

0.25F

021

0.151

P(rate selected by engine)

0.1r

0.05}

5.5 6.5 75

Rates

Figure 3: An empirical study of the convergence of
the iteration. The plot shows the stationary dis-
tribution. The analysis is based on a truncated
Poisson demand model with arrival rate function
Ap) =3(1-1./(1+exp(—(p—5))))+0.05, parking price
per-hour p € {5,5.1,...7} and a block-face capacity of
20.

4. DEMAND DRIVEN TIME-OF-DAY
WINDOWS

Parking demand clearly varies over different times of day
and between weekdays and weekends. If the differences are
significant, a single rate cannot be appropriate for all times.
In Figure 4, the evolution of I. (an aggregate over blocks) is
shown over the week. Midday on a weekday is on average the
most congested whereas parking is overall underused during
nights.

If a block-face could have different rates at different times,
it could potentially lead to increased effectiveness of the
parking system. Following the externality based pricing
principles outlined in Section 2 we would require parkers
to pay a “blended rate”, i.e. the integral under the rate func-
tion and not the rate at arrival time for the entire duration.
In this section we introduce a suitable logic to choose nearly
optimal, yet simple time-of-day windows.

Suppose we would ignore the fact that rates need to be
memorized by drivers and therefore ignore the need for the
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Figure 4: I. aggregate over the blocks

rate structures to be simple. In particular suppose we could
price each half-hour period differently. This is illustrated in
Figure 5 on a deployment in over 800 blocks (See next sec-
tion). The figure represents block-faces as rows. Every pixel
represents a vote for a half hour in the week, starting with
the first half hour of Monday on the left. The vote is color
coded: black means a rate reduction, grey an unchanged
rate or unpriced and white a rate increase. The blocks are
sorted by the number of half hours that vote for an increase.
An important comment is that even if B, can be low, some
faces reached $0.5 (the lowest rate allowed) so they do not
get a price decrease. Secondly, one can observe that a pe-
riod of low occupancy before 10 AM is common throughout
the week. Finally, it is interesting to see that weekdays are
rather similar, even if Mondays are slightly less busy than
Fridays.

w
=]
=)

o
=]
=)

block faces sorted by By

500

50 100 150 200

1/2-hour period of the week

250 300

Figure 5: A matrix representing a block-faces (rows)
and their vote for a rate change every half hour pe-
riod in a week. Black means a suggested reduction,
grey staying the same or being unpriced, white a
rate increase.

Since the information about rates needs to be memorized
by drivers before they can act on them, using the suggestions
from Figure 5 directly is not acceptable. Encouraged by the
similarity among blocks it is interesting to explore a segmen-
tation in time-of-day windows that are identical all over the
city while minimizing the number of half-hour periods that
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get the wrong price change. The fact that the windows are
the same all over the city makes for a huge simplification and
makes the system a natural extension of the often observed
practice to have different rates for weekdays and weekends.

The optimal number of windows found is 5 and is illus-
trated in Figure 6 where it is compared to half-hour votes
of 100 E 14th Street. For increased simplicity we add the
constraint that we do not want too short segments (< two
hours). The optimal partition has 5 segments, but that with
the no-short-segments constraint has only 3 segments.

100 E 14TH ST
100f~ = = =
80
80| — —
_ 4o ’J L price change for an
[ . . .
s 20l optimal partition with
3 “no short segments”
[ |
2 or T
= 20l ’ ™~ price change
5 [ ™ for optimal
40p > | Aammaad partition
short
601~ segments
ol <2HR |
-100-- : : : : : . : :
& 9 10 11 12 13 14 15 16 17 18
hour

Figure 6: An example of suggested rate changes if
they would be done on each half hour of the day
independently (blue), and the optimal over the pilot
area (red), and with an additional constraint that
they cannot contain short (<2 hrs) sections.

Our full analysis on the Los Angeles pilot area, revealed
that a simple partition into 3 parts for weekdays is opti-
mal for over 90% of all stalls: (open-11:00,11:00-16:00,16:00-
close) We also compared a solution with the 2 best partitions
over the pilot areas but found little benefit to it. Further-
more, a single partition is much easier to communicate and
to remember. We also analyzed the sensitivity of this parti-
tion to this Be, threshold defined by the city of Los Angeles.
If B.., were concentrated near the threshold (e.g. 33%), then
we would expect that the choice of partition might be rather
sensitive to the choice of threshold. However, data shows
the contrary. This is a pleasant property because it allows
for adjustments to the thresholds on when rates increase or
decrease without the data driven time-of-day windows be-
coming inapproporiate.

In Figure 7, we show a map of block-faces where the frac-
tion of mispriced hours with flat pricing and Time-of-Day
Pricing is color-coded. Flat pricing averages the B, crite-
rion over a large period of time and can select rates that are
inappropriate to deal with congestion and underutilization
(see for example blocks colored in yellow on the map). This
is often the case when operating hours are not well adjusted
to the typical usage of a block-face. Time-of-Day pricing
greatly reduces this phenomenon as shown on the map.

So, to our surprise, we found that over 800 block-faces
could be priced using only 3 time-of-day segments for week-
days and a single one for weekends while being close to
what data would suggest on individual half-hours. This
simplification makes it easier for drivers to remember rates,
and to pre-plan parking destinations accordingly. The early
morning rates (open-11lam) typically can be interpreted as a
“smoothed-start” to paid hours, e.g. before shops open. As a



Figure 7: A map of the fraction of mispriced hours over 6 weeks of data with flat pricing (left plot) and
time-of-day pricing (right plot) with 3 rates for weekdays and 1 flat rate for Saturdays. The map represents
the project area as presented in Figure 8, for clarity no cartography data is shown.

last remark it is interesting to compare to a non data-driven
choice of 9am-noon, noon-3pm, and 3pm-6pm as is done in
e.g. San Francisco. Judging Figure 4 such a choice would
lead to windows that have both underused and congestion
in the same window, something that the introduction of time
windows exactly tries to reduce!

5. A LARGE SCALE DEPLOYMENT: THE
LA EXPRESS PARK PROJECT

The methods described in this paper are used in a large
scale deployment in downtown Los Angeles in the LA Ex-
press Park project [2]. The goals of this $18.5 million feder-
ally funded project are: 1) to increase the availability of on-
street parking; 2) to reduce traffic congestion and pollution
and 3) to encourage a shift in travel choices. By applying the
principles of demand-based parking pricing, the Los Angeles
Department of Transportation (LADOT) sought to improve
the distribution of parking so that ten to thirty percent of
the on-street spaces on each block would be available most
of the time.

Prior to LA Express Park, many block clusters had no
available on-street parking spaces while others remained prac-
tically empty. Increasing the parking prices in high demand
areas and lowering the prices in low demand areas shifted
demand to yield a better distribution of parking within small
geographic areas.

5.1 A Dedicated Sensor Infrastructure

The project depends upon the integration of new wire-
lessly communicating parking meters, real-time parking guid-
ance systems (in the form of smartphone apps) and in partic-
ular upon on-street vehicle sensors that have been installed
specifically for the project.

Vehicle sensors were installed in the paving for each of
the 6,300 on-street parking spaces in the project area. The
spaces are represented as dots in Figure 8. Measurements
are based on a magnetometer. The sensors are battery op-
erated and communicate through a wireless mesh network.
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A sensor provides the occupancy status of a space in real
time. The real time data stream provides entries of the form
(Space ID, Timestamp, [Arrival, Departure, Unknown]).
The “Unknown” label is emitted if the sensor auto-detects
that it cannot reliably determine the occupancy status. This
can be due to several causes, among them interference and
communication problems. It is particularly important to
correct for these sensor inaccuracies, since ignoring data, or
simply treating gaps to be missing at random might lead to
biased estimates [11].

The sensors in the current generation have a lifetime of
around three years. The sensor technology is progressing
very rapidly with many manufactures supplying systems.
To benefit from these rapid improvements it is important
for a demand management system that it can work with any
underlying sensor methodology and can automatically learn
its specific failure characteristics from data. By learning
the demand and noise model jointly this can be done with
reasonable accuracy without detailed knowledge of the local
interference sources, or the physics of the sensor [11].

The parking meters operate wirelessly as well and provide
payment data. There is not a one-to-one mapping between
parking and payment events due to multiple payments in
one parking session (“topping up the meter”), and motorists
that make use of money that is left in the meter when they
arrive, and parkers that do not pay. We define non-paying
customers to be those motorists that do not make a single
payment during their stay. This concept is important be-
cause in California motorists with a reduced mobility that
have a special permit can park at any space for free for an
unlimited duration. In practice we see that in the very busy
parts of downtown LA it is common to see over 90% of the
spaces to be taken by non-paying customers. See also Sec-
tion 6.2.

After correcting for sensor failures and combining with
the payment data, the datasets can be processed off-line to
yield entries of the form (Space ID, Arrival Time, Duration,
[Paying, Non-Paying] ).



City of Los Angeles
Department of Transportation
LA Express Park
Intelligent Parking Management (IPM) Project
Rates: Pre-Project, June 2012 and February 2014
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Figure 8: LA Express Park project area with pre-project rates (left) rates after the first change (middle),

and rates at time of writing.

There is a large variability both in space and time, but
on average a space sees close to 24 parking events per day.
So with 6300 sensors and over 600 days of data our dataset
consists of nearly 100 million parking events.

6. A CLOSER LOOK AT PARKING DATA

In the previous sections, we have discussed the founda-
tions of the pricing engine: the congestion-underuse balance
and its extension to time of day pricing. Parking data can
be examined with different approaches:

e with simplistic raw occupancy fraction statistics;
e using arrival duration patterns for a given block-face;

e with temporal methods, assessing effects from the time
of day, season, and (regular) events.

In the following sections, patterns of occupancy and arrival
durations will be illustrated with block-faces from the pilot
area. We then will discuss a first analysis of rate changes as
reported by LADOT in [2]. We refer the interested reader to
the forthcoming second report by LADOT [3] for a further
analysis.

6.1 Occupancy

Figure 9 shows a year’s worth of occupancy data for the 12
spaces at 701 South Olive Street in a colormap, sometimes
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also referred to as a “Jerry Garcia plot”. Each row repre-
sents a weekday, so that from top to bottom Monday follows
Tuesday and so on, with Saturday and Sunday omitted to
ensure that the often different demand in the weekend does
not hinder the study of the regular weekday patterns. The
x-axis represents the minute of the day starting from mid-
night on the left, to midday in the middle, to midnight at
the right. Every pixel color codes the fraction of spaces that
are occupied. Blue tones represent occupancies less than
70%, green tones 70%- 90%, and red tones more than 90%.
The horizontal gray lines represent policy changes. Plots
like these provide a wealth of insight, we focus here on the
impact of rate changes. If the change in rate is sufficiently
high the change in behavior can be drastic. After the ex-
tension of operating hours from 6 p.m. to 8 p.m. in June
2012, we see a drastic change in occupancy patterns from
red (congested) to blue and green (low and perfect utiliza-
tion). This is a clear example that confirms the hypothesis
that behavior can be changed by adjusting parking rates.
We see the biggest changes in examples like these, where
flat rates are maintained and operating hours are extended.
The majority of rate changes are $1 up or down which leads
to more subtle changes as presented in Section 6.3.

6.2 Arrival-Duration Patterns

The occupancy plots are interesting to study because they
demonstrate when and where there is parking congestion
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Figure 9: Occupancy data for the 12 spaces at 701
South Olive Street over a year. See text for details.

and motorists are potentially forced to circle to look for
parking.

An important complementary view is one that studies ar-
rival and duration patterns. This gives insight in how a block
is used and how that use changes after a rate change. Even
if occupancy stays the same, the use of the scarce resources
can be improved. If for instance in front of a shop long-
staying office worker is replaced by short-staying shoppers
this increases the efficiency of use: one long stayer walks
more, while many short stayers walk less and provide ex-
tra custom for local shops. Such a change is not directly
observable in occupancy statistics.

Figure 10 shows a 2D histogram of arrival duration data
for weekdays during the first year of the project on 201 North
Freemont Avenue. Counts are shown in log-space (with a
small offset to avoid zeros) for ease of interpretation. This
example shows the significant group that arrives around 7
a.m. and parks for around 9 hours. This is longer than the 2
hour time-limit for this block. A study of the payment data
confirms that this is a group of non-paying customers as
defined in Section 5.1. This is a group that will not change
behaviour after a change in rates.

Figure 11 shows for the same block-face and data the aver-
age occupancy, and what fractions are contributed by people
that park less than 15 minutes, between 15-30 minutes, and
so on. This plot shows that the long staying parkers form a
significant contribution of the occupancy all throughout the
day.

6.3 Analyzing Rate Changes

At the start of the project, enforcement hours (the hours
during which parking needs to be paid for) were extended
from 6 p.m. to 8 p.m. where there was sufficient demand.
Time limits were extended from one hour to two or four
hours based on the predominant use of the block.

Based on the algorithm described in Section 3.2 a major
rate change was implemented on the first Monday in June
2012 impacting all blocks in the pilot area for which the
sensors were successfully installed. Subsequently, rates were
updated on every first Monday of the month. City officers
used data of special permit use and detailed understanding
of the local areas to phase the updates. For every iteration
the city officials determined for which areas the recommen-
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Figure 10: A 2D histogram for arrival duration pat-
terns for 201 North Freemont Avenue. Counts are
shown in logs for ease of interpretation. Note the
cluster of parkers that arrive around 7 a.m. and stay
for around 9 hours.

dations of the pricing engine were put into effect, and which
areas “skipped a beat” to wait for more data.

For instance, Time-of-Day (ToD) pricing was introduced
in the beginning of August 2012 in two areas of pilot zones
(Chinatown, and Fashion District). Then, ToD was pro-
gressively applied to other parts of the project area. As of
January 2014, there have been a total of nine changes.

Initial results of the first rate change have been reported
in [2]. In more cases did demand patterns suggest the rates
to go down than to go up (39% of blocks saw a rate decrease,
14% a rate increase), the biggest effect of rate increases in
congested areas was around 7pm with a reduction in occu-
pancy of 15%, and the biggest effect of a decrease in rate at
1pm with an average increase of occupancy of 10%.

The absolute numbers are shown for all times of day in
Figure 12. We see that a rate reduction seems to effectively
draw back parkers in underused areas throughout the day
(8am-6pm). Increasing rates leads to a reduction in demand
throughout the period 8am-6pm, but the change is subtle.
The big effects are in the period from 6pm-8pm. This can be
explained from the fact that in several blocks the operating
hours were extended from 6pm to 8pm. The two additional
hours followed the rate already in use during the day. In
many places this meant an increase from 0 to 3 sometimes
4% /hr. This is a strong positive answer to the question “Can
rates influence behavior?”. An example of this effect was
presented in Section 6.1.

6.4 Further Analysis

In the previous sections we have shown examples of the
data visualization tools that can be used, and highlighted
some of the insights they can give. The first analysis of
the impact towards the project goals have been reported by
LADOT in [2]. We refer the interested reader to the second
report in [3].

In this section we would like to highlight some aspects of
this forthcoming work and discuss some of the challenges
and lessons learned in the analysis.
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Figure 11: Average occupancy (Z) and contributions
of different length parking events as a function of the
time of the day. This plot shows 201 North Freemont
Avenue and shows that the early arriving and long
staying non-paying parkers seen in Figure 10 block
a significant portion of the available spaces.

Figure 13 shows the weekly average of B, for all blocks
of the project area and weeks. This is shown as a matrix
where rows are block index and columns weeks. The weekly
average of B, is then color coded. The bottom plot of
Figure 13 displays a discretized view of the same data, where
blue indicates underused (B, < -1/3), green means “just-
right” or as much congested as underused (—1/3 < By <
1/3), red means congested most of the times (B, > 1/3).

Overall, these plots suggests a decrease in underutilization
(blue is less frequent on the right part of the matrix) with a
relatively less marked increase in congestion. In addition,
it is interesting to mention the seasonality effects. Near
weeks 30 and 80, there are visible decrease due to Christmas.
Similarly, just before these Christmas events, a less marked
effect correspond to Thanksgiving.

There are several lessons we have learned while doing the
analysis:

e [t is important to report on weekdays and weekends in-
dependently. Parkers inherently change their behavior
during the week.

Sensors are susceptible to noise. Both in known and
unknown ways. It is important that this is carefully
treated to avoid biases.

Special permit use makes that demand based pricing
can only have little impact in significant parts of the
project, because the main source of congestion comes
from parkers that do not need to pay.

Events such as the opening or closing of schools, sea-
sonal effects from holidays and overall macro-economic
shifts have big impacts. Empirically of at least the
same order of a 1$/hr rate change. This means that
when a before/after change is observed a further analy-
sis needs to ensure that this is not due to an exogenous
effect.
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Figure 12: Difference of average B., before the first
rate change (April 1 — June 4, 2012) minus average
B., after rate change (June 4 — Aug 1, 2014).
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Figure 13: Weekly average of B., normalized by ca-
pacity. Week 1 starts June 4th, 2014.

e Not only the change in occupancy is of importance,
but also the change in arrival duration patterns and
the fraction of paying customers.

e It is important to understand overflow patterns to off-
street and cheaper neighbouring alternatives.

7. DISCUSSION

New sensor technologies and learning algorithms make
many new systems possible that can improve city mobil-
ity and reduce pollution. The LA Express Park project is a
large scale (over 6000 spaces in over 800 blocks), multi-year



project that provides a large scale implementation that tests
the demand management principles set forth by Vickrey [9]
and uses the iteration scheme presented in this paper.

Projects such as these do not only face technological chal-
lenges. In fact the political, and organizational challenges
are at least as big, and pose important constraints on the
type of methods that can be deployed. For instance the
methods need to be simple to understand, easily seen to be
fair, and lead to pricing policies that are easy for drivers to
remember and to act upon. We have experienced that it is
hard to elicit these constraints explicitly and any method
needs to stand up to many different reasonable definitions
of these constraints.

The demand based pricing solution deployed in LA keeps
rates at simple to understand discrete values: ($0.5, $1, $1.5,
$2, $3, ..., $6). Where demand patterns suggest it is best
to charge different rates at different parts of the day, these
periods are the same throughout downtown LA. Rates are
increased only if congestion is a serious problem, and under-
use is not.

Our iteration scheme is based on the fraction of time a
block was congested and the fraction of the time it was un-
derused. This “average utility” approach overcomes the ba-
sic problem of the “utility of the average” approach proposed
earlier. In this method changes are based on average occu-
pancies and can lead to obvious problems: an underused
morning and a congested afternoon can lead to an average
that is “just-right” even though at no point in the day the
parking situation was considered to be so. We see in par-
ticular a difference between the two techniques when they
are used to select time-of-day windows in a data-driven way.
The average occupancy method leads to periods in the day
that often exhibit both underuse and congestion, something
that the idea of charging different rates for different times
of the day expressly tries to avoid.

We have not yet seen a reason to change the simple pricing
iteration. However, it can be argued that the iteration has
not been tested to the fullest due to limits on the rates set by
the city council. For the initial year the rates were allowed
to increase or decrease by 50% from their starting values.
With the pricing ladder used that meant one or at most two
opportunities to inrease or decrease rates. When a larger
ordinance allows more steps it might be necessary to extend
the method to explicitly avoid oscillations between two rates
that are nearly equally good. An obvious fix could be to
keep longer periods between rate changes if such problems
are detected.

Several worthwhile refinements to the basic iteration ex-
ist. An important one is to weight the occupancy status by
traffic density when computing the congestion and underuse
indexes. This requires accurate traffic measurements.

There are ample directions for future work. From a prac-
tical point of view, information provision can be improved.
Surveys and field studies confirm our hypothesis that an
understanding of drivers is a bottleneck [4]. For people to
change their behavior they need to care and know about
discounts. The aim of the techniques presented here is to be
in the near future fully integrated with turn-by-turn navi-
gation and reservation systems. Once the construction of a
shortlist of options (e.g. closest, cheapest, best matched to
preferences) is done by a device, the pricing systems will be
more effective, and can also use more complicated rules.
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To increase the impact it will also be beneficial to change
the way special parking permits work. Currently motorists
with a reduced mobility are allowed unlimited free parking
in all on-street parking spaces. Empirically this leads to all-
day use by a single car for a very high fraction of congested
downtown areas. Hence for an important part of the project
area smart pricing has a significantly reduced effect.

A careful and complete analysis of parking changes is a
complex and challenging task as outlined in Section 6.4. The
LA Department of Transportation has reported on the initial
impact of the project in [2] and will report on the latest
outcomes in [3].

Constructing models that describe parking behavior is an
interesting challenge. In contrast to traffic lows on high-
ways, the modeling of parking has received little attention.
This is partly because data has never been available, but
also because many more environment variables need to be
understood and measured. Examples of such variables in-
clude the availability and price of off-street alternatives, the
number of office spaces and shops in the neighborhood, and
the presence of special events. A full understanding of park-
ing behavior is useful in many applications. In the pricing
problem studied here it can for instance help to anticipate
the effect of changing the rates in neighboring blocks.
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