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ABSTRACT

Millions of people use social networks everyday to talk about
a variety of subjects, publish opinions and share informa-
tion. Understanding this data to infer user’s topical inter-
ests is a challenging problem with applications in various
data-powered products. In this paper, we present ‘LASTA’
(Large Scale Topic Assignment), a full production system
used at Klout, Inc., which mines topical interests from five
social networks and assigns over 10,000 topics to hundreds of
millions of users on a daily basis. The system continuously
collects streams of user data and is reactive to fresh infor-
mation, updating topics for users as interests shift. LASTA
generates over 50 distinct features derived from signals such
as user generated posts and profiles, user reactions such as
comments and retweets, user attributions such as lists, tags
and endorsements, as well as signals based on social graph
connections. We show that using this diverse set of features
leads to a better representation of a user’s topical inter-
ests as compared to using only generated text or only graph
based features. We also show that using cross-network in-
formation for a user leads to a more complete and accurate
understanding of the user’s topics, as compared to using any
single network. We evaluate LASTA’s topic assignment sys-
tem on an internal labeled corpus of 32,264 user-topic labels
generated from real users.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering; Retrieval models
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Online Social Networks; Interest Mining; Topic Assignment;
Large Scale; User Modeling; Distributed Systems

1. INTRODUCTION
Mining topical interests for users from social media is an

interesting and important problem to solve, because the in-
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sights gained can be applied to many applications such as
recommendation and targeting systems. Such systems can
deliver accurate results tailored to each individual user, only
if the user’s interests are well understood. The task of in-
terest mining from social media has many challenges that
mainly lie in the characteristics of the data, viz. size, noise

and sparsity. While the total volume of text generated
on social media is huge, the size of each individual docu-
ment tends to be very short. For example, posts on Twit-
ter (tweets) are limited to 140 characters. Often the posts
are also noisy due to abbreviations, grammatically inaccu-
rate sentences, symbols such as emoticons and misspelled
words [1]. Finally, because many users on social media are
inactive, sporadically active or only tend to be passive con-
sumers of content, the textual content available for topical
inference is sparse for such users.

In this study, our contributions are as follows: We de-
scribe a scalable engineering system deployed in production
that mines topical interests from five social networks and
assigns over 10,000 topics to hundreds of millions of users
on a daily basis. dWe extract and analyze features for topic
inference that extend beyond authored text. We show that
using a diverse set of features and cross-network informa-
tion can lead to a better understanding of a user’s interests.
Compared to previous studies [2, 3, 4, 5] that attempt to
mine all topics for a user, we focus primarily on assigning
topics for a user that other users can socially recognize and
acknowledge. For example, Warren Buffett is recognized
for topics like ‘Business’, ‘Finance’ and ‘Money’, while his
personal interests may include ‘Cars’ and ‘Airplanes’. This
approach helps in building applications that are meaningful
in the context of the social identity of a user.

Klout, Inc. is a social media platform that aggregates and
analyzes data from social networks like Twitter, Facebook,
LinkedIn, Google Plus and Instagram, and other sources
like Bing Search Engine and Wikipedia. A user on Klout
can connect one or more of the above social profiles to form
one unique profile. We present Klout’s topic system called
‘LASTA’, (Large Scale Topic Assignment), that focuses on
inputs from four major social networking sites: Facebook
(FB), Twitter (TW), GooglePlus (GP) and LinkedIn (LI).

To address the data challenges mentioned above, we con-
sider the following approaches: We process information shared
by users to get more context around individual user docu-
ments. To address data noise problems, we explode text into
n-grams and map against an internal dictionary of approx-
imately 2 million phrases to generate bags-of-phrases. We
address data sparsity problems by extracting signals from
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a user’s reactions, such as comments or retweets on other
user’s posts. We also extract signals from posts in which
a user is tagged or mentioned as well as from social graph
connections, to increase data coverage for a given user.

We combine the signals mentioned above to generate over
50 distinct features. The set of features are categorized as
following: Generated, Reacted, Credited and Graph. Fea-
tures derived from user authored posts and profile informa-
tion are categorized as Generated. Reacted features come
from user reactions such as comments and retweets. Cred-

ited features are built from signals such as lists, tags and en-
dorsements, while Graph features are based on social graph
connections. We evaluate LASTA’s topic assignment sys-
tem on an internal labeled corpus of 32,264 user-topic labels
generated from real users.

The underlying infrastructure is built on the Hadoop plat-
form1, an open-source implementation of MapReduce. The
system uses HDFS as the file system and Hive2 as the query-
ing infrastructure. Each day, nearly a terabyte of raw data
is ingested into our data warehouse. We hope that insights
gained from our experience in building LASTA will prove
valuable for the community to build future topic systems.

The rest of the paper is structured as follows. Section 2
discuses related work and formally introduces the problem
statement. Section 3 describes system level details and data
generation steps. Section 4 presents evaluation results and
some interesting and useful findings. Section 5 discusses
some of the application of LASTA implemented at Klout
and conclude in section 6.

2. RELATED WORK & BACKGROUND
There are a variety of topic detection systems that have

been proposed, and topic inference is a well studied area.
However, the effectiveness of any given system is typically
dependent on the specific domain or application under con-
sideration. For example, modeling user interests is common
practice for recommendation engines such as Amazon and
Netflix, where the objective is to understand user interests
in a particular domain such as products or movies. The
user interests are often represented as latent vectors in rec-
ommender systems [6], and are derived from either explicit
feedback, such as ratings, or implicit feedback such as clicks
on products. Search engines also use topic inference to per-
sonalize results [7, 8], where user interests are learnt from
click-history and browsing behaviors from search logs. Sim-
ilarly, clicks on ads are used to model user interests in the
domain of online display advertising [9].

In many topic inference settings, the individual documents
have clean data and rich context. This may include text
from scientific publications [10], or text derived from a large
corpus of natural language. In such scenarios, modeling
user interests as unseen latent vectors, such as Latent Se-
mantic Analysis (LSA) [11] and Latent Dirichlet Allocation
(LDA) [12] have been shown to provide good results.

Recent research have focussed on topic modeling for users
in social networks. User generated tags have been used to
model user interests [13]. In [14], a topic of interest is de-
scribed by a cluster of frequently co-occurred tags. Zheng
et. al. [15] present a model to infer user topics from Weibo.
Guy et. al. [16] study interests and expertise in the con-

1http://wiki.apache.org/hadoop/
2http://hive.apache.org/

text of enterprise social media users. Twitter, in particular,
has been the focus of many studies that aim to characterize
topical interests for users. In [2], the author-topic model is
proposed, and [3] describes an empirical study of the prob-
lem. [4] leverages a knowledge base to find entities in tweets,
and a labeled LDA approach is presented in [5]. Twitter has
also been studied as a platform for conversation between
users [17, 18].

The problem we tackle here differs from the above work
in three major aspects. First, in the context of short form
social media messages, latent variable techniques such as
LDA and LSA have a poorer performance as compared to
using scientific publications or long-form text as the source.
In some cases these techniques may identify topics for some
users who have enough aggregated text, but they fail to do
so for passive users who may not generate a lot of text them-
selves. Thus they cannot provide a scalable solution when
identifying topics for millions of users. Second, while pre-
vious work has focused on single social networks for topic
inference, as far as we are aware, this is the first attempt to
incorporate multiple social profiles to form a single unique
topic profile for a user. The context under which a single
user creates or reacts to different messages in any given net-
work is significantly different compared to the context in
other networks. Finally, we specifically tackle the issue of
identifying socially recognizable topics for a user, since this
can have unique and interesting applications.

2.1 Problem Statement
At Klout, topics are represented as entries in an ontol-

ogy tree, T . The in-house ontology is manually curated
and is bootstrapped using Freebase [19] and Wikipedia Con-
cepts [20]. The ontology provides an explicit specification of
topics and relationships among them and has a hierarchi-
cal tree structure as shown in Figure 1. It has three levels:
super, sub and entity. The lowest level contains specific
entities, including people, things and places and are regu-
larly updated. We currently have close to 9,000 entities and
includes proper nouns, popular terms in social media, and
specific concepts. The sub level contains 700 sub-topics that
are abstracted concepts and each corresponds to a cluster of
entities. The super level is the top level abstraction and
contains 15 super topics.

Figure 1: Hierarchical Ontology Overview

LASTA tokenizes text to generate n-grams and maps these
against an internal dictionary to generate bags of phrases,
BPu = {BP 1

u , BP 2
u , ..., BP s

u}. A user is associated with
multiple bags-of-phrases where each bag-of-phrases is de-
rived from a specific collected data source. Each of these
bags-of-phrases is then mapped to a bag-of-topics, BTu =
{BT 1

u , BT 2
u , ..., BT s

u}, from the above ontology. The map-
ping from a phrase to a topic (pj → ti) is based on exact
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match and rule-based synonym checks. Section 3.2.1 pro-
vides more details on how topics are extracted. For each
user, we now obtain bags-of-topics where the kth bag-of-
topics is represented as follows.

BT
k
u = {ti : (pj → ti), ∀ pj ∈ BP

k
u }

Since multiple phrases may map to a topic, the strength of
each topic in BT k

u is the sum of the occurrences of corre-
sponding phrases.

count(ti|BT
k
u ) =

∑

pj →ti

count(pj |BP
k
u )

The strength for each topic in BT k
u is normalized using min-

max normalization.

s(ti|BT
k
u ) =

count(ti|BT k
u )

maxtj ∈BT k
u

count(tj |BT k
u )

The problem for LASTA can be stated formally as fol-
lows: Given a set of N users, U = {u1, u2, ..., uN } and a
specific user u, we wish to generate a final bag-of-topics,
Tu = {t1, t2, ..., tm} where ti ∈ T , and the strength of each
topic represents the user’s interest towards that topic. We
discuss details on how we aggregate from BTu to the final
bag-of-topics, Tu in Section 4.

2.2 Data Landscape
Klout has millions of registered users. A registered user

has to connect either their Facebook or Twitter account to
create an account on Klout. After that, the user may con-
nect other social network profiles, e. g. LinkedIn, Google
Plus, Instagram, etc.

One of the primary challenges faced by LASTA is the size
of text created by each user to infer correctly the topical
interests. We present data in Table 1 on message character
counts to illustrate the challenge.

Table 1: Message sizes across networks
Percentile FB TW GP LI

0.99 564.48 140.00 1578.62 577.00
0.95 200.60 134.00 521.95 277.20
0.90 128.20 118.22 323.16 175.00
0.80 77.56 89.00 204.00 132.00
0.70 59.72 68.88 133.00 112.00
0.60 50.53 54.18 92.00 93.00
0.50 43.95 43.62 61.00 75.35

Table 2: Percentage distribution of languages across
networks

FB TW GP LI
en 67.22 en 34.88 en 74.18 en 80.52
pt 6.05 ja 12.33 es 5.61 es 6.40
it 5.78 id 11.52 it 3.00 fr 2.74
es 5.39 es 8.92 de 2.55 nl 2.23
id 2.00 ar 4.44 pt 2.41 it 1.97

rest 13.54 rest 27.88 rest 12.24 rest 6.12

LASTA focuses on topic detection in the English language,
and we use off-the-shelf language detectors3 and phrase parsers
3https://code.google.com/p/language-detection/

to detect English text. Because English is used only by a
limited number of users on social networks, this creates an-
other sparsity problem for non-English speaking users. In
Table 2, we present details on language distribution as ob-
served by LASTA.

Figure 2 shows the distribution of phrases used by users
on each social network, on log-log scale, with base 10. The x
axis is the number of distinct phrases, which corresponds to
the vocabulary size by users. The y axis shows the number
of users as a function of their vocabulary size in past 90 days.
The distribution approximately obeys the inverse power law,
particularly on GooglePlus.
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Figure 3: Phrase overlap across networks

One of LASTA’s goals is to understand different behaviors
presented by users in different networks. In order to illus-
trate different user behavior and varied vocabulary choice
across social networks, we examine the phrase overlap in
messages created by a user who has connected multiple so-
cial networks to their Klout profile. We use jaccard coeffi-
cient to measure phrase overlap, P O(u, (Ni, Nj)) as follows.

P O(u, (Ni, Nj)) =
|{phrase in Ni} ∩ {phrase in Nj}|

|{phrase in Ni} ∪ {phrase in Nj}|

where Ni, Nj are i-th and j-th social network, respectively.
We then average over all users for each pair of social net-
works. Figure 3 shows the results. The phrase overlap value
is very small on each pair; the highest overlap occurs be-
tween postings across Facebook and Google Plus and is ap-
proximately 0.075. To gain deeper insights into the overlap,
we narrow down to active users only. A user is considered
as active in a pair of social networks if he has generated at
least 100 distinct phrases in each network in last 90 days.
The overlap extent increases; however it is still small and
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less than 0.1. The highest overlap occurs between postings
across TW and FB and is approximately 0.035. The low
phrase overlap for a single user helps LASTA aggregate top-
ical interests from multiple social media and produce a more
complete set of user interests.

3. PIPELINE OVERVIEW
Our backend system can be broken into two main com-

ponents: data collection, and data processing. When a user
registers at Klout, he connects one or more social networks
with his ‘token’, and grants permission to Klout to collect
and analyze his data through the network APIs. At the
data collection stage Klout fetches the user’s profile, activ-
ities and connection graphs from various social networks.
This data is parsed and stored in normalized form. The
data processing pipeline expresses topical interests for each
user as a ranked list of topics. The inferred topic list is used
for multiple applications including generating a unified user
profile, content recommendation, targeting and question an-
swering. Figure 4 shows an overview of collection/processing
pipeline.

Figure 4: Data Collection and Processing Pipeline

3.1 Data Collection
LASTA focuses on collecting the following data types:

User Profile. A user may explicitly state some of his in-
terests in his profile description on a social network. For
example, the 160-character limited bio in a TW profile of-
ten contains information indicating the user’s interests. On
FB, users can edit their profiles to declare their interests in
music, books, sports and other topics.

User Activities. Various activities on social networks
provide valuable signals for topic assignment. On FB, we
collect authored status updates, shared URL pages, com-
mented and liked posts, text and tags associated with videos
and pictures. On TW, we collect authored tweets, re-tweets
and replies on other tweets, shared URL pages, subscribed,
created and joined lists. On LI, we collect comments on
posts, skills stated by the user and endorsed by connections.
On GP, we collect authored messages, re-shares, comments,
shared URL pages and plus-ones.

User Graph. We also collect the connection graph of a
user within social networks. Such a connection graph has
users as nodes and directed edges between pairs of users.

This includes follower and following edges on TW, which are
unidirectional relationships, and friend edges on FB, which
are bidirectional relationships. The social graph also con-
tains a hidden interest graph. For instance, if a user follows
“@NBA” then it is likely that he is interested in basket-
ball. We leverage the user graph to discover the individual’s
interests.

For TW in particular, Klout also partners with Gnip to
collect the the public data generated in the TW Mention
Stream. This includes all tweets that include re-tweets,
replies or a message that contains a “mention”, where a
user is referenced with ‘@’ prefixed to his username. Fi-
nally, for well-known personalities we associate their Klout
profile with their Wikipedia page.

3.2 Data Processing
To reiterate, the primary goal of our system is to build

a comprehensive list of user interest topics at scale. The
users under consideration include registered users who con-
nect networks on Klout, and unregistered users whose public
data is available via the TW stream. Overall we assign top-
ics to hundreds of millions of unregistered users, and the
number of registered users is in the order of millions.

We use the Hadoop MapReduce infrastructure to frequently
bulk process the large amount of data collected. Topic as-
signment is run daily as a bulk job, while machine learned
models are built and improved in an offline manner regu-
larly. The daily resource usage footprint of ‘LASTA’ for
feature generation is: 55.42 CPU days, 6.66 PB reads, 2.33
PB writes, and for score generation is: 11.33 CPU days,
3.78 PB reads, 1.09 PB writes. These numbers refers to
uncompressed HDFS data reads/writes.

In particular we use Hive which is a warehousing solution
used for querying and managing large datasets residing in
distributed storage. Two of the main features of Hive are
– a built-in data catalog, and SQL like syntax that gets
translated to a series of MapReduce jobs at runtime. Hav-
ing a data catalog makes problems tractable as the number
of distinct feature types in the system grows. Performing
complicated data transformations with multiple joins and
secondary sorts in Hive is trivial and can be expressed as
a single query, saving development time and effort which
would otherwise be spent on writing multiple Map-Reduce
steps. The Hive Query Language abstraction allows devel-
opers to mainly focus on data transformations, leading to
quick prototyping and experimentation.

We also implemented independent Java utilities for entity
extraction, text to bag-of-topics mapping and language de-
tection with Hive UDF (User Defined Function) wrappers.
We have open-sourced Brickhouse 4, a collection of these
utility UDFs used for data aggregation and transformation.

One of the main advantages of our data processing pipeline
is that new features can be easily added and removed. Hav-
ing this flexibility allows us to support large number of fea-
tures, some of which are network agnostic like those derived
from message reactions or connection graphs, while others
are more network specific like those derived from FB likes,
TW lists, LI skills and so on. Overall in our production sys-
tem we generate around 50 distinct types of features. We
experimented with more than 100 features over the course of
the project before settling on the 50 features with the most

4https://github.com/klout/brickhouse
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impact. In following section we will go in more detail about
bag-of-topics generation.

3.2.1 Bag of Topics Generation

Bags-of-phrases are first extracted from textual inputs,
by matching against a dictionary of approximately 2 mil-
lion phrases. Phrases are extracted as n-grams where n

may vary from 1 to 10. The dictionary is updated daily us-
ing Freebase [19], Wikipedia Concepts [20], manual curation
and top influential users’ display names on Klout. As some
of these sources change daily, the dictionary dynamically
updates itself to include the latest phrases in social media.
Bags-of-phrases are then mapped to the topic ontology and
are transformed into bags-of-topics, effectively reducing the
dimensionality of the text from 2 million phrases to around
10,000 topics. A larger discussion of the ontology is beyond
the scope of this paper, but we note that the system is agnos-
tic to the ontology used, and any other ontology can also be
applied in this framework. We opt for exact match and rule
based synonym mapping approaches here, to avoid incorrect
phrase-topic associations and to minimize false positives at
this step. Alternate approaches that cluster phrases to top-
ics, or use latent variables to perform such mappings, can
be addressed in future work.

The bags-of-topics thus generated have associated strengths
for each topic in the bag. For most of the text based bags-
of-topics we use the cumulative phrase frequency as the
topic strength. For graph based bags-of-topics we use a
slightly different approach, aggregating topic strengths from
the user’s first degree connections. Each bag-of-topics is as-
sociated with the corresponding user id, and is identified
by a name representing the data from which the bag was
derived. A feature vector is generated for each user-topic
pair by exploding the bags-of-topics for a user, in order to
formulate the problem as a binary classification problem for
matching users to topics. We describe this procedure more
formally in Section 4.1. The features are identified by the
same name as the bag from which the topic under consid-
eration originated. In the remainder of the paper, we will
use feature names interchangeably to represent both the in-
dividual entry in a feature vector for a topic-user pair, as
well as the corresponding bag-of-topics for a user.

3.2.2 Feature Generation

We use the following naming convention for feature names:
<network>_<source>_<attribution>. Each feature is rep-
resented as a combination of three characteristics that an-
notate – (a) the social network in which feature originated,
(b) the source data type, and (c) the attribution relation
of a given feature to the user. We next provide a detailed
description of these feature characteristics.

Network: The social network from which the data origi-
nated, which are abbreviated as TW, FB, GP, LI, WIKI.

Source: The feature source captures the input data source,
and optionally the derivation method when the same source
may be interpreted in different ways. Text and social graph
based sources are the two major inputs from which features
are generated.

Text based sources originate from text associated with mes-
sages, posts, profiles, lists, videos, photos, or URLs shared.
In addition we also fetch shared URLs and extract text from
the HTML, as well as the text from meta tags annotating

the title, description and keywords of a URL. This enables
LASTA to gain additional context about content with re-
spect to a user.

User graph derived features are calculated by aggregating
topical interest of a user’s first degree social graph. The
first degree user graph topics are bootstrapped using some
individual features which have high coverage and precision,
for example TW Lists. Since topics are assigned daily, subse-
quent graph features are generated using topic assignments
from the previous day. For the graph based bags-of-topics,
we associate raw strengths as:

s(ti|BT
k
u ) =

∑

v∈Gu

s(ti|BT
k
v )

where Gu is the social graph of the user u, and v is a first-
order neighbor of u. These strengths are also normalized
using min-max normalization as described previously. Ex-
amples of such graph sources include FRIENDS on FB, and
FOLLOWING and FOLLOWERS on TW.

The Source may optionally also include the time window
considered for generating the feature. Since users’ interests
on social media may vary over time, some inputs may be
indicators of topical interests only temporarily, while oth-
ers such as country of birth, or professional interests, may
indeed be long term indicators of topics associated with a
user. We therefore consider inputs in a 90 day window to
capture the temporal nature of changing topical interests,
and an all-time window for the more permanent inputs.

Attribution: Attribution denotes the relation of the input
source to the user. It may be one of the following:

1. Generated: Originally generated or authored content
by the user, including posts, tweets, and profiles. This
also includes comments which are attributed as gener-
ated, to the person who authored the comment.

2. Reacted: Content generated by another user (actor),
but as a reaction to content originally authored by the
user under consideration. This includes comments, re-
tweets, and replies.

3. Credited: In this case the user has no direct association
with the content from which the feature was derived.
Examples include text that is associated with the user
because he was mentioned with tags, or added to lists
and groups by other users.

The most obvious attribution is Generated, which is based
on text that the user has authored himself. Traditionally,
this has been the primary input used to infer topics, but in
the context of social media, this may often be insufficient or
inaccurate. Users typically talk about a variety of subjects
casually, such as “I had a late lunch today”, which does not
necessarily indicate the user’s interest in lunch or food. In
addition, self-authored posts may cover only temporary or
partial interests. For example, Bill Gates uses his Twitter
account to primarily talk about topics like ‘Philanthropy’,
‘Books’, ‘Malaria’ and ‘HIV infection’. While his work as a
philanthropist is captured by textual input from tweets, it’s
essential that the system also assigns topics like ‘Software
industry’ and ‘Microsoft’. Thus generated inputs by users
themselves may be inaccurate or insufficient to derive topical
interests for users. To address these issues, we consider two
other categories of text to derive topical signals.
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The first is Reacted text, which considers messages in-
cluded in comments or replies that were created by other
‘actors‘, in reaction to an original message created by user.
In this case we attribute the text of the comment or reply
to the original message author and label it with the Reacted

attribution. For some users the amount of text generated
through reactions greatly exceeds the amount of original
text, thus providing a lot more context and a much better
signal for topic inference.

The second attribution that we consider is Credited. In this
case the user is only indirectly involved with the signal un-
der consideration, and neither generates, nor directly pro-
vokes the creation of the input with which he is associated.
Instead, other users in the social network associate certain
messages or content to the original user. Examples of such
inputs are tweets in which a user is mentioned, or posts
on FB where a user is tagged, or recommendations written
by colleagues on LI, or a user being listed as a member of
a TW list. These messages provide strong signals for top-
ics associated with a user, because they indicate how other
members of the social network perceive the user’s topical in-
terests. This attribution is important especially in the case
of celebrities who may not be regular content creators them-
selves, but indirectly generate text via users who talk about
and mention them.

The alert reader may have also noticed that the Generated,
Reacted and Credited categories are analogous to the first
person, second person and third person views used in lan-
guage and grammar.

3.3 Ground Truth

Figure 5: Ground Truth Collection Tool

In order to build models based on the features described
above, we designed a simple web app to collect ground truth
data with labels for user-topic interests.

Table 3: Statistics on ground truth dataset
Statistics Value
# of participants 43
# of evaluated users 766
# of (user, topic) labels 32,264
# of positive (user, topic) labels 17,208
# of negative (user, topic) labels 15,056

We conducted controlled user studies where the evalua-
tors in the experiment were registered Klout users. In this
experimental setup, the system pulls up a set of the par-
ticipant’s user graph first degree connections who are also

Klout users, or Twitter users whose data is available via
Gnip stream. System randomly assigns topics to the users’
first degree connections. The evaluator then gives positive
or negative feedback, depending if the topic is good or bad
match for his connection. If participants are uncertain about
the relevance of the topic-user pair, they skip the evaluation
for that pair. Table 3 shows the statistics of the dataset we
collected through the user study. The screenshot of the tool
is shown on Figure 5.

Our ground truth data is aimed at generating labels for
socially recognizable user topics. A participant does not
evaluate himself to ensure that personal biases are separated
from the feedback. In our dataset, we found that out of all
pairs of user-topic pairs that received more than one vote,
only 27% have conflicting feedback. The conflicting votes
contribute to only 2.2% of all the votes that were collected,
suggesting that in most cases the association is clear.

4. ANALYSIS AND EVALUATION
In this section we describe our approach to solve the prob-

lem of predicting topics for a user, using supervised learn-
ing. We designed experiments and collected ground truth
from real users, to acquire labeled data for matching users
to topic. This labeled data is then used for training and
evaluation, and the results are presented below.

4.1 Feature Analysis
As explained previously, multiple bags-of-topics are de-

rived from different sources for each user. We explode these
bags-of-topics, and for each topic-user pair (ti, u), we build
a feature vector xi,u. The value of each feature in the vector
is the topic strength of ti given the bag-of-topics, BT k

u :

xik = s(ti|BT
k
u ),

where BT k
u is the kth bag-of-topics for the user. We name

the kth feature with the same name as the bag BT k
u . One of

the primary contributions of this study is to analyze which
features are indicative of a user’s topical interests on social
networks.

We find that textual input authored by users themselves
accounts for at least one topic for only 58% of users on the
labeled set. The remaining users either do not create enough
text, or generate text that is not necessarily indicative of
their topical interests. For such users we include reacted and
credited signals in order to predict their topics, as described
in the previous section.

We evaluate the performance of the topic prediction through
traditional IR metrics:

Precision(P) measures the fraction of retrieved topics that
are relevant to the user.

P =
|{relevant topics} ∩ {retrieved topics}|

|{retrieved topics}|

Recall(R) measures the fraction of relevant topics that are
retrieved.

R =
|{relevant topics} ∩ {retrieved topics}|

|{relevant topics}|

Table 4 shows a selected list of important features along
with their Precision (P) and Recall (R) values as evaluated
on the labeled set. In this case, the predicted topics for a

1814



user are the bag-of-topics associated with the feature. We
also present the coverage (C) in terms of percentage of reg-
istered users who have the feature.

We notice that credited List based features on Twitter
and generated LinkedIn features have the highest individ-
ual predictive quality in terms of precision. Generated URL
features typically have higher recall than other features, sug-
gesting that shared URLs are a strong signal of a users topi-
cal interests. We also find that the graph based features have
the highest coverage and recall values, which highlights why
these features can predict topics for users who are not very
active themselves.

Table 4: Feature performance and coverage
Feature Source P R C

Twitter

GEN.
MSG TEXT 90 DAY 0.22 0.15 27.37
URL 90 DAY 0.09 0.19 14.67
URL META 90 DAY 0.33 0.14 11.63

REAC.
MSG TEXT 90 DAY 0.26 0.12 20.81
URL META 90 DAY 0.36 0.11 10.66

CRED.

LIST 0.68 0.21 21.19
URL META 90 DAY 0.37 0.10 4.81
MSG TEXT 90 DAY 0.20 0.18 21.91
MSG #TAG 90 DAY 0.43 0.11 13.70

GRAPH
FOLLOWERS 0.08 0.26 52.41
FOLLOWING 0.10 0.31 52.77

Facebook

GEN.
MSG TEXT 90 DAY 0.17 0.07 29.20
URL 90 DAY 0.08 0.12 9.52
URL META 90 DAY 0.21 0.06 7.08

REAC.
MSG TEXT 90 DAY 0.12 0.08 45.58
URL 90 DAY 0.05 0.12 19.82
URL META 90 DAY 0.14 0.06 14.81

CRED. MSG TEXT 90 DAY 0.15 0.06 13.46
GRAPH. FRIENDS 0.08 0.25 63.66

Google Plus

GEN.
MSG TEXT 90 DAY 0.23 0.04 1.61
URL 90 DAY 0.09 0.15 0.34
URL META 90 DAY 0.25 0.07 0.23

REAC.
MSG TEXT 90 DAY 0.11 0.05 1.68
URL 90 DAY 0.05 0.08 0.46
URL META 90 DAY 0.02 0.03 0.34

CRED. MSG TEXT 90 DAY 0.16 0.05 0.69
LinkedIn

GEN.
SKILLS 0.53 0.20 19.17
INDUSTRY 0.56 0.10 16.63

Wikipedia
CRED. WIKI PAGE 0.18 0.28 0.11

4.2 Training and Evaluation
Given the bags-of-topics generated for users, our objective

is to accurately predict the topic preference for each user.
Feature vectors are generated from exploded bags-of-topics
for user-topic pairs as described above. When a certain topic
occurs in multiple bags for a user, then the feature vector
for that pair will include all these values xj , and 0.0 values
for features where it does not occur.

We now cast the problem as a binary classification prob-
lem, in which the system must learn automatically to sep-
arate topics of interest from those that are not relevant to

the user. We experimented with several classification al-
gorithms, including those reported to achieve good perfor-
mance with text classification tasks, such as support vector
machines, logistic classifiers, and stochastic gradient boosted
trees. We found that the best and most stable performance
among the techniques we tested was obtained with the lo-
gistic classifier. We predict the label by ŷ = P (y|ti, u) =
σ(xi,u ·θ), where σ(a) = 1

1+e−a is the sigmoid function. The

label y ∈ {0, 1} assigns 1 if the topic ti is of interest to the
user u, 0 otherwise.

We train our models using the feature vectors generated
for the pairs against the labels from the labeled data. The
final model applies weights wk to get the final bag-of-topics,
Tu. The topic strength for a specific topic ti ∈ Tu is:

s(ti|u) =
∑

BT k
u ∈BTu

wks(ti|BT
k
u )

4.3 Results

4.3.1 Classification Prediction Results

In addition to precision and recall, we also use the F1
Score, F 1 = 2P R

P +R
to measure performance as a tradeoff

between precision and recall.
Table 5 presents the performance of topic prediction using

k-fold cross validation on the labeled set, where k = 10
and the held out set is 20% of the data. Class 1 represents
positive instances where the topic was correctly predicted,
and class 0 represents negative ones, where the topic was
correctly discarded. We consider the predictive power of
different feature sets, and how they compare to the case
when the full feature set is used. The “Feature Set” column
indicates the feature subset used for the prediction.

We discuss insights gained by comparing the performance
of using all features versus using only subsets of features:

Single Network Comparison: The precision when all fea-
tures are used is higher than when we use only features
from a single network like Twitter. This shows that increas-
ing the information available for a user by using the user’s
presence on other networks improves the correctness of the
predicted topics in both classes. While using features from
only Facebook may yield a higher precision, the recall in this
case is very low, and we are able to predict fewer topics for
each user. These observations together imply that because
of the nature of any given social network, a user may not
reveal all his interests on any single network alone, making
it necessary to use features from multiple networks.

Attribution Comparison: We also compare the performance
when we use only features derived from user generated input,
which includes text as well as shared URLs (GEN.), or use
only features from the user’s reacted and credited inputs
(REAC. + CRED.). The generated set of features yield
a high precision, but a low recall value. The reacted and
credited features give a slightly lower precision, but slightly
higher recall compared to the generated input. But using all
inputs together yields a much higher recall value than using
them separately. This shows that using only user generated
text can predict much fewer topics for the user, as compared
to using the generated, reacted and credited inputs together.

Graph Comparison: Finally we also compare how the graph
based features (GRAPH) play a role in topic prediction. Ex-
cluding graph based features gives a higher precision but a
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low recall value, and using only graph features provides a
much higher recall value, with a slightly lower precision.
This highlights the value of using graph features, because
by the nature of the social networks, it is possible to pre-
dict topics for a user by considering the topics of the other
users that he is connected to. But relying solely on graph
based features gives some incorrect predictions, because of
the possible noise introduced.

Thus we observe that using the complete set of features
maintains a relatively high precision, while greatly improv-
ing the recall. The results show that including multiple
networks, generated text input, reacted and credited sig-
nals, and graph based features together gives the best per-
formance overall, as indicated by the F1-score in Table 5.
LASTA also achieves a 92% precision k, where k = 10, on
the full training set.

Table 5: Binary classification prediction for different
feature sets

Feature
Set

Class P R F1 F1 Avg.

TW
1 0.703 0.484 0.573

0.613
0 0.572 0.771 0.657

FB
1 0.792 0.298 0.433

0.548
0 0.538 0.912 0.677

GEN.
1 0.799 0.335 0.472

0.568
0 0.543 0.904 0.678

REAC. +
CRED.

1 0.733 0.373 0.495
0.572

0 0.541 0.845 0.660

ALL −
GRAPH

1 0.792 0.411 0.541
0.610

0 0.599 0.809 0.688

GRAPH
1 0.739 0.501 0.597

0.633
0 0.599 0.809 0.688

LASTA
1 0.758 0.526 0.621

0.652
0 0.599 0.809 0.688

4.3.2 Curation Evaluation

We deployed LASTA in production at Klout, and dis-
played the top 10 predicted topics in ranked order on each
user’s profile. Users could then add, delete, or reorder the
list, indicating agreement or disagreement with the predicted
list. We also evaluate our system against this self-curated
user data. We select the set of users who have made changes
on their topic profiles, and evaluate the initially predicted
list of topics against the final curated list for each user. Ta-
ble 6 has the statistics of this dataset.

Table 6: Statistics of the curated dataset
Statistics Value
# of users 19,505
# of (user, topic) pairs 196,481
Avg # of positive topics per user 7.37

We evaluate LASTA using the following metrics on the
curated data:

Mean Average Precision (MAP) For a single user, av-
erage precision calculates the average of the precision of the

top K topics. AP @K =

∑
K

i=1
P @i

K+ , where K+ is the num-
ber of positive samples. Here P @i is the precision at cut-off

i in the retrieved list. The mean average precision for N

users at position K is the mean of the average precision for

each user, i.e., MAP @K = 1
N

∑N

i=1
AP @K(i).

Normalized discounted cumulative gain (nDCG)
Measures graded relevance of the list of topics, i.e., DCG =∑k

i

2ri −1
log2(pi+1)

where ri = 1 if the topic has a positive label in

the curated list, and pi is the position of topic in the ranked
list. Normalized DCG is the ratio of DCG by the model’s
ranking to the DCG by the ideal ranking: nDCG = DCG

IDCG
.

We use these metrics to compare the output of LASTA
against other approaches. In particular, we compare LASTA
to approaches where the topics for a user are predicted using
aggregated topic frequency (TF) from subsets of features.
These subsets are those derived from generated textual input
only; all generated inputs including URLs shared, LinkedIn
Skills etc.; and all inputs that were generated, reacted and
credited. Table 7 shows the results for ranking the top K

topics of interest for each user, where K = 10.

Table 7: Ranking performance comparison on user
curated data

Model with Features used MAP@K nDCG
TF - Message Text Generated 0.150 0.140
TF - All Generated 0.155 0.139
TF - All 0.160 0.141
LASTA - All 0.314 0.269

Note that the users who curate their own data are only a
small fraction of users on Klout, who are self motivated to
edit their topic list. Since most users do not edit their list,
either because they are satisfied with it, or because they are
not motivated enough to change it, we exclude such users
from the dataset. On this dataset, LASTA significantly out-
performs the other approaches in terms of both the MAP
and nDCG metrics, showing that it does indeed produce a
better set of ranked topics for a given user.

Table 8 shows some examples of topics assigned to some
well known personalities according to LASTA.

Table 8: LASTA topic assignment examples

User Top 10 Topics
Marissa Mayer yahoo, google, technology, business,

twitter, social-media, flickr, design,
marketing, seo, gmail

Lady Gaga music, lady-gaga, celebrities, art, fash-
ion, born-this-way, venus, entertain-
ment, radio

Barack Obama politics, affordable-care-act, health-
care, new-york-times, congress, chicago,
twitter, washington, illinois

4.4 Cross Network Analysis
In our dataset, around 13% users connect to a single social

networks, 40% of users to two social networks, and less than
10% users connect all four social networks. Typically it is
expected that a user does not connect all four networks,
since most users are only active in one or two networks. But
the advantage of using four networks is that the fraction of
users using at least two out of the four is higher, leading
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to more information about the user. The details of user
behavior patterns in a cross-network setting is beyond the
scope of the paper, but here we present some interesting
topical insights across networks.

4.4.1 Super-topics comparison

As discussed previously in Section 2.2, we observe that
phrases used by a user have low overlap across social net-
works. Here we examine similarities and differences between
topical interests aggregated across users on different net-
works. To aid visualization, we roll up entities and sub-
topics to super-topics, reducing the topic dimension space
from 10, 000 to 15. We sum up the presence of user interests
rolled up to super-topics in each individual social network,
and plot this distribution. Table 9 shows the percentage
breakdown of super-topics on each social network for the
users on that network, and also the breakdown across all
users according to LASTA.

We observe from the figure that users in each network
have distinct topical interests. On FB and TW the super-
topic “entertainment” is the most represented one, whereas
“business” is the most represented super-topic on LI, and
“technology” on GP. FB users are also more interested in
topics related to “lifestyle” and “food-and-drink” compared
to users on other networks, while a significant number of
GP users show interest in “arts-and-humanities”. For LI,
apart from “technology” and “business”, other topics are
not highly represented, which is expected since it is a pro-
fessional networking platform. The left-most column shows
the distribution of topics as assigned by LASTA. The “busi-
ness” row is an interesting one to observe. While this topic
is not highly represented on TW, FB and GP, LASTA is
able to assign “business” related topics to users, because
it also takes into account signals from LI. This shows that
using multiple networks can lead to not only a deeper un-
derstanding for each user, but also a better understanding
across topics.

4.4.2 Topics distribution

While the previous section analyzes cross-network topic
distributions qualitatively in terms of super-topics, here we
examine the distribution quantitatively in terms of number
of topics assigned to users. While assigning a very large
number of topics is not necessarily the goal of the system,
we analyze these distributions in order to perform cross-
network comparison. In Figure 6, each plotted point rep-
resents the fraction of users who have at least x number of
topics assigned to them.

We find that the number of topics assigned to users with
TW and FB is much larger than that assigned using GP or
LI. This is because GP and LI do not provide API access to
graph data, and also have a smaller volume of textual input
compared to TW and FB. We conclude from the graph that
for the same number of topics, LASTA always assigns topics
to more users. Also, LASTA assigns more topics to each user
compared to individual networks.

5. APPLICATIONS
LASTA is serving multiple personalized services in Klout.

We briefly describe some applications next.
Targeting: Given that social media is a modern means

of spreading awareness among people, many brands desire
to target promotional messages and campaigns to social net-

0.0

0.25

0.50

0.75

1.00

 0  50  100  150  200  250  300

R
el

at
iv

e 
#
 o

f 
u
se

rs

Minimum number of topics per user

TW

FB

GP

LI

WIKI

LASTA

Figure 6: Distribution of registered users for mini-
mum number of topics assigned across different net-
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work users. As an example, a car company that wants to
spread awareness about a new car model, may want to tar-
get certain incentives or “perks” related to the car to some
users on social media. When users interested in cars are tar-
geted with the perk, they may be motivated to talk about
the car on their respective social networks, effectively gener-
ating word-of-mouth awareness about the new model. This
approach of targeting users based on topics, that can pro-
vide value to companies and brands, has been successfully
implemented at Klout with LASTA.

Content Discovery: The topics deduced by LASTA
provide utility to users in terms of serendipitous content
discovery at Klout. This system aggregates online articles,
categorized by topic, and ranks them based on relevancy to
a user. The system can also identify topics that some mem-
bers from the user’s social graph may be interested in. A
user can then be shown a customized feed of articles that he
may either want to discover and read about himself, or may
want to share with a wider audience on his social networks.

Question Answering: In a question answering scenario,
a user in the system can ask a question pertaining to a cer-
tain topic, which can then be routed to specific users who
may be able to answer the question. For example, a ques-
tion such as “What is the best place to go fishing near San
Francisco?”, may be routed to users interested in fishing who
live in San Francisco. Users to whom questions are routed
are able to give credible answers to such questions, and the
original asker may get multiple good answers. This system
was implemented and used by users on Klout, and was again
enabled by LASTA.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented Klout’s topic assignment sys-

tem, LASTA. The system assigns overs 10,000 topics to hun-
dreds of millions of users spread across multiple social net-
works on a daily basis with a high accuracy. We hope the
engineering architecture and technology choice provides in-
sights to build scalable and extendable topic mining systems.

LASTA provides the foundation to build other data-driven
products that utilizes the user-topic relationships. In the
future, we want to build systems that will understand topical
expertise among the millions of users.
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Table 9: Super-topic percentage distribution across different networks
Super-topic LASTA TW FB LI GP WIKI
technology 23.972 19.706 11.559 33.420 22.822 8.247
entertainment 23.987 20.049 20.866 3.406 14.377 30.669
business 15.893 10.628 7.567 41.053 12.857 10.937
lifestyle 7.910 7.403 11.409 2.328 7.969 4.810
science-and-nature 4.431 3.705 3.604 1.266 4.682 3.208
arts-and-humanities 6.605 7.056 6.836 5.765 9.392 13.373
government-and-politics 3.547 4.763 4.388 2.182 3.534 5.261
sports-and-recreation 4.379 7.503 7.591 0.659 4.913 7.921
food-and-drink 2.671 7.228 11.863 0.819 7.255 2.142
health-and-wellness 1.976 3.894 5.150 1.691 4.083 1.867
fashion 1.439 2.645 2.945 0.732 2.776 2.203
education 1.443 2.375 3.485 3.369 2.170 4.058
news-and-media 0.966 1.722 0.899 2.597 1.060 4.366
travel-and-tourism 0.535 0.779 1.155 0.614 1.041 0.654
hobbies 0.246 0.543 0.683 0.100 1.070 0.285
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