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ABSTRACT
We describe the design, implementation, and evaluation of
EMBERS, an automated, 24x7 continuous system for fore-
casting civil unrest across 10 countries of Latin America
using open source indicators such as tweets, news sources,
blogs, economic indicators, and other data sources. Un-
like retrospective studies, EMBERS has been making fore-
casts into the future since Nov 2012 which have been (and
continue to be) evaluated by an independent T&E team
(MITRE). Of note, EMBERS has successfully forecast the
June 2013 protests in Brazil and Feb 2014 violent protests in
Venezuela. We outline the system architecture of EMBERS,
individual models that leverage specific data sources, and a
fusion and suppression engine that supports trading off spe-
cific evaluation criteria. EMBERS also provides an audit
trail interface that enables the investigation of why specific
predictions were made along with the data utilized for fore-
casting. Through numerous evaluations, we demonstrate
the superiority of EMBERS over baserate methods and its
capability to forecast significant societal happenings.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining
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civil unrest, event forecasting, open source indicators
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1. INTRODUCTION
We are constantly reminded of instabilities across the world,

e.g., in regions such as Middle East and Latin America.
Some of these instabilities arise from extremism or terror-
ism while others are the result of civil unrest, involving
population-level uprisings by disenchanted citizens. Since
the Arab Spring revolution began, and especially after Egypt’s
upheaval, many analysts (e.g., [12]) have pondered: Could
we have anticipated these events? Were there precursors
and signals that could have alerted us to them? Why did
this happen in one country but not another?

Our team is an industry-university partnership charged
with developing a system to continually monitor data sources
24x7, mine them to yield emerging trends, and process these
trends into forecasts of significant societal events such as
protests. We refer to our system as EMBERS for Early
Model Based Event Recognition using Surrogates. Although
the scope of EMBERS spans a broad class of events (e.g.,
protests, disease outbreaks, elections), we focus our atten-
tion in this paper on only civil unrest events. Civil unrest
is defined as a population-level event wherein people protest
against the government or other larger organizations about
specific policies, issues, or situations.

The EMBERS project is supported by the IARPA (In-
telligence Advanced Research Projects Activity) OSI (Open
Source Indicators) program whose objective is to forecast
population-level changes using open source data feeds, such
as tweets, web searches, news/blogs, economic indicators,
Wikipedia, Internet traffic, and other sources. (The term
‘open source’ here refers to data sources that are openly
available without requiring privileged access.) As a per-
former in the OSI program, EMBERS is a deployed sys-
tem that has been generating forecasts since Nov 2012 and
automatically emailing them in real-time to IARPA upon
generation, which have been evaluated by an independent
evaluation team (MITRE). Using human analysts, MITRE
organizes a gold standard report (GSR) of protests by sur-
veying newspapers for reportings of civil unrest. Our fore-
casts have been evaluated against this GSR every month
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When: 01/04/2014
Where: Ecuador, 

Pinchincha, Quito
Who: Ethnic
Why: Energy and Resources

Forecast Date: 12/27/13 
Probability: 0.87

Warning ID: W1793

When: 01/02/14
Where: Ecuador, 

Pinchincha, Quito
Who: Ethnic
Why: Energy and Resources

Reported Date: 01/05/14 

GSR Event ID: E1859

Figure 1: Alerts (example, left) and events (example, right)
are structured records describing protests.

since Nov 2012. Thus, unlike studies of retrospective pre-
dictability, EMBERS has been generating (and continues to
generate) forecasts into the future.

Our goal in this paper is to present the design, implemen-
tation, and evaluation of EMBERS over an extended period
of time. Our key contributions are:

1. We outline the system architecture and design of EM-
BERS, a modular ‘big data’ processing environment
with levels of data transduction from raw feeds to warn-
ings. EMBERS’s alerts are meant for analyst con-
sumption, but the system runs continuously 24x7 with-
out a human-in-the-loop.

2. Unlike other forecasting/warning generation systems
with similar motivations (e.g., [15]), EMBERS warn-
ings are highly structured, capturing (i) when the protest
is forecast to happen, (ii) where, with a city-level gran-
ularity, (iii) which subgroup of the population will protest,
(iv) why will they be protesting, and (v) a probability
associated with the forecast. See Fig. 1 (left) for an
example of what an alert looks like.

3. EMBERS adopts a multi-model approach wherein each
model harnesses different data sources to independently
generate predictions and such predictions are then fused
to yield final warnings. Using formalisms such as prob-
abilistic soft logic (PSL [6]), we demonstrate how we
can leverage the selective superiorities of different mod-
els and how we can employ collective reasoning to help
shape predictions into a final set of warnings.

4. We illustrate the application of EMBERS to 10 coun-
tries in Latin America, viz. Argentina, Brazil, Chile,
Colombia, Ecuador, El Salvador, Mexico, Paraguay,
Uruguay, and Venezuela. We present an exhaustive
suite of experiments evaluating EMBERS w.r.t. mul-
tiple forecasting criteria and for its capability to fore-
cast significant societal events such as the June 2013
protests in Brazil, also known as the ‘Brazilian Spring.’

2. WHAT IS CIVIL UNREST?
Event analysis of the form considered here is an estab-

lished concept in social science research [3]. Civil unrest
is a large concept intended to capture the myriad ways in
which people express their protest against things that affect
their lives and for which they assume that the government
(local, regional or national) has a responsibility (e.g., cost
of urban transportation, poor infrastructure, etc.). If the
action is directed against private actors, there is normally a

connection to government policy or behavior, e.g., a labor
strike against a private company can disrupt the rhythm of
everyday life for the rest of society, turn violent or lead to
a series of disruptive strikes which require government in-
volvement, and thus responsibility in the eyes of citizens.
Civil unrest does not include acts by criminals for purely
private gain. While authoritarian governments may outlaw
civil protest and thus criminalize the participants, social sci-
entists would distinguish illegal political protests from illegal
criminal activities. Gang members stopping public buses to
extort payoffs from bus owners would not be a civil unrest
event, though people protesting afterward against the gov-
ernment’s inability to control such gangs would be consid-
ered civil unrest. Regardless of a country’s level of openness
to citizens’ expression, civil unrest may occur in carefully
planned and orchestrated forms or as spontaneous responses
to external events.

This expansive definition of civil unrest means that one
can find it everywhere, including European protests against
austerity or marches against an oil pipeline from Canada
across the US to the Gulf of Mexico. Latin America, nev-
ertheless, offers some special characteristics that make it an
excellent region for study in our project. The region experi-
ences a plethora of civil unrest events every day (providing
a sufficient number of GSR events to train machine learning
models), is well covered by international and national news
media (facilitating the task of generating ground truth), is
the object of detailed empirical research and polling (per-
mitting the description of the social, political and economic
context within which civil unrest occurs) and has a signifi-
cant and growing number of social network users (thus sup-
porting the use of modern data mining algorithms).

The forecasting problem studied here using open source
indicators is a potentially powerful tool for understanding
the social construction of meaning and its translation into
behavior. The occurrence of an event can enhance the ability
of citizens to communicate not only their views but also their
priorities to those who govern them. An effective protest
forecasting system can contribute to making the transmis-
sion of citizen preferences to government less costly to the
economy and society, by enabling governments to respond to
high priority grievances in advance of anticipated protests.
If the response by the government causes a cancellation or
lower turnout for the event, this decreases the costs incurred
by even peaceful disruptions, such as lost work hours and the
deployment of police to manage traffic and the interactions
between protestors and bystanders. Given the vulnerability
of large gatherings to provocation by handfuls of violence-
oriented protestors (e.g., Black Box anarchists in Brazil),
indications of coming protests can also enable plans to mit-
igate these effects.

3. RELATED WORK
Two broad classes of related work pertinent to EMBERS,

are briefly surveyed here. First, there is a rich body of litera-
ture in event extraction [5, 17] wherein structured descrip-
tions of events are codified from text (e.g., news reports).
ICEWS [15] and GDELT [11] are two prominent systems
that use the CAMEO coding taxonomy. Companies like
RecordedFuture and works like [16] aim to recognize event
mentions from text and Twitter. A key thread of research
that has emerged is to distinguish between future and past
time references in event extraction. Becker et al. [2] aim to
extract details about known planned events like musical con-
certs from social media. Baeza-Yates [1] provides a ranking
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Figure 2: EMBERS system architecture

of future events retrieved from news. Dias et al. [7] extract
future temporal references from text, while also distinguish-
ing rumor from planned events using a classifier. Tops et
al. [19] aim to classify a tweet talking about an event into
discrete time segments and thus predict the ‘time-to-event.’
Kallus [10] makes use of data from RecordedFuture about
planned protest events to determine if a significant protest
will occur in the next three days using a random forest clas-
sifier. Other than Kallus [10], all the above cited works
are primarily focused on detection (in contrast to forecast-
ing). The second broad of thread of related research is on
civil unrest modeling although much of this work focuses
on characterization rather than forecasting. The dynam-
ics by which volunteers are recruited via social networks to
the May 2011 Spain protests was studied in [8]. Spatial
and temporal distributions of civil unrest over 170 coun-
tries were studied in [4]. Our group has analyzed protests in
Latin America paying specific attention to signals that man-
ifest in social media [9]. There are many papers that aim to
retrospectively analyze the breadcrumbs of information pre-
ceding significant events such as the Arab Spring [12, 10].
EMBERS distinguishes from all of the above by supporting
highly structured descriptions of protests, emphasizing fore-
casting rather than characterization or mere detection, and
utilizing a broader range of data sources than prior work.
Finally, we reiterate that EMBERS is a deployed system
that has been successfully issuing alerts since Nov 2012.

4. SYSTEM ARCHITECTURE
The EMBERS system is a modular, data-analytics plat-

form for generating warnings of the form described in Fig. 1
(left). It continuously monitors streams of open source data
and generates structured alerts in real time, delivered by
email to IARPA/MITRE for scoring, with the date of email
delivery being the forecast date.

The EMBERS architecture, illustrated in Fig. 2, provides
a platform for the ingest and warehousing of a variety of
raw data sources, and a flexible mechanism for data trans-
fer among ingest, analytics and prediction modules. The
four stages—ingest, enrichment, prediction, delivery—are
described in detail, respectively, in Sections 4.1, 4.2, 5, and 6.

Table 1: EMBERS system statistics

Archived data 12.4 TB
Archive size ca. 3 billion messages
Data throughput 200-2000 messages/sec
Daily ingest 15 GB
System memory 50 GB
System core 16 vCPUs
System output ca. 40 warnings/day

EMBERS runs in the commercial AWS cloud. It implements
a share-nothing, message-based, streaming architecture us-
ing 0MQ as the underlying method of data transport. Pro-
cessing components are distributed among virtual machines
in a configurable, network-secure, auto-deployable, cluster
of EC2 instances. With loosely coupled processes and con-
figuration driven communication, EMBERS is able to de-
liver warnings reliably while facilitating rapid integration
and deployment of new components and data sources. The
current production cluster consists of 12 EC2 instances with
two dedicated to ingest processing, three dedicated to mes-
sage enrichment, four dedicated to predictive modeling and
warnings selection, one each dedicated to archiving and sys-
tem monitoring. EMBERS became operational in November
2012. It has ingested nearly 13TB of raw data and gener-
ated over 12,000 warnings as of this paper writing. Other
notable statistics are listed in Table 1.

4.1 Ingest Processing
The EMBERS ingest module processes data from a va-

riety of different sources: Twitter’s public API, Datasift’s
processed Twitter feed, Healthmap’s alerts and reports, RSS
news and blog feeds, Talkwalker alerts, NASA satellite me-
teorological data, Google Flu Trends, Bloomberg financial
news, TOR usage data, OpenTable’s restaurant cancella-
tion data, the PAHO health survey, and web-pages refer-
enced Tweets. (Some of these, e.g., NASA satellite data
and Google Flu Trends are used for other event classes, like
disease outbreaks, as described in the introduction.) Each
of these has a dedicated configurable ingest processor. In-
gested data is packaged into UTF8-encoded JSON messages,
assigned unique identifiers and published to a source-specific
queue, allowing for simple archiving and subscription. Sim-
ple time-series and systems data, such as the store of warn-
ings sent, are stored in a database cache.

One of our central ingest processes makes use of Datasift’s
Twitter collection engine. Datasift provides the ability to
query and stream tweets in real time. These tweets are
augmented with various types of metadata including the user
profile of the tweeting user or geotagged attributes and the
query can target any of these. Targeting tweets that come
from a particular geographic area, e.g. Latin America, can
be tricky. While some tweets use geotags to specify the
location of the tweet, these tweets only comprise about 5%
of the total number of tweets and may not be representative
of the population overall (i.e. geotagged tweets come from
people who have smart phones who also tend to be more
affluent). Therefore, it is important to use other information
to build a query that targets relevant tweets. In building
our query we consider geotag bounding boxes (structured
geographical coordinates), Twitter Places (structured data),
user profile location (unstructured, unverified strings), and
finally mentions of a location contained in the body of the
tweet.
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4.2 Message Enrichment
Messages with textual content (tweets, newsfeeds, blog

postings, etc.) are subjected to shallow linguistic process-
ing prior to analysis. Note that most of our content in-
volves languages from the Latin American region, esp. Span-
ish, Portuguese, but also French (and of course, English).
Applying BASIS technologies’ Rosette Language Processing
(RLP) tools, the language of the text is identified, the nat-
ural language content is tokenized and lemmatized and the
named entities identified and classified. Date expressions
are normalized and deindexed (using the TIMEN [13] pack-
age). Finally, messages are geocoded with a specification of
the location (city, state, country), being talked about in the
message. An example of this enrichment processing can be
seen in Fig. 3.

The EMBERS system makes use of two geocoding sys-
tems, one for Tweets and one for news and blog articles.
The Twitter geolocater determines not only the city, coun-
try and state, but also the approximate latitude and lon-
gitude coordinates that a tweet is referring to, or coming
from. Geocoding is achieved by first considering the most
reliable but least available source, viz. geotags, which give
us exact geographic locations that can be reverse geocoded
into place names. Second, we consider Twitter places and
use place names present in these fields to geocode the place
names into geographical coordinates. Finally, we consider
the text fields contained in the user profile (location, de-
scription) as well as the tweet text itself to find mentions
of relevant locations which can then be geocoded into geo-
graphical coordinates.

Most news articles and blog posts mention multiple loca-
tions, e.g., the location of reporting, the location of the in-
cident, and locations corresponding to the hometown of the
newspaper. We developed a probabilistic reasoning engine
using probabilistic soft logic (PSL [6]) to infer the most likely
city, state, and country which is the main geographic focus
the article. The PSL geocoder combines various types of evi-
dence, such as named entities such as locations, persons, and
organizations identified by RLP, as well as common names
and aliases and populations of known locations. These di-
verse types of evidence are used in weighted rules that prior-
itize their influence on the PSL model’s location prediction.
For example, extracted location tokens are strong indica-
tors of the content location of an article, while organization
and person names containing location names are weaker but
still informative signals; the rules corresponding to these ev-
idence types are weighted accordingly.

5. PREDICTION MODELS
We now outline the five different models considered in

our study (see Table 2), paying specific attention to their
underlying assumptions, data sources, and scenarios of ap-
plicability.

5.1 Planned Protest
Many civil unrest events are planned and organized through

calls-for-action by opinion and community leaders who gal-
vanize support for their case. The planned protest model
aims at detecting such civil unrest events from traditional
media (e.g., news pages, mailing lists, blogs) and from social
media (e.g., Twitter, Facebook). The model filters the input
streams by matching to a custom multi-lingual lexicon of ex-
pressions such as preparación huelga, llamó a acudir a dicha
movilización or plan to strike which are likely to indicate a
planned unrest event. The phrase matching is done in flexi-
ble manner making use of the lemmatized, tokenized output

Figure 3: The process of enriching a tweet using Basis RLP
enrichment and TIMEN enrichment to generate exact dates.
The phrase “Sindicato Unificado de Trabajadores se reunirà
manaña” gets enriched to “Sindicato Unificado de Traba-
jadores se reunirà January 15, 2013.”

Table 2: The five different prediction models in EMBERS.

Model Data sources
Planned protest RSS (news, blogs), Tweets,

Facebook
Volume-based RSS (news, blogs), Tweets, Exchange

rates, TOR, ICEWS, GDELT
DQE Tweets
Cascades Tweets
Baseline GSR

of the BASIS enrichment module, to allow for variation and
approximations in the matching. Messages that match are
then screened for the mention of a future time/date occur-
ring in the same sentence as the phrase. The event type
and population are forecast using a multinomial naive Bayes
classifier. Location information is determined using the en-
richment geocoders. The phrase dictionary is thus a crucial
aspect of the planned protest model and was populated in a
semi-automatic manner using both expert knowledge and a
simple bootstrapping methodology.

The planned protest model reads three kinds of input
messages: standard natural language text (RSS news and
blog feeds, as well as the content of web pages mentioned in
tweets), microblogging text (Twitter), and Facebook Events
pages. The RSS feeds and web pages are processed as dis-
cussed above. For tweets, in addition to the above pro-
cessing, we require that the tweet under consideration be
retweeted a minimum number of times, to avoid erroneous
alerts. (This value is set to 20 in our system.) For Facebook,
we use their public API to search for event pages contain-
ing the word protest or its synonyms. Most such Facebook
event pages already provide significant information such as
the planned date of protest, location (sometimes with reso-
lution up to street level), and population/category of people
involved.
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5.2 Volume-based Model
Next, we developed a traditional machine learning model

to map from a large set of volume-based features to protest
characteristics. We use a logistic regression model with
LASSO (Least Absolute Shrinkage and Selection Operator [18])
to select a sparse feature set, and to predict the probabil-
ity of occurrence of civil unrest events in different coun-
tries. Tweets are one of the primary inputs to this model.
Country-level tweets are first filtered using a keyword dictio-
nary which includes 614 civil unrest related words (such as
protest, riot), 192 phrases (e.g., right to work), and country-
specific actors (public figures, political parties, etc.). For
each keyword, its translations in Spanish, Portuguese and
English are also used for filtering. In order to reduce the
noise in the data, only tweets containing at least 3 keywords
are considered. The covariates in the LASSO regression in-
clude (i) daily counts of these protest related keywords in
filtered tweets, (ii) daily counts of the same keywords in
news and blogs, (iii) the exchange rate (country specific cur-
rency against dollar), (iv) count of requests to TOR, i.e., the
number of online users who have chosen to conceal their lo-
cation and identity from the online community, (v) count of
ICEWS events i.e. events identified by the “Integrated Con-
flict Early Warning System”[15], (vi) average intensity of the
ICEWS events, (vii) the counts of events in publicly avail-
able GDELT (Global Data on Events, Location and Tone)
dataset [11], which is a record of events in the international
system over multiple decades, and (viii) the average tone
and the Goldstein scale of these events. A threshold for
the probability is determined by maximizing the area under
the ROC. This methodology allows for detection as well as
prediction of country-specific civil unrest events.

5.3 Dynamic query expansion (DQE)
The dynamic query expansion (DQE) model is based on

the idea that the causes for protests can be quite varied
and, unlike the Volume model (which uses a fixed set of
keywords), we must seek emerging conditions for protests
by dynamically growing our vocabularies of interest. This
model relies exclusively on tweets. Given a short seed query,
DQE first adopts an iterative keyword expansion strategy to
dynamically generate a set of extended keywords and tweets
pertinent to such keywords. In particular, the seed query
consists of a small set of civil unrest related keywords like
“protest” and “march.’ In the initial iteration, we extract
the tweets matching the seed query, and rank the terms in
them by their DFIDF weights. Higher ranked terms are
used to trigger the second iteration, continuing the process.
The iterations are terminated once the set of keywords and
their weights become stable (we have observed that DQE
converges in approximately 3–5 iterations). See Fig. 4. The
resulting tweets are clustered using local modularity and
spatial scan statistics, and tweets in the discovered clusters
are used by a classification engine to trigger an alert and to
determine the event type and population.

5.4 Cascades Model
The cascades model is specifically designed to track ac-

tivity on social media, especially recruitment of individu-
als to causes through the use of targeted campaigns, or the
popularization of causes through adoption of hashtags. We
characterize information diffusion on a (directed) Twitter
network using activity cascades. An activity cascade is de-
fined in the following manner: a user posts a tweet; if one of
the followers of this user also posts a tweet on the same gen-
eral topic within a short interval of time after the original

poster, we say that the second user was influenced by the
first one, and we add this second tweet to the cascade. Then,
we consider the followers of the second user, and add them
to the cascade if they post a tweet within a short interval of
time from then, and so on. The cascade stops growing when
none of the followers of the users in the cascade tweet in the
general topic soon enough. In our model, we compute cas-
cades over two different networks: the follower graph, which
indicates who follows whom in Twitter, and the mention-
retweet graph, where the out-neighbors of a user are those
who mention or retweet that user. Activity cascades are
computed for each day (which potentially could have orig-
inated from earlier days and continued growing) and their
structural properties (e.g., size, number of participants, du-
ration) are used as input to a machine learning model (gen-
eralized linear model; GLM) to forecast the probability of
occurrence of a GSR event in the same topic on the following
day.

5.5 Baseline model
We also developed a maximum likelihood estimate (MLE)

baseline model, making heavy use of the GSR. The idea be-
hind this model is that, even in absence of any explicit signal,
the distribution of events that have appeared in the recent
past is a good guide to those civil unrest events that will take
place in the future. The baseline model makes predictions
on the basis of the distribution of “event schema”-frequency
in the most recent part of the GSR. An event schema is a
combination of a location, an event type, a population and
a day of the week. Some high-frequency schemas can appear
as many as 10 times in a three-month window, but the vast
majority of event schemas appear only once. In a typical
three month interval two thirds appear once with the re-
maining third split evenly between those that appear twice,
and those that appear three or more times. Warnings are
generated with a minimum threshold of 2 and a three-month
training interval, and issued with a lead time of two weeks.

6. FUSION AND SUPPRESSION
The fusion and suppression engine is responsible for the

generation of the final set of warnings to be delivered. It
performs several key operations:

• Duplicate detection and warning updating: Be-
cause our prediction models share data sources and the
hypothesis space, duplicate detection is compulsory.
An alert is declared as a duplicate (and discarded) if
it shares the same 〈 location, event type, population,
eventDate 〉 tuple as a previously issued alert. If two
alerts differ in only the predicted event dates and those
dates are at most 2 days apart, then the alerts are con-
sidered to be the same event and an update is issued
to the already issued alert.

• Filling missing values: Certain models are inca-
pable of predicting all details of an alert such as event
type, population, or location up to the city level. In
such cases, the missing information is filled in based
on the likelihood of their appearance in the GSR.

• Warning rewriting: At times, a model produces a
warning with an improbable 〈 location, event type,
population 〉 combination. Such a prediction, could
either be (1) true, (2) a result of noisy data, or (3)
some inherent model error. If the last possibility, one
can assume that the model would have identified the
broader region correctly. Under such conditions, the
fusion model aims to re-write the predicted city to a
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Figure 4: Steps to building a vocabulary using the DQE model. Beginning from a few general phrases about protests, DQE
hones in on keywords relevant to the particular situation being analyzed. As shown, the expanded keywords are pertinent
matches to a specific GSR event.

Figure 5: The audit trail visualization interface, displaying
the audit trail for an alert from the planned protest model.
(top left) Schema of the planned protest model. (top right)
Alert chooser. (bottom panels) Data sources used in this
alert, including highlighted sections.

city that is historically most probable within a given
radius, and fills in other aspects accordingly.

• Balancing the recall-quality tradeoff: It is desir-
able to sacrifice some amount of recall if our overall
objective is to achieve higher quality of warnings (de-
fined in detail in the next section). We developed two
classes of models to explore this tradeoff. First, we
developed a random forest regression model to pre-
dict likely quality of an alert and alerts that do not
pass a desired threshold are suppressed. Second, we
trained a PSL engine on matched alerts and events, to
learn probabilities of suppressing warnings based on
characteristics of the event predicted. We explore the
performance of both mechanisms in our results.

7. AUDIT TRAIL INTERFACE
In order to facilitate auditing of the warnings and fur-

ther training of the models, all data that flows through the
system is archived to the Amazon S3 cloud and the pro-
cessing chain recorded in a NoSQL database. Using this
infrastructure, the EMBERS system can produce an audit
trail for any warning generated, which specifies completely
which messages and analytic processes led to the warning.
This audit trail can be visualized using the EMBERS web-
based dashboard, shown in Fig. 5. The interface enables
an analyst to rapidly search through warnings, identify the
models (and post-processing) that gave rise to an alert, and
the individual data sources that contributed to the alert.

8. EVALUATION METHODOLOGY
Before we describe our evaluation metrics, it is helpful

to review the composition of alerts and GSR events. As
introduced in Fig. 1 (left), an alert is a structured record

containing four aspects: (i) the where/why/when/who of
the protest, (ii) confidence associated with the forecast, and
(iii) (implicitly) the date the forecast is being made (forecast
date). The ‘when’ is specified in granularities of days. The
where provides a tiered description specifying the (coun-
try, state, city), e.g., (Honduras, Francisco Morazan, Tegu-
cigalpa). The why (or event type) captures the main objec-
tive or reason for a civil unrest event, and is meant to come
from 7 broad classes (e.g., ‘Employment & Wages’, ‘Hous-
ing’, ‘Energy & Resources’ etc.) each of which is further
categorized into whether the event is forecast to be violent
or not. Finally, the who (or population) denotes common
categories of human populations used in event coding [17]
such as Business, Ethnic, Legal (e.g. judges or lawyers), Ed-
ucation (e.g. teachers or students or parents of students),
Religious (e.g. clergy), Medical (e.g., doctors or nurses), Me-
dia, Labor, Refugees/Displaced, Agricultural (e.g. farmers,
or just General Population.

Concomitant with the definitions in the above section, a
GSR event contains again the where/why/when/who of a
protest that has actually occurred and a reported date (the
date a newspaper reports the protest as having happened).
See Fig. 1 (right). As described earlier, the GSR is organized
by an independent third party (MITRE) and the authors of
this study do not have any participation in this activity.

8.1 Lead Time vs Accuracy of Forecast Date
Before we explain how alerts are matched to events, it is

important to first understand which alerts can be matched
to specific events. Note that there are four dates in an
(alert,event) combination (see Fig. 6):

1. The date the forecast is made (forecast date)

2. The date the event is predicted to happen (predicted
event date)

3. The date the event actually happens (event date)

4. The date the event is reported in a GSR source (re-
ported date)

For an event to be qualified as having been predicted by
a warning, forecast date < reported date (recall that time is
measured in granularities of days). The lead time is given
as (reported date − forecast date), i.e., the number of days
by which we ‘beat the news.’ In contrast, the difference be-
tween predicted event date and event date, i.e., |event date−
predicted event date|. is one of quality or accuracy. Ideally
we require lead time to be as high as possible and |event date−
predicted event date| to be as low as possible.

8.2 Other Quality Aspects
Forecasting the event date accurately is only one aspect of

quality. Recall that alerts also forecast the location, event
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Figure 6: Alert sent at time t1 predicting an event at time
t3 can be matched to a GSR event that happened at time
t2 and reported at time t4 if t1 < t4.

type, and population. We define scores for each of these
aspects and quality is defined as a sum over all these scores.

Quality score (QS) = DS + LS + ES + PS

where DS, LS, ES, and PS denote the date score, location
score, event type score, and population score, respectively.
Each of these scores is in turn defined next:

DS = 1−min(|event date− predicted event date|, 7)/7

If the date of the event listed in the warning is the same as
the actual date of the event, then DS is 1. On the other
hand, if these dates are farther than 7 days apart, then DS
is 0.

Location score (LS) can be defined in many ways. Be-
cause location is defined in terms of triples of (country, state,
city), one approach is to use a tiered formula. Comparing a
GSR event with a warning, we can obtain a score triple of
(l1, l2, l3) where l1 is the country-level score, l2 is the state-
level score, and l3 is the city-level score. Each of these scores
have a value of 0 if they do not match and 1 is they match.
Then the match between submitted warning location and
the GSR location is given by:

LS =
1

3
l1 +

1

3
l1l2 +

1

3
l1l2l3

An alternative way to define location score is as:

LS = 0.33 + 0.66(1−min(dist, 300)/300)

where dist denotes the distance (in km) between the city
predicted and the GSR city. All city location names are
standardized to the World Gazetteer which provides lati-
tude and longitude values, thus facilitating the computation
of distance. The scaling and shifting values of 0.33 and 0.66
ensure that this definition of LS is compatible with the ear-
lier definition. Cities outside a 300km radius from a GSR
location will thus be scored 0.33; exact predictions will be
scored 1; and cities within a 300km radius will get scores in
the range [0.33,1]. We distinguish between these two criteria
as the categorical LS versus physical distance-based LS.

Event type score (ES) is scored similar to categorical LS
since it naturally maps to a three-level taxonomy: whether
a civil unrest is forecast to happen, what objective/reason is
behind the unrest, and whether it is violent. Again partial
credit applies depending on the level of specification. Pop-
ulation score (PS) is simply a binary (0/1) score denoting
whether we forecast the correct population or not. Finally,
note that QS = DS + LS + ES + PS is designed to take
values in the range [0, 4].
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Figure 7: Given a set of candidate warning-event matches
(left), we evaluate the performance of EMBERS using either
a regular bipartite matching (middle) or by constructing a
non-crossing matching (right).

8.3 Inclusion Criteria
Thus far we have demonstrated, given a warning-event

pair, how we can score their fitness. Inclusion criteria define
which W-E pairs can even be considered for scoring. We
have already mentioned one inclusion criterion, viz. that
lead time must be > 0. The full list of inclusion criteria we
will consider are:

1. Lead time > 0

2. Both warning and event are for the same country.

3. The predicted event date and event date must be within
7 days of each other.

A fourth, optional (and stringent), criterion we will use is:

4. Both predicted location and event location must be
within 300km of each other.

It is important to distinguish the inclusion criteria from the
scoring criteria. Inclusion criteria define which W-E pairs
are allowable. Scoring criteria determine, for each allowable
W-E pair, what its score will be.

8.4 Matching Alerts to Events
Thus far we have assumed that we are matching an alert to

a GSR event. In practice, the problem is we are given a set of
issued alerts and a set of GSR events and we must determine
the quality of the match: which alert would correspond to
which event? One strategy is to construct a bipartite graph
between the set of alerts and the set of events, where allow-
able edges are those that satisfy the inclusion criteria, and
where weights on these allowable edges denote their quality
scores. We then construct a maximum weighted bipartite
matching, e.g., see Fig. 7 (middle). Such matchings are con-
ducted on a monthly basis with a lookback period to bring
in unmatched warnings from the previous month.

8.5 Non Crossing Matching
A criticism of the matching approach above is that it can

lead to criss-cross matches, i.e., the matching process may
not respect the temporal order in which warnings were is-
sued or in which events unfold. A non-crossing matching is
a more restrictive version of a bipartite matching. Consider
two warnings w1 and w2 and two events e1 and e2. Repre-
senting them by their predicted event dates and event dates,
and assuming w1 < w2 and e1 < e2, then {(w1, e2), (w2, e1)}
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is a crossing matching since the earlier warning is paired to
a later event (and vice versa). To respect the temporal or-
der, we also investigate the computation of a maximum non-
crossing matching [14] and use it as an additional evaluation
criterion (see Fig. 7 (right)).

8.6 Putting it all together: Five criteria
We are now ready to identify all the evaluation crite-

ria used in EMBERS. The overall quality is defined as a
weighted average across all matched warning-event pairs.
Similarly, lead time is averaged across all matched warning-
event pairs. In addition, we can define precision in terms of
the number of unmatched warnings as a fraction of the total
number of sent warnings. Similarly, recall can be defined
in terms of the number of unmatched events as a fraction of
the total number of events. Finally, a probability score
is calculated over all warnings, mapped or unmapped. For
each warning, it is defined in terms of the Brier score, i.e.,
1− (o− p)2 where p is the probability assigned to the warn-
ing, and o is 1 if the warning is mapped to some event in
the GSR, and 0 is the warning is not mapped to an event in
the GSR. This score is then averaged over all warnings.

9. EVALUATION RESULTS
We present an exhaustive evaluation of EMBERS against
multiple aspects as follows:

How do each of our models fare for the 10 coun-
tries of interest and how well does their integration
achieve the five overall metrics? Table 3 presents the
performance of EMBERS models for a recent month across
all the 10 countries of interest here. As is clear here, the
models have selective superiorities across the countries stud-
ied. While the baseline model captures significant regulari-
ties and achieves high quality scores, models like DQE per-
form better for countries like Brazil, Mexico, and Venezuela,
all of which have significant chatter on Twitter. Even when
models have comparable performances, their integration is
useful because each model will produce only a limited set
of warnings and their fusion is necessary to achieve high re-
call. This is evident in Table 4 that demonstrates that we
achieve a quality score of 3.11 with an average lead time of
8.8 days and respectable precision and recall (0.69 and 0.82,
respectively). Taking a birds eye view, Fig. 8a and Fig. 8b
summarize the distribution of events in the GSR and alerts
sent by EMBERS over the past 15 months.

How does EMBERS’s fusion and suppression engine
help shape our quality distribution? Fig. 8c describes
how our suppression engine can be tuned to steer the quality
distribution from a mode around 2.25 to one around 3.2 by
learning which warnings to suppress and which ones to is-
sue. This capability directly helps balance the recall-quality
tradeoff, as shown in Fig. 8d.

How does EMBERS fare against a baserate model
with lenient versus stringent inclusion criteria for
matching? To rigorously evaluate the capabilities of EM-
BERS, we implemented a baserate model as a yardstick
for comparison. The baserate model is similar in spirit
to the baseline model described earlier but functions dif-
ferently. Rather than filtering for frequent combinations of
event properties, it generates alerts using the rate of occur-
rence of events in the past three months. Table 5 compares
EMBERS warnings against the baserate model. We evaluate
the date and location aspects with categorical and distance-
based scoring to gain further insight. Under a lenient evalu-
ation using categorical inclusion criteria, EMBERS exhibits

Table 5: Performance of EMBERS vs a baserate model.

Evaluation Type Sep’13 Oct’13 Nov’13 Dec’13
EMBERS Categorical 3.16 3.12 3.26 3.2
Baserate Categorical 2.5 2.5 2.52 2.44

EMBERS Distance Based 3.36 3.3 3.44 3.44
Baserate Distance Based 2.9 2.84 3 2.92

a quality score improvement of approximately +0.7 over
baserate methods. Under a strict evaluation using distance-
based inclusion criteria, this improvement is around +0.5
over baserate methods.

How adept is EMBERS at forecasting ‘surprising’
events? Did EMBERS forecast significant uprisings
such as the June 2013 protests in Brazil? Fig. 8e de-
scribe the performance of our system in Brazil during the
summer of 2013 when Brazil witnessed significant protests
that were originally triggered by bus fare increases. As
can be seen, EMBERS is able to track the rise in num-
ber of protests quite accurately. More recently, Fig. 8f and
Fig. 8g describe the performance of EMBERS in Brazil and
Venezuela for the Jan-Feb 2014 season. Significant violent
protests were witnessed in both countries, due to bus fare
increases and student-led demonstrations, respectively. Fi-
nally, we also conducted a formal maximum entropy evalua-
tion of protest counts, to determine how EMBERS fares on
only those protests that are deemed to significantly higher in
number relative to the past three months. As Fig. 8h shows,
EMBERS demonstrates an improvement of nearly 0.5 over
baserate models during months of significant uprisings (e.g.,
June 2013). During other months (e.g., Nov 2013) there
is relatively normal activity and baserate methods perform
comparably.

How reliable are EMBERS’s probability scores? Fig. 8i
shows that the probability scores emitted by warnings have a
monotonic relationship to the likelihood of matches, indicat-
ing that EMBERS’s use of confidence captures the mapping
from model and warning attributes to the possibility of event
matches.

How does EMBERS’s lead time vary with quality
scores? Fig. 8j illustrates an interesting relationship. As
lead time increases from low values, as expected, quality
scores decrease. But as lead time crosses a threshold, quality
scores actually improve again! This is because data sources
like Facebook event pages and other feeds contribute high
quality planned protest warnings with high lead time.

What is the effect of adopting regular versus non-
crossing matching constraints? Fig. 8k reveals that, as
expected, when adopting non-crossing matching constraints,
the number of matches decreases bringing down the overall
quality. Nevertheless, a consistent level of improvement over
baserate methods is witnessed.

How has the performance of EMBERS improved
over time? Finally, Fig. 8l demonstrates the performance
of our deployed EMBERS system over time. From quality
scores of just over 2 in the past year, EMBERS has breached
the 3.0 barrier in recent months.

10. DISCUSSION
We have presented the architecture of EMBERS, an au-

tomated system for generating forecasts about civil unrest
from massive, multiple, data sources. Our evaluations over
10 countries illustrate the capabilities of EMBERS ‘in the
small’ (matching specific events to particular warnings) as
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Table 3: Comparing the forecasting accuracy of different models in EMBERS. Quality scores in this and other tables are in
the range [0,4] where 4 is the most accurate. AR=Argentina; BR=Brazil; CL=Chile; CO=Colombia; EC=Ecuador; SV=El
Salvador; MX=Mexico; PY=Paraguay; UY=Uruguay; VE=Venezuela. A − indicates that the model did not produce any
warnings for that country in the studied period.

Model AR BR CL CO EC SV MX PY UY VE All
Dynamic Query Expansion 3.1 3.31 1.88 3.1 2.43 2.94 3.26 2.88 2.72 2.9 2.97
Volume-based Model 3.0 3.11 - 2.9 - - 3.15 - 1.72 2.9 2.88
MLE 3.33 3.0 2.87 3.15 2.29 3.11 3.11 3.1 2.57 2.77 3.0
Planned Protest 2.59 2.64 2.4 2.85 1.92 - 3.0 2.89 2.85 2.66 2.76
Cascades Model 3.13 - - - - - - - - 2.93 3.0

Table 4: EMBERS metrics across multiple countries.

Metric AR BR CL CO EC MX PY SV UY VE All
Quality score 3.2 3.39 2.85 2.86 2.59 3.0 3.27 2.85 3.05 3.01 3.11
Recall 1.0 1.0 0.82 0.59 1.0 1.0 0.65 1.0 1.0 0.84 0.82
Precision 0.55 0.45 0.89 0.94 0.77 0.71 1.0 0.69 0.46 0.73 0.69
Lead time (days) 10.44 11.82 6.25 7.85 8.44 8.32 8.61 10.57 8.8 6.03 8.88
Probability measure 0.71 0.66 0.87 0.87 0.75 0.74 0.94 0.74 0.72 0.72 0.76

well as ‘in the large’ (capturing significant upticks across
countries).

Future work is targeted at three aspects. First, we are
interested in social science theory-based approaches to fore-
casting, e.g., modeling the rise of grievances into trigger
events, capturing the role of opinion leaders, and identifying
whether there are both necessary and sufficient conditions
for a festering sentiment to transform into a protest. Second,
we plan to develop a statistical theory of tradeoffs revolving
around the boundaries of precision-recall and quality-lead
time. Different analysts are likely to prefer different sweet
spots along these boundaries and we seek to situate EM-
BERS as a tunable forecasting system. Finally, for analyst
consumption, we are interested in automated narrative gen-
eration, i.e., an English description of an alert providing
a contextual summary of the alert (similar to automated
weather report generation).
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Figure 8: Evaluation of EMBERS
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