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ABSTRACT

Crime reduction and prevention strategies are essential to increase
public safety and reduce the crime costs to society. Law enforce-
ment agencies have long realized the importance of analyzing co-
offending networks—networks of offenders who have committed
crimes together—for this purpose. Although network structure can
contribute significantly to co-offence prediction, research in this
area is very limited. Here we address this important problem by
proposing a framework for co-offence prediction using supervised
learning. Considering the available information about offenders,
we introduce social, geographic, geo-social and similarity feature
sets which are used for classifying potential negative and positive
pairs of offenders. Similar to other social networks, co-offending
networks also suffer from a highly skewed distribution of positive
and negative pairs. To address the class imbalance problem, we
identify three types of criminal cooperation opportunities which
help to reduce the class imbalance ratio significantly, while keeping
half of the co-offences. The proposed framework is evaluated on a
large crime dataset for the Province of British Columbia, Canada.
Our experimental evaluation of four different feature sets show that
the novel geo-social features are the best predictors. Overall, we
experimentally show the high effectiveness of the proposed co-
offence prediction framework. We believe that our framework will
not only allow law enforcement agencies to improve their crime
reduction and prevention strategies, but also offers new crimino-
logical insights into criminal link formation between offenders.
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1. INTRODUCTION
Crime is a purposive deviant behavior that is an integrated result

of different social, economical and environmental factors [1], and
generates substantial costs to society at individual, community, and
national levels. In 2007, in the United States, crimes cost $179 bil-
lion in government expenditures [2]. In 2008, the total tangible and
intangible costs of crime in Canada were an estimated $100 billion
[3]. Given such whopping costs, crime reduction and prevention
strategies have become a priority in many countries.

Existing crime forecasting methods answer questions pertaining
to spatial and temporal patterns of future crime [4, 5]. These meth-
ods generally consider properties of crime incidents and behavior
of single offenders to recognize criminal patterns. Over the past
two decades, law enforcement and intelligence agencies have re-
alized the importance of co-offending network analysis for crime
investigations [6, 7]. A co-offending network links offenders who
have committed crimes together [6]. Understanding co-offending
is central to understanding the etiology of crime and the effects of
intervention strategies [6] .

In spite of the importance of co-offending network analysis for
public safety, the methodology for analyzing large-scale networks
is rather premature. In this work we propose a framework for co-
offence prediction using supervised learning. Even though super-
vised learning methods for link prediction have been studied widely
[8, 9, 10, 11], to the best of our knowledge, there is no study on
supervised learning for co-offence prediction. In [12], an unsuper-
vised method for investigating top-k potential suspects is proposed.

Contrary to other social networks, concealment of activities and
identity of actors is a common characteristic of co-offending net-
works. Still, the network topology is a primary source of informa-
tion for co-offence prediction. Besides, there are two other major
information sources: environmental activity and criminal activity.
Offenders who are spatially close are socially close too as this in-
creases the chance of meeting each other and forming new criminal
collaborations [13]. Further, common criminal experience (with
the same type of offences) also affects co-offending behavior [14].

The proposed framework builds on criminological theories [7,
15, 16, 17, 18] and, considering the available information on of-
fenders, distinguishes three different criminal cooperation oppor-
tunities: socially-related, geographically-related and experience-
related. We study the co-offence prediction problem in each of
these prediction spaces separately, achieving two goals. First, the
heavy class imbalance between positive (existing links) and nega-
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tive samples (non-existing links) is the main challenge of the link
prediction problem [10]. The restriction of the training and test data
to the different prediction spaces reduces the class imbalance ratio
significantly, while keeping about half of the positive samples (co-
offences). Second, the prediction spaces enhance the understanding
of co-offence patterns in different criminal cooperation opportuni-
ties.

We define the prediction features in four different categories, so-

cial, geographic, geo-social and similarity, and evaluate their pre-
diction strength both individually and as a set. Social features in-
dicate social closeness of offenders based on their position in a co-
offending network. Geographic features show spatial proximity of
offenders based on their residential locations and the location of
offences they have committed. Geo-social features combine so-
cial and geographic characteristics of offenders. Finally, similar-
ity features capture homophily-based characteristics of offenders.
Evaluating features individually and also as a set shows that the
geo-social features we define outperform other features.

Several studies show that supervised link prediction approaches
outperform unsupervised methods [9, 10] that use only topologi-
cal features [8]. In contrast to unsupervised methods, supervised
learning methods can overcome the class imbalance problem [10].
Exploiting the geographic information provided by location-based
social networks services, some recently proposed link prediction
methods consider spatial characteristics of users [19, 20]. In [19],
the authors use information about places visited by users, in ad-
dition to their social network features, to define prediction spaces
which reduce the class imbalance ratio and improve the prediction
performance.

Co-offending networks are spatially embedded similar to location-
based social networks. However, the environmental effects on the
formation of co-offence links and accordingly our approach in defin-
ing offenders’ spatial closeness are different from those in location-
based social networks [19, 20, 21, 22]. The proposed supervised
learning framework aims at the public safety and security sector.
Although there has been significant research on the reasons for
involvement of single offenders in crime [6, 16, 18], there is no
comprehensive study on the causes for offender collaboration. We
argue that our study on co-offence prediction in different criminal
cooperation opportunities opens up a new door to the understand-
ing of co-offence patterns.

For the experimental evaluation, we use a large crime dataset
comprising 4.4M records of police reported arrest data, made avail-
able for research purposes by the Royal Canadian Mounted Police
(RCMP). The data was retrieved from the Police Information Re-
trieval System (PIRS), a large database keeping information for the
regions of the Province of British Columbia which are policed by
the RCMP. The co-offending network extracted from this dataset
has more than 150k nodes. By applying different classifiers to the
defined prediction spaces we can correctly predict up to 90% of all
co-offences in the best case scenario.

The co-offence prediction framework proposed in this paper aims
at advancing the state-of-the-art in crime data mining by making the
following contributions: 1) Defining co-offence prediction spaces
to reduce the class imbalance; 2) Introducing novel prediction fea-
tures for co-offence prediction; and 3) Experimentally evaluating
the proposed approach on large real-world crime data. Some of our
main findings in this research include: a) Features evaluation have
important implications. For instance, preferential attachment is a
strong predictor compared to the features extracted from common
friends in the network. This implies that the chance of criminal col-
laboration increases more with the opportunity to commit crimes
than with trust or transitivity in the co-offending network. Crime

locations distance is better predictor than home location distance,
meaning that being criminally active in the close districts causes
new criminal collaboration. b) Geo-social features are better co-
offence predictors than geographic and social features. This result
implies that we need to focus more on combined patterns in envi-
ronmental and social features to enhance crime reduction and pre-
vention. c) The experimental results show that the proposed super-
vised method outperforms the unsupervised methods. d) Although
there is variability in the performance of different classifiers, the
probability of predicting a co-offence for experience-related of-
fenders is higher than for socially and geographically-related co-
offenders.

Section 2 briefly introduces basic concepts and characteristics
of co-offending networks as well as the crime dataset used in our
work. Section 3 then explains the proposed co-offence prediction
approach, and Section 4 describes the prediction feature sets. Next,
Section 5 presents our experimental evaluation and results. Crim-
inological implications and related work are discussed in Sections
6 and 7. Section 8 concludes the paper.

2. CO-OFFENDING NETWORKS
This section describes the formal co-offending network model.

A crime dataset consists of a collection of crime records, each of
which refers to a reported crime incident. A crime record typically
identifies the date, time, location and type of a crime. To the extent
known, it also identifies offenders, victims, witnesses, bystanders
and their addresses, in addition to other crime specifics and cir-
cumstantial evidence. To this end, a crime dataset refers to crime
incidents over some period of time.

2.1 Basic Concepts and Definitions
A co-offending network G(V, E) is a connected graph structure.

Each node represents a known offender. Offenders u and v are
connected, u, v ∈ V and {u, v} ∈ E, if they are known to have
committed one or more offences together, and are not connected
otherwise. A co-offending network is derived from a crime dataset
referring to reported crime incidents over a time period.

For G(V, E) and u ∈ V , let Γn
u be the subset of offenders

in V such that their shortest path distance from u is n. Pu =
(p1

u, p2
u, . . . , pK

u ) denotes the frequency of crimes committed by u
for each of k crime types in the dataset. The subset of offenders
who have committed p crime types that coincide with crime types
committed by u is referred to by Θp

u.
For u in G(V, E), let Hu = {h1

u, h2
u, . . . , hk

u} denote the known
home locations of u, and Cu = {c1

u, c2
u, . . . , cl

u} denote the known
crime locations for all offences committed by u. Finally, let ∆u =
{δ1

u, δ2
u, . . . , δk

u} denote the time periods (intervals) δi
u = [ti1

u , ti2
u ]

that u lived in each of the k home locations given by Hu. D(hi
u, hj

v)
is the geodesic distance between hi

u and hj
v .

2.2 Crime Data
Crime data mining has enormous potential as analytic tool for

law enforcement agencies, criminal intelligence agencies, and be-
yond to facilitate crime investigations by increasing efficiency and
reducing mistakes. On the other hand, access to and sharing of
crime data is subject to many restrictions and can even be national
security concern because of the highly sensitive nature and related
personal information. Police arrest data and court-based data [23]
are two important types of official crime data. Police arrest data
identifies a person arrested or booked for an offense. Court-based
data includes information generated by the courts. In this study we
use a large real-world police arrest dataset.
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Figure 1: Spatial distance of co-offenders in the BC co-offending
network.

As a result of a research memorandum of understanding be-
tween ICURS1 and “E” Division of Royal Canadian Mounted Po-
lice (RCMP) and the Ministry of Public Safety and the Solicitor
General, five years of real-world crime data was made available
for research purposes. This data was retrieved from the RCMP’s
Police Information Retrieval System (PIRS), a large database sys-
tem keeping information for the regions of the Province of British
Columbia which are policed by the RCMP.

For a time period of five years (2001-2006), the BC police ar-
rest dataset comprises ≈ 4.4 million crime records, one for each re-
ported crime incident, and all persons associated with a crime, such
as offenders (from complainant to charged), victims, witnesses and
bystanders. In total, there are 39 different subject (person) groups.
In our experiments, we consider the subjects in four main cate-
gories: charged, chargeable, charge recommended or suspect. Be-
ing in one of these categories means that the police were serious
enough about a subjects involvement in a crime as to warrant call-
ing them ’offenders’. From this dataset we extract , using the
method described in [24], called BC co-offending network. This
network comprises ≈ 150,000 nodes and ≈ 600,000 edges. The
average node degree is four, and about 50% of all the nodes have
degree one, meaning these offenders have committed co-offences
with only one offender in their criminal life. The largest compo-
nent links ≈ 18% of all the nodes, which is fairly big for this type
of social network.

2.3 Offenders’ Activity Space
The Activity Space of an offender has two main components:

Nodes and Paths. Activity Nodes refer to locations a person fre-
quently visits in the course of daily routine activities. Activity Path
represents a common route for a routine trip to a frequently vis-
ited location. Crime Pattern Theory [16] contends that, rather than
venture into new areas to commit crimes, offenders act on crimino-
logical opportunities arising in areas they are familiar with, more
specifically, areas that are part of their Activity Space.

Inverting research on crime pattern theory [16], geographic pro-
filing [17] seeks to either estimate the location of the residence of
an offender or to extrapolate locations where an offender is likely
to commit future crime. Centrography is one of the most common
search approaches for criminal investigation [17]. In [17], Rossmo
shows that some offenders live close to the centroid of their crime
locations. The “Circle Hypothesis” by Canter et. al [25] defines a
circular area around the location of the first offence in a series of
crimes to indicate the general area of an offender’s home location.

1The Institute for Canadian Urban Research Studies (ICURS) is a
university research centre at Simon Fraser University.

In this research our goal is consider offenders’ environmental
activities for co-offence prediction, while it does not fit with the
bases of works in geographic profiling. Considering the definitions
in the literature and the general limitations in the crime data we
use a simple and safe definition in this regard. For a given of-
fender u with home locations Hu, AR

u = {a1
u, a2

u, . . . , ak
u} states

the activity space of u, where ai
u is defined as a circle of radius

R with hi
u at its center. We define the common activity space of

two offenders as the area in which both are active simultaneously,
if their activity spaces overlap at any time. For offenders u and
v, AR

u,v = {a1,2
u,v, a1,3

u,v, . . . , ap,k
u,v } is their common activity space,

that is

AR
u,v = {ai,j

u,v| ai
u ∩ aj

v 6= ∅ ∧ δi
u ∩ δj

v 6= ∅}.

Intuitively, ai,j
u,v represents the intersection of the activity space of

u and v during a time they were both active at ai
u and aj

v . The
offenders who live in ai,j

u,v and the crimes in this area are referred

to by the set χi,j
u,v and the set φi,j

u,v, respectively.

2.4 Geographic and Network Proximity
Neighborhood greatly influences the formation of communities

and social networks. Hence, social problems are often studied
in connection with neighborhoods. Many researches suggest that
crime is as well strongly linked to geographical characteristics.
Criminology researches use spatial analysis of crime to understand
the distribution of crime incidents and why crime occurs in some
places but not others [16, 17]. Figure 1 visualizes home locations
of offenders for one of the connected components of the BC co-
offending network. The fact that clusters can be seen in this visu-
alization implies that many pairs of co-offenders live in the same
city.

The criminology literature intensively studies modeling of of-
fender travel to crime locations. For instance, it has been concluded
that most offenders travel short distances to commit crimes [26].
But there is no definite reasoning to explain how the activity space
of two offenders influences their potential collaborations. Findings
in [27] suggest that co-offenders use their resources to increase the
scope of their awareness space.

Generally, it is important to take into account the spatial dimen-
sion of co-offending relationships. We have studied this aspect for
all observed criminal collaborations in the BC crime dataset. About
39% of the co-offenders live less than 2 km apart, and about 63%
of them live less than 10 km apart. Figure 2a shows the probability
distribution of home location distance for co-offenders. The proba-
bility distribution of home and crime location distance of offenders
is shown in Figure 2b. 46% of the crime incidents happen in less
than 2 km distance from the home location, and 70% of the crimes
happen within a distance of less than 10 km. We conclude that
a large percentage of the crime incidents are located close to the
offenders’ residence. While the maximum values for co-offenders
home location distance and offenders’ home and crime location dis-
tance are about 1000 km, the medians of these distances are only 5
km and 3 km, respectively. This confirms that co-offenders tend to
be geographically confined.

In [13], it is concluded that socially clsoe offeners are spatially
close too, meaning that offenders who are close in the co-offending
network have more overlap in their activity spaces too. Crimino-
logical theories and the discussed experimental results motivated
us focus more on geographic and geo-social features, besides gen-
eral social features extracted from network topology for co-offence
prediction.
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Figure 2: (a) Home location distance of co-offenders; (b) Home
and crime locations distance of offenders.

3. CO-OFFENCE PREDICTION
In this section we define the co-offence prediction problem and

propose a novel analytic framework for solving this problem.

3.1 Problem Definition
A co-offending network G(V, E) refers to all co-offences within

time period [t0, tn] associated with the underlying crime dataset.
For any time t ∈ [t0, tn], one can derive Gt(Vt, Et) as a substruc-
ture of G, which is a co-offending network, by restricting to all
crime incidents up to time t. For Gt(Vt, Et) we now define a po-

tential co-offence at time t + 1 as any pair of offenders (u, v) such
that (u, v) /∈ Et, meaning that offenders u and v have not commit-
ted any crime together prior to t + 1. A potential co-offence (u, v)
is in the positive class, if (u, v) ∈ Et+1, and it is in the negative

class, if (u, v) /∈ Et+1. The co-offence prediction task is to predict
for each potential co-offence in Gt if it belongs to the positive class
or the negative class.

Co-offence prediction can be viewed as a link prediction problem
for co-offending networks. This aspect is modeled using a binary
classification problem that adopts a set of prediction features as
described in Section 4. The major challenge in any link prediction
problem is the heavily skewed distribution of negative and positive
classes. Contrary to unsupervised methods, supervised methods
learn class distributions to increase classification performance [10].

3.2 Criminal Cooperation Opportunities
Because of all obvious risks about committing crimes, offenders

do not select their collaborators accidentally. Considering offend-
ers’ choices and selection opportunities, any co-offence can have
social, environmental or experience related causes. To quantita-
tively model how offenders form a criminal cooperation, for each
offender u, we define three opportunity spaces for criminal cooper-
ation defined as follows:

Socially-related. Social interactions influence the behavior of
individuals. This observation has been studied widely in areas such
as educational choices and labor market outcomes. Arguably, this
applies to criminal behavior as well, where social networks com-
pensate for lack of formal institutions in gaining knowledge and
criminal skills. Criminal behavior associated with illegal activities
is influenced by informal networks and peer interactions. Suther-
land, in the theory of differential association [18], explains indi-
vidual criminality with a social-psychological process of learning
crime through interaction with social groups. According to [18],
criminal behavior is the result of learning an excess of definitions
favorable to crime. Offenders use social interactions for sharing
information, recruiting young criminals [28] and transferring crim-
inal skills. Although co-offending networks are generally con-
sidered short-lived networks, they constitute an important source
of criminal cooperation opportunities. In our definition, socially-
related cooperation opportunities for an offender u, denoted by Su,

arise from offenders v such that their distance in the co-offending
network is not greater than N , excluding the direct neighbors of u:

Su = {(u, v) : v ∈ (
⋃

i≤N

Γi
u) \ Γ1

u}

Geographically-related. Activity space and social environment
of offenders greatly influence their criminal decisions and are key
factors in forming collaboration opportunities [29, 16]. Activity
space plays a crucial role in where crimes are committed and indi-
viduals are recruited for the purpose of co-offending. Not only do
offenders converge with crime victims, but they also converge with
each other in order to find suitable co-offenders. Felson’s “offender
convergence settings” describe certain locations in which potential
offenders meet each other to initiate and maintain co-offending and
crime groups [29]. Based on accepted criminological theories we
define geographically-related space as an important potential space
for co-offending link formation.

Offender u is considered geographically related to any offender
v, if they have a common (overlapping) activity space, but they are
not connected to each other directly in the co-offending network.

Gu = {(u, v) : v ∈ (
⋃

ai
u∈Ar

u

χi
u) \ Γ1

u}

Experience-related. Network studies on offenders have gener-
ally observed evidence of homophily like criminal experience [14].
This is so consistent that group homogeneity is considered one of
the key characteristics of co-offending [14]. With similar criminal
experience the chance increases that offenders forme new criminal
collaborations. This can happen via implicit networks or due to
demand for specific criminal expertise. All pairs of offenders who
have similar criminal experience but are not directly connected to
each other in the co-offending network are categorized into this
class:

Eu = {(u, v) : v ∈ (
⋃

i≥P

Θi
u \ Γ1

u}

We use the above criminal cooperation spaces to define the spaces
which cover the prediction candidates. Prediction space division
has two advantages: First, it helps to reduce the class imbalance ra-
tio. Second, it leads to a clearer understanding of the effects of each
of these categories on new co-offence formation. For Gt(Vt, Et)
we generate three spaces for the co-offence prediction task:

SR: This space includes all links emerging between pairs of of-
fenders that are socially-related: SRt = {∀u ∈ Vt :

⋃

u
Su}. In

our experiments for constructing the SR space, we consider N = 2.
In other words, a pair of offenders who are exactly 2-hops apart are
added to this space.

GR: that contains all links between pairs of offenders who are
geographically-related but not socially-related: GRt = {∀u ∈ Vt :
(
⋃

u Gu) \ SRt}. For constructing the activity space of offenders
which defines if two offenders are geographically-related we use
R = 2km.

ER: that includes all pair of offenders that are experience-related
but not socially-related: ERt = {∀u ∈ Vt :

⋃

u
Eu \ SRt}. For

creating the ER space, we apply P = 2, meaning that (u, v) are
considered experience-related offenders if both committed at least
two crimes of the same type.

3.3 Reducing Class Imbalance Ratio
For a network G(V, E) the number of links E is often O(|V |),

but the number of no-existing links is often O(|V |2). Accordingly,
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Figure 3: (a) Cumulative probability distribution of a positive sam-
ple in SR space in respect to N ; (b) Cumulative probability distri-
bution of a positive sample in GR space in respect to R; (c) Cumu-
lative probability distribution of a positive sample in ER space in
respect to P ; (d) Prediction spaces size and their class imbalance
ratio.

the prior probability of link formation is very small. Since the goal
of supervised learning is achieving high precision, class imbalance
in the training dataset leads to overfitting to negative samples which
reduces the recall of positive samples. Note that in the co-offence
prediction task high recall of the positive class (co-offences) is crit-
ical, so that overcoming the class imbalance is essential.

In the experimental setting defined in Section 5.1, the number of
negative samples is 850M while the number of positive samples is
only 11k. Therefore, the class imbalance ratio, the ratio of nega-
tive samples to positive samples, is about 77K. Using the prediction
spaces to reduce the training and test dataset can effectively reduce
the class imbalance. In [19] an efficient prediction space division
schema for location-based social network is proposed, but it does
not apply to co-offence prediction where environment activity of
offenders are different than location-based social networks users.
Furthermore we consider the homophily effects, in terms of crimi-
nal activity similarity, on forming new link which is not considered
in the approach proposed in [19]. Although reducing class imbal-
ance is an important objective, the other main concern is keeping
as many positive samples as possible.

Restricting the dataset to samples with short graph distance is the
most effective solution for the imbalance problem. In the SR space
increasing N affects the number of negative samples set superlin-
early, because we expect to see more co-offences between offend-
ers close in the network. Figure 3a demonstrates the probability of
a positive sample in the SR space for different values of N of the
network distance. The probability does not grow linearly as N in-
creases, meaning that similar to other type of social networks [10,
19] majority of positive samples are at a closer network distance.
For the maximum value N = 27 there are 204M negative sam-
ples. But changing this to N = 2 decreases the number of negative
samples to 47K, while keeping 25% of the positive samples.

Applying different constraints related to the other prediction spaces
also helps to reduce the class imbalance ratio. Figure 3c shows the

probability of a positive sample in the GR space for different val-
ues R of the radius of the activity space. With R = 2 km, R = 10
km and R = 100 km the GR space covers cumulative 31%, 51%
and 75% of the positive samples. Figure 3b shows the probabil-
ity of a positive sample in the ER space for different values of P .
With P = 2 of the same crime type, P = 5 and P = 10 the ER
space includes 29%, 13% and 5% of the positive samples. Apply-
ing R = 2 km and P = 2 reduces the 850M negative samples
in the dataset to 8M and 82M respectively for GR and ER spaces.
With these constraints we can keep 31% and 29% of the positive
samples in the GR and ER spaces.

As demonstrated in Figure 3d, the original imbalance ratio of
77K for the whole prediction space reduces to 40, 2700 and 3400
respectively for SR, GR and ER spaces. While in each of three
spaces roughly we can keep approximately the same percentage
of positive samples (26%, 31% and 29% for the SR, GR and ER
spaces), we see that the class imbalance reduction is better in the
SR space. In total we are able to maintain half of positive samples
for training, meaning that the likelihood of predicting a co-offence
successfully increases significantly.

4. PREDICTION FEATURES
Prediction features are divided into four categories: social, geo-

graphic, geo-social and similarity features. This section describes
how these features are extracted. Features are defined formally in
Table 1.

4.1 Social Features
The social features set includes all features that are derived using

only the topology of the co-offending network and the position of
offenders in the network. Preferential is defined as the product
of the node degrees of two offenders, meaning that the more con-
nected an offender is, the more likely he forms new criminal links.
Common, denotes the number of neighbors two offenders have
in common. Overlap divides the number of common neighbors
by the overall number of neighbors of two offenders as a normal-
ized indication of common neighbors effect. Adamic [30] assigns
higher weight to the common neighbors with smaller node degree.

4.2 Geographic Features
With increasing overlap of the activity space of offenders the

chance of forming new criminal collaboration increases. Home lo-
cations distance, HDN, is the average distance between the current
and past home locations of two offenders. HDT weights home lo-
cation distance by the time two offenders lived in the correspond-
ing locations. Committing crimes in the same neighborhood may
cause a criminal tie between offenders. CDN is the average crime
location distance of two offenders.

4.3 Geo-social Features
Geo-social features combine the social and geographical charac-

teristics of offenders. Common activity space of offenders directly
affects their behaviors. Being active in an area with many offenders
living there can increase the chance that offenders meet each other
directly or indirectly, and engage in co-offending. OCT denotes
the number of offenders living in a common activity space of two
given offenders. In the definition of common activity space time is
implicitly restricted to δi

u ∩ δj
v . OCTT boosts OCT if two offend-

ers are active for a longer period of time. Without any restriction,
OCN denoted the number of offenders who live in a common ac-
tivity space anytime in the time interval [t0, t].

Characteristics related to the quantity of crimes in the common
activity space provide another set of geo-social features. A crime
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hotspot located within the common activity space of offenders may
increase the chance of collaboration among these offenders. CCT
states the number of crimes in the common activity space of two
offenders, where, similar to OCT, the time is restricted to the pe-
riod over which both offenders are active simultaneously. CCTT
weights the time interval of two offenders being active. And CCN
refers to the total number of crime incidents in the common activity
space.

4.4 Similarity Features
The homophily principle states that individuals tend to associate

themselves with others in a social network who are similar [31].
This is also a very well-studied topic for co-offending [14]. Age
difference, ethnic group similarity and gender similarity, represented
by Age, Ethnic and Gender, are three features in this category.
Finally, CrimSim also expresses similarity of criminal experience
based on committed crime types.

5. EXPERIMENTS AND RESULTS
In this section we present the experimental evaluation, starting

with a description of the experimental design.

5.1 Experimental Design
The spacial nature of co-offending networks makes co-offence

prediction a difficult task. Offenders not only do hide their illegal
activities and contacts, but their accomplice relationships are usu-
ally short-lived [6].

For our experiments, we divide the dataset into two disjoint sets
of incidents, one for the first 50 months and the second one for last
10 months. Excluding noisy data, such as traffic related offenses,
the number of incidents for the aforementioned time periods are
1.8M and 800K respectively. Considering only offences with more
than one offender reduces these numbers to 67K and 17K. We ex-
tract the co-offending networks corresponding to each of these time
periods. Next, criminal cooperation opportunities are identified and
each pair of potential co-offences are assigned to one of three pre-
diction spaces: SR, IR or ER. Eventually, the prediction features of
each pairs of potential co-offenders are extracted.

We use the open-source machine-learning library Weka [32] for
different classifier building. The performance of classifiers and sin-
gle feature prediction are assessed based on the Receiver Operating
Characteristics (ROC), which shows the trade-off between the true
positive rate over the false positive rate [33]. The area under the
ROC curve, called AUC, is an appropriate measure for comparing
two ROC curves. AUC measures the probability that a classifier
ranks a randomly chosen positive sample higher than a negative
sample.

Various definitions of offender activity space are known in the
literature. We use a simple definition: a circle of radius R with
the home location of an offender in the center point (based on the
available information on offenders in the dataset). Common ac-
tivity space of two offenders is defined as the intersection of their
activity space and is used for defining geo-social features. Given
that there is no consensus in the criminology literature as to the ap-
propriate value of R, we tried different values of R, ranging from
1 km to 10 km. Interestingly, for all features, a value of R = 2 km
maximizes the prediction performance, which we therefore chose
in our experiments.

5.2 Single Feature Significance
We compare the predictive power of individual features described

in Section 4 in each of the prediction spaces. This is important to
diagnose which features in each prediction space play a more im-

Social Features

Preferential |Γ1
u| × |Γ1

v|
Common |Γ1

u| ∩ |Γ1
v|

Overlap
|Γ1

u|∩Γ1
v

|Γu1|∪|Γ1
v|

Adamic
∑

z∈Γ1
u∩Γ1

v

1
log(Γ1

z)

Geographic Features

HDN
i=m
∑

i=1

j=n
∑

j=1
e
−D(hi

u,h
j
v)

λ

|Hu|×|Hv|

HDT
i=m
∑

i=1

j=n
∑

j=1
e
−D(hi

u,h
j
v)

λ ×|(δi
u∩δj

v)|

|Hu|×|Hv|

CDN
i=m
∑

i=1

∑ j=n
j=1 e

−D(ci
u,c

j
v)

λ

|C(u)|×|C(v)|

Geo-social Features

OCT
i=p
∑

i=1

i=k
∑

j=1

|χi,j
u,v|

OCTT
i=p
∑

i=1

i=k
∑

j=1

|χi,j
u,v| × |δi

u ∩ δj
v|

OCN
i=p
∑

i=1

i=k
∑

j=1

|χi,j
u,v| : [t0, t]

CCT
i=p
∑

i=1

i=k
∑

j=1

|φi,j
u,v|

CCTT
i=p
∑

i=1

i=k
∑

j=1

|φi,j
u,v| × |δi

u ∩ δj
v|

CCN
i=p
∑

i=1

i=k
∑

j=1

|φi,j
u,v| : [t0, t]

Similarity Features

Age |Age(u) − Age(v)|

Gender

{

1, if Gender(u) = Gender(v)

0, if Gender(u) 6= Gender(v)

Ethnic

{

1, if Ethnic(u) = Ethnic(v)

0, if Ethnic(u) 6= Ethnic(v)

CrimSim

K
∑

i=1
P i

uP i
v√

∑

K
i

(P i
u)2×

√
∑

K
i=1

(P i=1
v )2

Table 1: Prediction features.

portant role in co-offence prediction. For this purpose, we com-
pute the feature values for all negative and all positive potential
co-offenders. Then, using a range of decision thresholds and com-
puting the false/true positives ratios, we generate the ROC curves
for each single feature as presented in Figure 4. Note that the social
features can be extracted only for SR space.

As shown in Figure 4a, in the SR space, the Preferential fea-
ture is the best predictor with AUC value 0.82 and is superior to
other social features. The performance of Adamic and Jaccard
are worse than a random predictor. This shows that being a fre-
quent offender and having broader criminal relationships, rather
than common relationships, increases the chance of engaging in
new criminal cooperations. Following Preferential are geo-social
and geographic features CDN, OCN, CCN, and HDN, with AUC
values between 0.74 and 0.79. The performance of similarity fea-
tures is lower than the mentioned set.
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Figure 4: Single feature significance in three different predictions spaces.

In the GR space, performance of most of the features is weaker
than their performance in the SR space. This is not unexpected for
geographic or geo-social features, where in the negative potential
class we gather all pairs that are geographically close and the pre-
dictor cannot be as successful as in the SR space. Nevertheless,
the AUC values of these features fall within the range 0.60 to 0.70.
Compared to the SR space, in the ER space geographic and geo-
social features work better. Their AUC values are between 0.72
and 0.86.

In the similarity features generally Gender works as good as a
random predictor in all three spaces. Age and Ethnic have similar
performance in the ER and GR spaces. But in SR, AUC values
of these two features are 0.66 and 0.60. This shows that in the
SR space one can see stronger signs of the homophily principle in
forming new relationships. CrimSim has the best performance in
the GR space with AUC value of 0.71.

Counterintuitively, time-based features perform weaker than the
original version of the corresponding feature. For instance, in the
SR space, the performance of HDT compared to HDN, OCT and
OCTT compared to OCN, and, finally, CCT and CCTT com-
pared to CCN, all drop down to five percent. The same trend ap-
plies to the other prediction spaces. Parameter regularization of
time-based features for promoting their prediction strength is sub-
ject to future research. An interesting pattern in all spaces is that
CDN outperforms HDN, which shows that being criminally ac-
tive in areas that are in close proximity is a stronger indicator for
forming new criminal collaboration than living in close proximity
to each other.

Each single feature can be considered an unsupervised link pre-
dictor. Unsupervised link prediction methods assign scores to po-
tential links based on node attributes or network structural proxim-
ity measures [8]. Then, the link prediction problem is defined as a
binary classification problem by choosing some probability thresh-
old, and predicting that potential links with a probability above the
threshold will be formed, whereas those below the threshold will
not be formed. We use the best AUC value of the single features to
compare with the supervised predictors in the next section.

As discussed in [8], the performance of unsupervised link pre-
dictors varies in different social networks, meaning that unsuper-
vised link predictors are domain-specific. For instance, among the
structural network features, preferential attachment works best for
co-offending networks in our study, while this single feature pre-

dictor has the worst performance for the network of cellular phone
users in[10].

5.3 Prediction Evaluation
The previous section analyzes the performance of individual fea-

tures. Now, how good works a supervised method using a group of
extracted features? Naturally, one would expect to see performance
improvements. For this purpose, we use four different classification
methods: Naïve Bayes, J48 (equivalent to C4.5), random forests
(10 trees, each constructed while considering 4 random features),
and bagging (10 bags).

Similar to the work in [9, 19], we run 10-fold cross validation
over 10 different randomly sampled training sets for each of the
three prediction spaces, SR, GR and ER. We consider the average
values of AUC, and precision and recall over positive samples. The
prediction results are listed in Table 2. One can see variability in
the different classifier performances, and also in the results for the
different prediction spaces. All classifiers for all spaces outperform
single features. Generally, prediction works best in the ER space.

Two ensemble methods, bagging and random forest classifiers,
work better than the other classifiers and Naïve Bayes is the weak-
est one in all spaces. In ensemble learning for decreasing the vari-
ance error the results of a number of classifiers are combined to
make a prediction. An ensemble method improves the prediction
performance if the overlap of misclassification of the single classi-
fiers is small. On average we see 5.1% AUC improvement in ran-
dom forest classifiers comparing to single decision tree classifier
which shows the variance reduction influence.

Since all features are available in the SR space and the bagging
classifier works better than other methods, we continue the follow-
ing experiments with the SR space and bagging classifier. To study
prediction strength of each of the feature sets, social, geographic,
geo-social and similarity, each time we keep one of the feature
sets and evaluate it using the bagging classifier with the same set-
ting. As shown in Table 3, the geo-social features outperform the
other three sets, and the geographic feature set has the worst perfor-
mance. Comparing the prediction performance using all features to
different subsets shows integrating all features from social, envi-
ronmental and personal can contribute to co-offence prediction.

Most existing unsupervised link prediction methods assign scores
to the potential links and rank them. The top-k links are catego-
rized as new links, and the remaining as missing links. The evalua-
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Algorithm Space Precision Recall AUC

SR 0.888 0.807 0.907
J48 GR 0.869 0.834 0.901

ER 0.935 0.81 0.898

SR 0.836 0.514 0.825
Naïve GR 0.825 0.441 0.817
Bayes ER 0.945 0.706 0.895

SR 0.898 0.843 0.944
Random GR 0.864 0.883 0.944
Forest ER 0.941 0.944 0.982

SR 0.908 0.84 0.951
Bagging GR 0.863 0.854 0.952

ER 0.946 0.942 0.986

Table 2: Recall, precision and AUC for different classification al-
gorithms on the three different prediction spaces, SR, GR and IR,
using 10-fold cross validation over 10 different random training
sets.

tion of unsupervised methods is same as single features evaluation
in Section 5.2. Preferential, Jaccard and Adamic are common
unsupervised link prediction methods as addressed in [8]. While
Preferential has the highest the AUC value among individual fea-
tures we see more then 13% improvement in the bagging classifier
result, which means supervised classifiers outperform the unsuper-
vised predictors significantly.

For a better insight into class imbalance issues, we vary the size
of negative samples for the SR space using same set of positive
samples, where the positive samples proportion ranges from 2%
to 100%. As illustrated in Figure 5a, the AUC value is relatively
stable. Unsurprisingly, with negative sample size and accordingly
imbalanced ratio growth, precision increases and recall decreases.
As expected, this is because of negative class overfitting, mean-
ing that the trained classifier is more likely to predict non-existing
links.

6. CRIMINOLOGICAL IMPLICATIONS
Crime forecasting models are divided into short-term and long-

term categories in terms of predicted time periods. Short-term
models are beneficial for tactical decision making, whereas long-
term models are helpful for planning and policy development. Co-
offence prediction is an important aspect for short-term models.
Studying new link formation patterns can help designing effective
long-term crime reduction and prevention strategies.

Based on the discussion of offenders’ activity space issue in Sec-
tion 2.3 for all six geo-social features we tried different values of
radius R from 1 km to 10 km. As depicted in Figure 5b for all of
the features and R > 2 km the prediction performance decreases
by increasing R. This finding is consistent with a well-know crim-
inology fact [17] which states crimes are likely to occur closer to
an offender’s anchor points and follow a distance-decay function.

With the settings defined in Section 5.1, Et+1
∼= 120K, while

the portion of positive samples is about 9%. And in the reality the
prediction is possible only in this portion where we had information
about both of co-offender previously. The propose framework was
able to predict 45% of all positive samples.

Figure 6a shows the cumulative degree distribution P (k) in the
co-offending network G50 for three sets of offenders: V50, {u | ∃v ∈
Vt : (u, v) ∈ SR∩Et+1} and {u | ∃(u, v) ∈ SR∧(u, v) /∈ Et+1}.
One can see that for the same node degree k, compared to the
two other sets, the set of offenders who contribute to forming co-

Features Set Precision Recall AUC

Social 0.903 0.792 0.919

Geographic 0.721 0.786 0.811

Geo-social 0.863 0.853 0.942

Similarity 0.849 0.851 0.928

All Features 0.908 0.84 0.951

Table 3: Prediction strength of different feature sets for SR space
using the bagging classifier with 10-fold cross validation over 10
different random training sets.

offences generally has a greater value of P (k). Section 5.2 shows
that Preferential for SR space is a strong predictor. This implies
the relevance of co-offending networks for making new criminal
cooperation.

Assume that τu,v refers to the first time that a positive co-offence
(u, v) occurs in time interval [51, 60], and τ is the time of the most
recent offence of u or v in [1, 50]. Figure 6b plots the distribution
of τu,v − τ for all positive potential co-offences. We see a power
law distribution, meaning that there are many offences with a small
value of τu,v − τ and few with a larger value of τu,v − τ . This
results shows that offenders who were recently active have a higher
potential to form new criminal cooperation.

We see some variance in the prediction strength of different pre-
diction features, with weak and strong predictors in each of the
spaces. For all spaces we see high prediction results, which shows
that there are strong patterns in co-offending. This supports our
idea of dividing criminal cooperation opportunities, this way, find-
ing stronger co-offence patterns that improve predictions. How-
ever, co-offending is a product of the intricate interplay between
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many factors, and drawing any firm conclusions requires more sub-
stantial and in-depth research beyond the scope of this paper.

Co-offending research currently is non-spatial, except in con-
flicting edges of gang neighborhoods [34], and usually not asso-
ciated with crime signatures of crime attributes. Future research
should improve the predictive power of link prediction approaches
by adding more information about an individual’s non-co-offending
patterns and co-offending patterns with more guidance for the in-
troduction of preventative programs to reduce gang offences. This
research opens the door for advanced approaches to the co-offending
networks analysis by identifying those situations where the proba-
bility of future co-offending increases. This has potential value in
predictive policing by indicating the attributes of individuals who
are more likely to engage in future crimes jointly.

7. RELATED WORK
This section discusses published works on co-offending network

analysis, crime prediction and link prediction.

7.1 Co-offending Networks
Crime prevention and reduction is the major concern of law en-

forcement agencies in order to protect the lives and properties of
citizens. Just like the abundance of available data on virtually all
parts of society can cause an information overload for many, the
rapidly growing volume of crime data makes it increasingly chal-
lenging for law enforcement and criminal intelligence agencies to
analyze all of the data and extract relevant information and knowl-
edge. Data mining constitutes the scientific foundation for manag-
ing the large volume of crime data so as to discover new insights
for developing effective crime reduction and prevention strategies.

In criminology, several empirical studies that use social network
analysis methods to analyze co-offending networks focus on the
stability of associations in such networks. Morselli [7] offers a
thoughtful insight into ’criminal organizational systems’ form a
criminal network perspective and applies social network analysis
to a number of case studies of criminal groups and organizations.
Reiss [6] concludes that the majority of co-offending groups are
unstable, and their relationships are short-lived. This finding is cor-
roborated by McGloin et al. [15], who show that there is some sta-
bility in co-offending relationships over time for frequent offend-
ers, but delinquents do in general not tend to reuse co-offenders.
However, it should be pointed out that the above findings are based
on small datasets: 205 individuals in [6], and 5,600 individuals in
[15], and may therefore not be representative.

Certain characteristics of co-offending networks, such as being
short-lived and having hidden links, make it difficult to adopt and
use social network analysis algorithms. Lack of real-world crime
data for research purposes and the necessity of cross-disciplinary
knowledge are further limiting factors that may explain why social
network analysis studies rarely focus on criminal network analysis
problems that are important for public safety, such as organized
crime groups detection, criminal network destabilization and co-
offence prediction.

7.2 Crime Prediction
Two main criminology theories claim that involvement in crime

is the result of: 1) an individual’s crime propensity, and 2) crim-
inogenic features of the environment to which an individual is ex-
posed. While propensity towards crime has long been studied, in
the last few decades criminogenic features of the environment re-
ceived specific attention. Apart from individuals, spatial aspects
increasingly gain momentum, and environmental criminology [16]
plays an essential role in crime reduction and prevention tactics.

New research areas emerge, like crime mapping [35], geographic
profiling [17] and crime forecasting [4, 5], that support growing
and imperative applications of this research field for law enforce-
ment and criminal intelligence agencies.

Crime prediction methods in the literature completely ignore the
role of co-offending in committing crime. Rather their goal is
to spatially and temporally model observed crimes to predict the
time and location of future crimes. For instance in [5], the au-
thors use a point-pattern-based transition density model for crime
space-event prediction considering criminal preferences from pre-
vious crimes. Given partial information about a crime incident,
Crimewalker [12] is an unsupervised method for top-k suspect rec-
ommendation, which applies a random walk method on the co-
offending network. As concluded in the link prediction literature,
supervised methods always outperform the unsupervised competi-
tors. To the best of our knowledge, the proposed approach is the
first supervised learning framework for co-offence prediction.

7.3 Link Prediction
Link prediction is important aspect of social network analysis to

better understand the network structure. Link prediction methods
can be used to extract missing information, identify hidden interac-
tions, evaluate network evolution mechanisms, and beyond.

Most unsupervised link prediction methods [8] rely solely on
the network topology and assign scores to potential links based on
structural proximity measures such as node neighborhoods or path
information. On the other hand, any classification method can be
used for link prediction [9, 10, 11]. In a detailed study [10], Licht-
enwalter et. al. examine key factors in the link prediction problem,
and propose a framework for supervised link prediction.

More recently, location-based social networking services made it
possible to study and predict spatial behaviors of social network ac-
tors. Wang et. al. [20], using trajectory and communication patterns
of users, concluded that combining mobility and network features
enhances the link prediction results. Scellato et. al. [19], based on
their study of the link prediction problem in online location-based
social networks, conclude that using information about places peo-
ple visited boosts the link prediction performance.

Although the challenges and concerns of our study is similar to
other link prediction studies [9, 10, 19, 20], there are fundamental
distinctions as well. Crime data and co-offending network charac-
teristics are inherently different from affiliation networks, such as
co-authorship networks or mobile phone networks. Although en-
vironmental activity plays an important role in creating new links,
these activities are also very different from location-based social
networks. Therefore the feature or prediction spaces defined based
on criminological theories are different from the ones known in the
literature. After all, the co-offence prediction framework proposed
in this research and supported by experimental evaluation is an in-
novative application of social network analysis that offers a new
perspective for crime reduction and prevention strategies.

8. CONCLUSIONS
This paper proposes a supervised learning framework for co-

offence prediction. We define the co-offence prediction problem
as a link prediction problem in co-offending networks. For our
study, we use co-offending networks with more than 150K known
criminal offenders. These networks were extracted from a large
police-reported crime dataset containing about 4.4M offences over
a period of five years in British Columbia, Canada. Considering
criminological theories about social, environmental and homophily
roots of offending in a comprehensive way, we assign each pair of
offenders to socially-related, geographically-related or experience-
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related criminal cooperation opportunities. Using these sets, we
create three prediction spaces. While we are able to retain half
of the co-offences, the prediction space division allows us to sig-
nificantly reduce class imbalance, which is a major challenge in
link prediction. We do not only use homophily, social and spatial
characteristics of pairs of offenders to define prediction features,
but we also define novel geo-social features combining social and
spatial characteristics. Evaluating single feature significance, we
conclude that geo-social features generally are more effective than
others, while we also observe considerable prediction strength in
other features. Employing all features, our classifiers achieve a re-
call of 84%, 88%, and 94% respectively, for three different pre-
diction spaces, which means that we can correctly predict roughly
90% of the co-offences. We believe that our findings provide valu-
able insights and novel methods for short-term and long-term crime
reduction and prevention strategies.
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