
Knock It Off: Profiling the Online Storefronts
of Counterfeit Merchandise

Matthew F. Der, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego
{mfder, saul, savage, voelker}@cs.ucsd.edu

ABSTRACT
We describe an automated system for the large-scale moni-
toring of Web sites that serve as online storefronts for spam-
advertised goods. Our system is developed from an extensive
crawl of black-market Web sites that deal in illegal phar-
maceuticals, replica luxury goods, and counterfeit software.
The operational goal of the system is to identify the affil-
iate programs of online merchants behind these Web sites;
the system itself is part of a larger effort to improve the
tracking and targeting of these affiliate programs. There
are two main challenges in this domain. The first is that
appearances can be deceiving: Web pages that render very
differently are often linked to the same affiliate program of
merchants. The second is the difficulty of acquiring training
data: the manual labeling of Web pages, though necessary
to some degree, is a laborious and time-consuming process.
Our approach in this paper is to extract features that reveal
when Web pages linked to the same affiliate program share
a similar underlying structure. Using these features, which
are mined from a small initial seed of labeled data, we are
able to profile the Web sites of forty-four distinct affiliate
programs that account, collectively, for hundreds of millions
of dollars in illicit e-commerce. Our work also highlights sev-
eral broad challenges that arise in the large-scale, empirical
study of malicious activity on the Web.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Text process-
ing ; K.4.4 [Computers and Society]: Electronic Com-
merce—Security

General Terms
Security

Keywords
Web page classification; Email spam

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623354.

1. INTRODUCTION
The Web plays host to a broad spectrum of online fraud

and abuse—everything from search poisoning [5, 20] and
phishing attacks [12] to false advertising [10], DNS profi-
teering [4, 15], and browser compromise [17]. All of these
malicious activities are mediated, in one way or another, by
Web pages that lure unsuspecting victims away from their
normal browsing to various undesirable ends. Thus, an im-
portant question is whether these malicious Web pages can
be automatically identified by suspicious commonalities in
appearance or syntax [1, 4, 8, 11, 18, 19, 21]. However,
more than simply distinguishing “bad” from “good” Web
sites, there is further interest in classifying criminal Web
sites into groups of common origin: those pages that are
likely under the control of a singular organization [3, 9, 13].
Indeed, capturing this “affiliation” property has become crit-
ical both for intelligence gathering as well as both criminal
and civil interventions. In this paper, we develop an au-
tomated system for one version of this problem: the large-
scale profiling of Web sites that serve as online storefronts
for spam-advertised goods.

While everyone with an e-mail account is familiar with the
scourge of spam-based advertising, it is only recently that
researchers have come to appreciate the complex business
structure behind such messages [14]. In particular, it has
become standard that merchants selling illegitimate goods
(e.g., such as counterfeit Viagra and Rolex watches) are
organized into affiliate programs that in turn engage with
spammers as independent contractors. Under this model,
the affiliate program is responsible for providing the con-
tent for online storefronts, contracting for payment services
(e.g., to accept credit cards), customer support and prod-
uct fulfillment—but direct advertising is left to independent
affiliates (i.e., spammers). Spammers are paid a 30–40%
commission on each customer purchase acquired via their
advertising efforts and may operate on behalf of multiple
distinct affiliate programs over time. Such activities are big
business with large affiliate programs generating millions of
dollars in revenue every month [7].

Thus, while there are hundreds of thousands of spam-
advertised Web sites and thousands of individual spammers,
most of this activity is in service to only several dozen affil-
iate programs. Recent work has shown that this hierarchy
can be used to identify structural bottlenecks, notably in
payment processing. In particular, if an affiliate program is
unable to process credit cards, then it becomes untenable
to sustain their business (no matter the number of Web

1759



GlavMed Ultimate Rep. SoftSales

Table 1: Screenshots of online storefronts selling
counterfeit pharmaceuticals, replicas, and software.

sites they operate or spammers they contract with). Re-
cently, a concerted effort by major brand holders and pay-
ment networks to shutdown the merchant bank accounts
used by key affiliate programs demonstrated this vulnera-
bility concretely. Over a short period of time, this effort
shut down 90% of affiliate programs selling illegal software
and severely disabled a range of affiliate programs selling
counterfeit pharmaceuticals [13].

The success of this intervention stemmed from a critical
insight—namely, that the hundreds of thousands of Web
sites harvested from millions of spam emails could be mapped
to a few dozen affiliate programs (each with a small num-
ber of independent merchant bank accounts). At the heart
of this action was therefore a classification problem: how
to identify affiliate programs from the Web pages of their
online storefronts?

There are two principle challenges to classification in this
domain. The first is that appearances can be deceiving:
storefront pages that render very differently are often sup-
ported by the same affiliate program. The seeming diver-
sity of these pages—a ploy to evade detection—is generated
by in-house software with highly customizable templates.
The second challenge is the difficulty of acquiring training
data. Manually labeling storefront pages, though necessary
to some degree, is a laborious and time-consuming process.
The researchers in [9] spent hundreds of hours crafting regu-
lar expressions that mapped storefront pages to affiliate pro-
grams. Practitioners may endure such manual effort once,
but it is too laborious to be performed repeatedly over time
or to scale to even larger corpora of crawled Web pages.

Our goal is to develop a more automated approach that
greatly reduces manual effort while also improving the accu-
racy of classification. In this paper we focus specifically on
spam-advertised storefronts for three categories of products:
illegal pharmaceuticals, replica luxury goods, and counter-
feit software (Table 1). We use the data set from [9] consist-
ing of 226,000 potential storefront pages winnowed from six
million distinct URLs advertised in spam. From the exam-
ples in this data, we consider how to learn a classifier that
maps storefront pages to the affiliate programs behind them.

We proceed with an operational perspective in mind, fo-
cusing on scenarios of real-world interest to practitioners
in computer security. Our most important findings are the
following. First, we show that the online storefronts of sev-
eral dozen affiliate programs can be distinguished from au-
tomatically extracted features of their Web pages. In par-
ticular, we find that a simple nearest neighbor (NN) classi-
fier on HTML and network-based features achieves a nearly
perfect accuracy of 99.99%. Second, we show that practi-
tioners need only invest a small amount of manual effort in

� $OO�FUDZOHG�SDJHV

� 6WRUHIURQWV

� &DWHJRU\�WDJV

Figure 1: Data filtering process. Stage 1 is the entire
set of crawled Web pages; stage 2, pages tagged as
pharmaceutical, replica, and luxury; stage 3, store-
fronts of affiliate programs matched by regular ex-
pressions.

the labeling of examples: with just one labeled storefront
per affiliate program, NN achieves an accuracy of 75%, and
with sixteen such examples, it achieves an accuracy of 98%.
Third, we show that our classifiers are able to label the affil-
iate programs of over 3700 additional storefront pages that
were missed by the hand-crafted regular expressions of the
original study. Finally, we show that even simple cluster-
ing methods may be useful in this domain—for example,
to identify new affiliate programs or to reveal when known
affiliate programs have adopted new software engines.

2. DATA SET
We use the data set of crawled Web pages from the mea-

surement study of the spam ecosystem by Levchenko et
al. [9]. Figure 1 depicts how they collected, filtered, and
labeled the data, which we summarize in this section; we re-
fer the reader to their paper for a more detailed explanation
of their methodology.

2.1 Data Collection
Over a period of three months, Levchenko et al. [9] crawled

over six million URLs from various spam feeds, including
one feed from a top Web mail provider and others captured
as output from live spamming bots. From the combined
feeds, they obtained 1,692,129 distinct landing pages after
discarding duplicate pages referenced by multiple URLs. For
each landing page the crawler saved the raw HTML as well as
a screenshot. In addition, a DNS crawler collected network
information on the extracted domains. The first level in
Figure 1 corresponds to this set of Web pages.

2.2 Data Filtering
The authors of [9] focused on three popular categories

of spam-advertised goods—illegal pharmaceuticals, replica
luxury goods, and counterfeit software. They used keyword
matching to filter out Web pages that were unrelated to
these categories of merchandise. Keywords included both

1760



brand names, such as Viagra and Cialis, in addition to more
generic terms, such as erectile dysfunction and drug. This
filtering removed pages whose text did not advertise for sales
of pharmaceuticals, replicas, or software—an omission that
runs counter to the business interest of any viable storefront.
The absence of such text was found to be a reliable screen
for non-storefront pages. A total of 226,439 storefront pages
emerged from this filter, which were then broadly grouped
into the three categories of pharmaceuticals, luxury goods,
and software. These categorized pages, shown in the second
level of Figure 1, comprise the universe of pages that we
consider in this paper.

The filtering by domain-specific keywords may be viewed
as a simple operational heuristic to narrow the massive data
set of blindly crawled URLs to a subset of pages of interest.
Note that the filtering in this step was purposely conserva-
tive so that legitimate storefront pages were not winnowed
from the data set.

2.3 Data Labeling
Through a combination of manual inspection and heuris-

tic pattern-matching, the authors of [9] managed to link
the spam-advertised storefronts for pharmaceuticals, luxury
goods, and pirated software to individual affiliate programs.
An initial round of manual inspection was necessary because
even the cast of affiliate programs was not known a priori.
Thus the first pass over crawled Web pages focused on identi-
fying prominent affiliate programs and collecting a moderate
sample of storefront pages from each. The authors identified
forty-five distinct affiliate programs in this way (although
one was later discovered to be a subset of another).

The next and most time-consuming step of this process
was to expand the number of storefront pages labeled for
each affiliate program. The authors of [9] sought to auto-
mate this process through the use of regular expressions.
Specifically, for each affiliate program, they devised a set of
characteristic regular expressions that matched the HTML
content of its online storefronts but not those of other pro-
grams. They also fixed an integer threshold for each affiliate
program; if the Web page of an online storefront matched
this number of regular expressions (or more), then it was
labeled as belonging to the program. Using this approach,
they were able to identify the affiliate programs of 180,690
online storefronts. The bottom level in Figure 1 represents
this final set of storefront pages.

The above approach depended on the meticulous crafting
of regular expressions that distinguish the storefront pages
of different affiliate programs. To devise such an expression,
it was necessary (roughly speaking) to find a pattern that
was present in all the pages of one program and absent in the
pages of all other programs. The painstaking effort required
for this approach is best illustrated by example. Here is
one regular expression for storefront pages in the GlavMed
affiliate program:

var\s+SessionType\s*=\s*"URL";\s*var\s+

SessionPrefix\s*=\s*"[0-9a-fA-F]32";\s*var\s+

SessionName\s*=\s*"USID";

It can take a couple hours just to hone a single regular ex-
pression such as the one above. Much more time, naturally,
is required to obtain coverage of multiple affiliate programs.
The full effort in [9] involved not only the careful scrutiniza-
tion of HTML content, but also iterative refinement and ex-

Examples 1st 3 months 2nd 3 months

Labeled 178,281 29,581
Unlabeled 43,442 12,756
Largest class 58,215 13,529
Smallest class 2 0

Table 2: Summary of the data from crawls of con-
secutive three-month periods.

tensive validation. In total, the authors estimated that they
spent over two hundred man-hours designing and validating
the regular expressions for all forty-five affiliate programs.

In the present work, we limited our study to forty-four1 of
these affiliate programs. We also discarded pages from the
above collection which lacked a screenshot (which we need
for manual validation of our results). From the initial three-
month Web crawl, this left us with 178,281 labeled store-
fronts and 43,442 unlabeled storefronts; all of these store-
fronts were tagged as selling pharmaceuticals, luxury goods,
or software, but only the former were successfully mapped
to affiliate programs by regular expressions.

We also obtained a subset of data crawled from a period of
the following three months. These Web pages were collected
and labeled in the same manner as before; in particular, they
were labeled without updating the regular expressions from
the initial crawl. It is known that storefronts evolve over
time, and therefore we do not expect the labels during this
time period to be as reliable as the earlier ones. Table 2
summarizes the data from each crawl. Note also the severe
class imbalance: the largest affiliate program has 58,215 dis-
tinct storefronts, while the smallest has just 2. In addition,
there were five affiliate programs whose regular expressions
in the first period did not detect any storefront pages in the
second period.

3. AN AUTOMATED APPROACH
It should be clear that the approach of Section 2.3 does not

scale well with the number of storefront pages or affiliate pro-
grams. This approach is also too time-consuming to repeat
on a regular basis—updating the regular expressions before
they go stale—as would be necessary to maintain a work-
ing operational system. In this section we describe a faster
and more highly automated approach for the classification
of storefront pages by affiliate program. Our data-driven ap-
proach consists of two steps. First, we use automatic scripts
to extract tens of thousands of potentially informative fea-
tures from the crawl of each online storefront. Next, we
represent these features in a lower-dimensional vector space
and use nearest neighbor classification to identify affiliate
programs from whatever labeled examples are available. Our
hope with this approach is to avoid the painstaking crafting
of regular expressions in favor of simple, well-tested methods
in data mining and machine learning.

3.1 Feature Extraction
For each online storefront in our data set, we have both

the HTML source of its Web page and the DNS record of
its domain. Together these provide a wealth of information

1The affiliate program we exclude was later found to be a
proper subset of a different program.

1761



about the storefront that can be extracted by automatic
methods. We consider each in turn.

3.1.1 HTML Features
We know from previous work [9] that the storefronts of

different affiliate programs can be distinguished by prop-
erties of their raw HTML. This is likely the case because
each affiliate program uses its own software engine to gen-
erate storefront templates; as a result, different storefronts
within the same affiliate program often have similar DOM2

structures. Indeed, the regular expressions of [9] only work
insofar as commonalities in implementation exist among the
different storefronts of individual affiliate programs.

We extract HTML features using a bag-of-words approach.
This approach ignores the ordering of HTML tags and text
within a Web page, but it is simple enough for the quick
and automatic extraction of thousands of potentially infor-
mative features. In this respect our approach differs con-
siderably from the manual “feature engineering” of regular
expressions; we do not seek to find the most informative fea-
tures ourselves, merely to extract all candidate features for
a statistical model of classification.

A key consideration of our approach is how to encode
HTML tags as words. Consider the following snippet of
HTML code:

<img src="example.jpg" alt="Example pic"

height="50" width="100">

The problem in encoding this snippet is how to achieve the
appropriate level of granularity. It is clear that important
information is carried by the context in which individual
HTML tags appear. However, this information is lost if we
encode the tags and tokens in this snippet as single words.
On the other hand, it is clearly infeasible to encode this
whole snippet, and others like it, as a single “word”; taken
as a whole, the HTML element is akin to a full sentence
of text. Our compromise between these two extremes is to
encode each tag-attribute-value triplet as a word. We also
remove whitespace. This solution, for example, parses the
above HTML into the following words:

img:src=example.jpg

img:alt=Examplepic

img:height=50

img:width=100

To parse HTML element content—the text between start
and end tags—we treat the text as a single string that we
split on certain characters (,;{}) and whitespace. We then
form“words”by stripping non-alphanumeric characters from
the resulting substrings and converting all letters to lower-
case. We parse HTML comments in the same way. Following
convention, we exclude words that are either very common
(e.g., stopwords) or very rare (appearing in few Web pages).

The bag-of-words approach has the potential to generate
very large feature vectors: the dimensionality of the feature
space is equal to the number of extracted words. We limited
our vocabulary of words to the HTML of storefronts from the
initial three-month crawl. From this period alone, however,
we extracted over eight million unique words. Since most of
these words were likely to be uninformative, we used sim-

2The document object model (DOM) refers to the represen-
tation of a Web page as a tree of HTML elements.

ple heuristics to prune this space. In particular, for each
of the forty-four affiliate programs, we only retained words
that appeared in the HTML source of 10% (or more) of the
program’s online storefronts. Finally, concatenating these
words we obtained a total of 34,208 HTML-based features
for classification.

3.1.2 Network Features
The authors of [9] also developed a DNS crawler to enu-

merate all address and name server records3 linked to the
domains of spam-advertised URLs. We expect such records
to help us further in identifying affiliate programs from their
online storefronts. In particular, we expect different affiliate
programs to use different naming and hosting infrastruc-
tures, and thus we might hope to distinguish them by the
name and Web servers that support their domains. Such
information may also serve to link online storefronts with
different Web pages to the same affiliate program. For ex-
ample, the DOM trees of two storefronts might be quite
different, but if their Web pages were hosted at the same
server, then we could predict with confidence that they be-
long to the same affiliate program.

We mined both the address and name server records of
online storefronts for useful features. An address record, or
A record, maps a domain name to the IP address of the
machine on the Internet where the domain is hosted. For
example, the A record of the domain name ucsd.edu maps
to the IP address 132.239.180.101. A name server record,
or an NS record, identifies the name servers that provide
these mappings of names to addresses. The NS record for the
domain ucsd.edu contains the domain names of four name
servers: ns0.ucsd.edu, ns1.nosc.mil, ns1.ucsd.edu, and
ns2.ucsd.edu. In addition, these name servers have their
own IP addresses; e.g., the A record for ns0.ucsd.edu maps
to the IP address 132.239.1.51. Note that a storefront’s
domain name may be associated with multiple A and NS
records. These multiple associations are a counter-defense
against security measures such as domain blacklisting.

For each storefront domain, we extracted the IP address
from its A record, the IP addresses of its name servers, and
the autonomous system numbers (ASNs) of both these IP
addresses. (The ASN of an IP address uniquely identifies
its Internet Service Provider.) All together, these IPs and
ASNs yield four categorical network features for each store-
front. We tallied the number of unique IPs and ASNs ob-
served during the initial three-month crawl of storefronts:
there were 17,864 unique A record IPs, 8,825 unique NS
record IPs, 2,259 unique ASNs of A record IPs, and 1,853
unique ASNs of NS record IPs. We encoded each categorical
feature with k uniquely occurring values as a k-dimensional
binary vector (i.e., a simple unary encoding). Concatenating
the elements of these vectors, we obtained a total of 30,791
binary-valued network features for each online storefront.

3.2 Dimensionality Reduction & Visualization
Table 3 shows the numbers of HTML-based and network-

based features, as well as the total number of features when
combined. We were interested in the different types of infor-
mation contained in HTML vs. network features. To explore
the value of different features, we experimented with classi-

3Due to a technical issue, however, this information was
only recorded during the first three-month crawl of online
storefronts.

1762



Features Count Density PCA Unique Exs.

Bag-of-words 34,208 2.20% 66 12.07%
Network 30,791 0.12% 665 6.09%
Both 64,999 1.21% 72 31.52%

Table 3: Feature counts, density of the data, dimen-
sionality after principal components analysis, and
percentage of unique examples.

fiers that used either one set of features or the other; this
was in addition to classifiers that worked in their combined
feature space.

In all of these cases, the data is very sparse and high di-
mensional. To reduce the dimensionality of the data we used
principal component analysis (PCA) [6]: in particular, after
normalizing the feature vectors to have unit length, we pro-
jected them onto enough principal components to capture
over 99% of the data’s variance. We did this for each of the
three feature spaces. The third and fourth columns of Ta-
ble 3 show, respectively, the small percentages of non-zero
features before PCA and the number of principal compo-
nents needed to capture 99% of the data’s variance.

In the last column of Table 3 we have noted the high per-
centage of duplicate representations in feature space. Within
a single affiliate program, it is often the case that different
storefronts have identical representations as feature vectors;
this is true even though every Web page in our data set
has a distinct DOM tree. These duplicates arise when the
extracted features do not contain the information that dis-
tinguishes actual Web pages. For example, two storefronts
may have the same bag-of-words representation if their Web
pages differ only slightly in their HTML (e.g., a single link,
image path, or JavaScript variable name) and if, in this case,
the differentiating words were too rare to be included as
features. Likewise, two storefronts may have equivalent net-
work features if they are hosted on the same server.

In Section 2 we noted that 180,690 distinct storefront
pages were collected. The many duplicates (and many more
near-duplicates) arise from the operational constraints faced
by affiliate programs. To maximize their sales, affiliate pro-
grams must deploy and support many storefronts across the
Internet. This process can only be streamlined by the ag-
gressive use of template engines. Ironically, it is precisely
the requirement of these programs to operate at scale that
makes it possible to automate the defenses against them.

For illustration, Figure 2 plots the projections of storefront
feature vectors from the largest affiliate program (EvaPhar-
macy) onto the data’s two leading principal components.
Two observations are worth noting. First, the distribution
is clumpy, with some irregularly-shaped modes, evidence of
the variety of storefronts in this single program. Second,
some storefronts which render very differently map to nearby
points. This proximity is evidence of a similar underlying
structure that associates them to the same affiliate program.

3.3 Nearest Neighbor Classification
We use nearest neighbor (NN) classification [2] to identify

the affiliate programs of unlabeled storefronts. In particu-
lar, we store the feature vectors of the labeled storefronts
(after PCA) in memory, and for each unlabeled storefront,
we compute its NN in Euclidean distance among the train-
ing examples. Finally, we identify the affiliate program from

Figure 2: Projection of storefront feature vectors
from the largest affiliate program (EvaPharmacy)
onto the data’s two leading principal components.

that of its NN. A common extension is to compute k nearest
neighbors and to take the majority vote among them, but
we did not find this necessary for our results in this domain.

There are many statistical models of classification—some
of them quite sophisticated—but in this domain we were
drawn to NN classification for reasons beyond its simplic-
ity. A primary reason is that NN classifiers do not make
any strong parametric assumptions about the data: they
do not assume, for instance, that the examples in differ-
ent classes are linearly separable, or that the examples in a
single class are drawn from a particular distribution. The
two-dimensional projection of EvaPharmacy storefronts in
Figure 2 illustrates the problematic nature of such assump-
tions. Some affiliate programs use multiple template engines
to generate a diversity of storefronts, and this in turn yields
a complicated distribution in feature space. NN classifica-
tion copes well with these complexities; to label examples
correctly, it is only necessary to find that they are closest
to others that are similarly labeled. The resulting decision
boundaries can be quite nonlinear.

There are other natural advantages of NN classification
for our work. It does not incur any additional complexity
when there are large numbers of classes, and in our problem,
there are dozens of affiliate programs. Also, NN classifiers
do not need to be re-trained when new labeled data becomes
available; in our problem, an operational system would need
to cope with the inevitable launch of new affiliate programs.
A final benefit of NN classification is that it lends itself to
manual validation. For this study, we implemented a visual
Web tool for validating predictions in the absence of ground
truth labels. The tool displays two adjacent storefronts—
one unlabeled, the other its nearest neighbor among the la-
beled examples—along with the distance between them and
hyperlinks to their HTML source code. The tool was invalu-
able for ongoing validation of the classifier, a necessary part
of any eventual, real-world deployment.

4. EXPERIMENTS
In this section we evaluate the potential of automated,

data-driven methods for identifying the affiliate programs
behind online storefronts. We take a bottom-up approach,

1763



beginning with simple diagnostics of the features in the pre-
vious section and ending with tests to measure how well a
deployed NN classifier would perform in the real world. We
begin with a brief overview of our experiments.

First we verify, as a proof of concept, that the online store-
fronts of different affiliate programs can in fact be distin-
guished by their HTML-based and network-based features.
In these experiments, we attempt only to classify the Web
pages of storefronts that belong to our previously identified
set of forty-four affiliate programs. This is unrealistic as an
operational setting, since in practice a working system would
also need to classify Web pages that belong to other affiliate
programs (or that do not even correspond to storefronts).
However, as a logical first step, it is important to verify that
the features we extract can—at least, in principle—separate
the online storefronts of different affiliate programs.

Our next experiments remove the assumption of a“closed”
universe of Web pages from previously identified affiliate
programs. In these experiments we attempt to classify all
Web pages that matched the category keywords of phar-
maceuticals, replicas, or software (i.e., pages in the second
level of Figure 1). A complication arises here in that we
do not have “ground truth” labels for Web pages that were
not matched and labeled by regular expressions. Many of
these pages may indeed belong to other affiliate programs,
but many from known programs may have simply gone un-
detected. (The regular expressions do not provide complete
coverage; they can fail to match storefronts with slight, un-
foreseen variations in their HTML.) In this experiments we
therefore follow NN classification with manual validation of
its predictions. Here we succeed in detecting many addi-
tional storefronts from known affiliate programs that the
regular expressions failed to match.

Our next experiments explore the effectiveness of NN clas-
sification at the outset of a Web crawl of spam-advertised
URLs. At the outset of a crawl, practitioners must oper-
ate with very few labeled storefronts per affiliate program.
While some manual labeling is unavoidable, the key ques-
tion for practitioners is a simple one: how much labeling
is “enough”? In particular, how many storefronts must be
identified in each affiliate program before a NN classifier can
take over, thereby automating the rest of the process? To
answer this question we measure the accuracy of NN clas-
sification as a function of the number of labeled storefronts
per affiliate program.

Our final experiments consider the most difficult scenario,
one where practitioners lack the prior knowledge to label
any storefronts by affiliate program. In these experiments
we investigate how well (fully) unsupervised methods are
able to cluster storefronts from multiple unidentified affili-
ate programs. We conduct two experiments to evaluate this
potential. First, we cluster all the Web pages tagged as
storefronts and measure how well the clusters correlate with
known affiliate programs. Second, we investigate whether
unsupervised methods can discover new affiliate programs
among unlabeled storefronts. We also consider a closely re-
lated problem: recognizing when a known affiliate program
generates storefront templates from a new software engine.

4.1 Proof of Concept
Our first experiments compare how well different features

distinguish storefronts from a previously identified set of af-
filiate programs. In particular we experimented on the three

0 0.2 0.4 0.6 0.8 1 1.2
Distance to nearest neighbor in Eva

# 
of

 e
xa

m
pl

es

 

 

Eva
Other affiliates
Unlabeled

Figure 3: Histogram of three NN distances to EvaP-
harmacy storefronts: distances to storefronts in the
same affiliate program, to those in other programs,
and to unlabeled storefronts. Distances were com-
puted using the HTML bag-of-words representation
of the Web pages.

different sets of features listed in Table 3. For each of these,
we computed the accuracy of NN classification averaged over
ten 70/30 training/test splits of labeled storefronts from the
first three-month Web crawl. The splits were random ex-
cept that we did preserve the proportion of affiliate pro-
grams across splits; this was necessary to ensure that even
the smallest affiliate programs were represented in the train-
ing examples. NN classification in these experiments was ex-
tremely accurate. The classifier achieved over 99.6% (test)
accuracy with just network-based features, and with HTML
bag-of-word features it verged on ideal prediction: on aver-
age only 8 out of 53,484 test examples were misclassified.

Figure 3 provides a visual explanation for the accuracy
of NN classification. The distribution of NN distances illus-
trates how well-separated one class (EvaPharmacy) is from
other classes. The shape of this distribution also reflects the
large fraction of duplicates in the data set; these are different
storefronts whose Web pages have the same representation
in feature space.

These results demonstrate the power of very simple low-
level features to distinguish the storefronts of different af-
filiate programs. Two points are worth emphasizing: first,
that these features require no further processing for the high
accuracy of NN classification, and second, that they are easy
to extract automatically, requiring none of the manual effort
of previous approaches.

In the experiments that follow we use only the bag-of-
words features for NN classification. It is clear that these
features suffice to distinguish the storefronts of different af-
filiate programs; they are also more readily available, as only
the HTML source of a Web page is required. This consid-
eration is important for ease-of-use as a deployed system.
Also, as we have already remarked, the network-based fea-
tures were not available for storefronts crawled during the
second three-month period of data collection.

4.2 Labeling More Storefronts
Next we investigated whether our approach can identify

the affiliate programs of storefronts whose HTML was not
matched by regular expressions. One goal was to expand the

1764



Regex matched Not matched

ViaGrow ViagPURE

swissapotheke.net swiss-apotheke.net

swissapotheke24.com

swiss-apotheke.com

Table 4: Examples of storefronts matched by reg-
ular expressions (left column), and storefronts not
matched but discovered by NN classification (right
column).

number of labeled examples for subsequent evaluation of our
approach. We generated bag-of-words feature vectors for the
unlabeled Web pages using the vocabulary of HTML words
in labeled storefronts. For each unlabeled page, we found
the NN among labeled storefronts and marked it as a can-
didate match for that neighbor’s affiliate program. Finally,
for each affiliate program, we ranked the candidate pages by
the proximity of their NNs and examined the rankings with
the Web tool we implemented for manual validation.

In total we labeled 3,785 additional storefronts in the first
three-month crawl of spam-advertised URLs; these newly
labeled storefronts came from twenty-eight of the forty-four
known affiliate programs. For most of these programs the
new storefronts were detected as the top-ranked candidates,
and a simple distance threshold separated the “hits” from
the “misses.” For example, Figure 3 shows that we discov-
ered some new EvaPharmacy storefronts that were close or
identical to their NN among labeled storefronts (shown by
the small white segment of the first bar), but nothing beyond
that. Only two affiliate programs had highly ranked candi-
date storefronts that belonged to a different but previously
identified affiliate program.

Table 4 shows two storefronts detected by NN classifica-
tion but missed by the regular expressions. In both cases,
the discovered storefronts (right column) are very similar
to their NN (left column) in both their HTML content and
how they render in a browser. These examples expose the
brittleness of the regular expressions, evading detection by a
slight tweak to the domain name (swiss-apotheke.net) or
a simple re-branding (ViaGrow→ ViagPURE). Of course, a
straightforward refinement of the regular expressions would
rectify both these misses. However, it is precisely this need
for refinement that we wish to avoid. The strength of our
system is that it discovered and labeled these new storefronts
automatically.

We repeated this same process to label new storefronts
from the second three-month crawl of spam-advertised URLs.
For this period, we found and labeled 761 new storefronts
belonging to eighteen different affiliate programs. Table 5
shows how many additional storefronts we detected in all
six months for certain affiliate programs. In the first time
period, we detected the most new storefronts (1,467) for the
RX-Promotion affiliate program, although this number only
represented a 4% increase in the program’s size. However,
we detected an eight-fold increase in storefronts for the af-
filiate program Club-first.

4.3 Classification in the Wild
Our next experiments performed NN classification on all

spam-advertised Web pages that were categorized as phar-
maceutical, replica, or software Web sites. These are all
the pages in the middle panel of Figure 1, not merely those
matched by regular expressions. Most of these Web pages—
the ones matched by regular expressions, and the ones de-
tected and manually validated in the previous section—belong
to the known family of forty-four affiliate programs. The
others we assign to a catch-all label of “other,” thereby yield-
ing a 45-way problem in classification. With ground-truth
labels for these Web pages, we can now reliably measure the
performance of NN classification on this enlarged data set.

We began with experiments on the Web pages crawled
during the first three-month period. As before, but now
with the inclusion of an “other” label, we measured the ac-
curacy of NN classification on ten 70/30 splits of the data.
The average accuracy for 45-way classification was still re-
markably high at 99.95%. These results show that NN clas-
sification can distinguish the storefronts of different affiliate
programs even when many of them are collectively assigned
an undifferentiated label of “other.”

Next we investigated how well NN classification holds up
over time. For this we performed NN classification using
Web pages from the first three-month crawl as training ex-
amples and pages from the second three-month crawl as test
examples. The accuracy remained high at 87.7%, a level that
is still quite operationally useful for forty-five way classifi-
cation of affiliate programs. But the drop of performance
also indicates that a better system should adapt to affiliate
programs as they evolve in time. In particular, as we detect
and label new storefronts, it would behoove NN classifica-
tion to augment the set of training examples and extract a
larger vocabulary of HTML features.

Table 5 lists precision and recall on this task for some affil-
iate programs. The most startling result is the 0.25% recall
for ED Express; in fact, almost 70% of the incorrect pre-
dictions involved misclassified storefronts from this affiliate
program. We manually examined these storefronts and con-
cluded that ED Express switched to a new template engine
for generating storefronts. As a result the storefronts for
ED Express from the second three-month crawl were rather
different than those from the first. This is a valuable insight
into how affiliate programs4 operate, and we return to this
case in our final set of experiments.

4As an aside, we learned later that these misclassified store-
fronts belonged to Pharmacy Express, and that Pharmacy
Express and ED Express are in fact part of the same ag-
gregate program called Mailien. Some of these errors can
therefore be attributed to noisy and/or imperfect labeling
of the training examples.

1765



1st 3 months 2nd 3 months

Affiliate program labeled detected precision recall labeled detected precision recall

EvaPharmacy 58,215 434 99.98 100.00 13,529 98 99.29 99.29
Pharmacy Express 44,017 42 100.00 100.00 2,454 11 99.59 99.55
RX-Promotion 37,245 1,467 100.00 100.00 3,317 198 94.31 93.88
Online Pharmacy 16,546 758 100.00 100.00 3,457 271 92.86 92.86
GlavMed 6,616 263 99.95 100.00 176 49 77.73 76.00
EuroSoft 2,215 15 100.00 100.00 1,681 54 97.00 96.89
Ultimate Replica 79 10 100.00 100.00 121 5 96.03 96.03
ED Express 77 5 96.30 100.00 3,653 0 90.00 0.25
Club-first 14 114 100.00 100.00 6 0 100.00 100.00

Table 5: Data sizes and performance for select affiliate programs. The first five are the largest classes.
EuroSoft and Ultimate Replica are representative software and replica programs. ED Express suffers drastic
misprediction in the 2nd 3 months since it changed template engines. Club-first is the affiliate program whose
size experiences the largest percent gain as a result of our classifier. In total, we profiled the storefronts of
29 pharmaceutical, 10 replica, and 5 software affiliate programs.

4.4 Learning with Few Labels
We next consider how many storefronts must be manually

labeled before an automated system can dependably take
over. In these experiments we vary the amount of labeled
storefronts that are available as training examples for NN
classification. In previous sections we studied the regime
where there were many labeled storefronts per identified af-
filiate program. Here we consider the opposite regime where
each affiliate program may, for instance, have no more than
one labeled storefront.

We make two preliminary observations. First, in these
experiments we not only have many fewer training exam-
ples; we also have many fewer features because the feature
extraction is necessarily limited to counts of HTML words
that appear in the training examples. Thus, to be clear, if we
have just one labeled storefront per affiliate program, then
we can only extract features from those forty-four labeled
storefronts. In this regime we do not exclude rare words
(though we still exclude stopwords).

Second, in these experiments we handle the “other” label
for unidentified Web pages as a special case. At the out-
set of a Web crawl, we imagine that practitioners are likely
to encounter numerous instances of Web pages that belong
to unidentified affiliate programs or that do not represent
storefronts at all. Thus in all the experiments of this section
we assume that 100 Web pages are available from the undif-
ferentiated “other” class that does not map to a previously
identified affiliate program.

Figure 4 plots the balanced accuracy of NN classifica-
tion per affiliate program (averaged over five random train-
ing/test splits) versus the number of labeled storefronts.
Note that throughout this regime, the median accuracy holds
at 100%, meaning that at least half the affiliate programs
have none of their storefronts misclassified. Overall the re-
sults show that even with few labeled storefronts, NN classi-
fication is accurate enough to be operationally useful. With
only one labeled storefront per affiliate program, the aver-
age 45-way classification accuracy remains nearly 75%; with
two storefronts, it jumps to 85%, and with four, eight, and
sixteen, it climbs respectively to 93%, 97%, and 98%.

Table 6 shows four correctly classified storefronts that ren-
der quite differently than their nearest (labeled) neighbors
in this regime. Visually, it is not immediately obvious that

1 2 4 8 16

60

70

80

90

100

# of training examples per class

Ba
la

nc
ed

 a
cc

ur
ac

y 
(%

)

Figure 4: Boxplot showing balanced accuracy for
all 45 classes as a function of training size. The
top and bottom edges of the box are the 75th and
25th percentiles, respectively. The whiskers show
the lowest points not considered outliers, and the
outliers are individual plus marks.

these pairs of storefronts belong to the same affiliate pro-
gram; upon inspection of their HTML source, however, it
becomes apparent that their DOM trees share a similar un-
derlying structure.

We found that the affiliate program called RX-Partners
suffered the worst performance throughout this regime. Upon
closer examination of these errors, however, we observed
that the regular expressions for RX-Partners often matched
Web pages that were not storefronts at all. This mislabel-
ing created many confusions in NN classification between
RX-Partners and the undifferentiated “other” label.

These results suggest an iterative strategy for practition-
ers that balances the demands for high levels of both accu-
racy and automation. To begin, practitioners may seed NN
classification with just one or two labeled storefronts per
affiliate program. Then, using the preliminary predictions
from NN classification in this regime, they may attempt to
grow the number of labeled storefronts (and extractable fea-
tures) in alternating rounds of manual validation and re-
training. This “bootstrapping” strategy seems the most ef-
fective way to develop a practical, working system.

1766



Training Example Correct Classifications

Table 6: Examples of correctly classified storefronts
when there is only one training example per affili-
ate program. The affiliate programs shown here are
33drugs and RX-Promotion.

4.5 Clustering
Finally, we investigate the capabilities of fully unsuper-

vised methods for distinguishing storefronts from different
affiliate programs. We do this first for the full set of phar-
maceutical, replica, and software Web pages, in the hope
that these storefronts might cluster in an organic way by
affiliate program. Next we do this just for the set of undif-
ferentiated storefronts marked as “other”, in the hope that
we might identify new affiliate programs within this set.

4.5.1 Clustering of Storefronts by Affiliate Program
A preliminary clustering of online storefronts can be useful

as a first step before the manual labeling of their affiliate
programs. This was the approach taken in [9], and it is the
operational setting that we emulate here.

We ran the k-means algorithm, one of the simplest unsu-
pervised methods for clustering, on all the Web pages tagged
as storefronts for pharmaceuticals, replica luxury goods, and
software. These pages included those in the “other” class
not identified with a known affiliate program. In general,
the cluster labels are highly predictive of the affiliate pro-
gram identities: of the 42 clusters, 22 are entirely composed
of storefronts from a single affiliate program, and 32 very
nearly have this property, with less than 1% of their store-
fronts from a competing program.

A quantitative measure of this correlation is given by the
uncertainty coefficient [16], which measures the reduction
of uncertainty in a Web page’s class label c (e.g., affiliate
program) given its cluster label d. Let C and D denote ran-
dom variables for these labels. The uncertainty coefficient
is computed as:

U(C|D) = 1− H(C|D)

H(C)
= 1−

∑
c,d p(c, d) log p(c|d)∑

c p(c) log p(c)
,

where H(C) is the entropy of C and H(C|D) is the condi-
tional entropy of C given D. The joint probability p(c, d) is
obtained by counting the number of Web pages with class
label c and cluster label d, then dividing by the total num-
ber of Web pages. Note that the uncertainty coefficient is
bounded between 0 and 1, where 0 indicates that the two

1 10 100 1000 10000
0

2

# storefronts

# 
pr

og
ra

m
s

 

 

 affiliate programs with error rate < 15%

1 10 100 1000 10000
0

5

# storefronts

# 
pr

og
ra

m
s

 

 

 affiliate programs with error rate > 95%

Figure 5: Number of affiliate programs of different
sizes with few versus many clustering errors; see text
for details. In general the larger programs have low
error rates (top), while the smaller programs have
very high error rates (bottom).

variables are completely uncorrelated, and 1 indicates that
one variable is completely determined by the other. From
the results of k-means clustering we obtain an uncertainty
coefficient of 0.933. This coefficient shows that very few
clusters contain Web pages from more than one class.

Another measure of cluster “purity” is obtained by com-
puting the overall percentage of storefronts assigned to a
cluster that contains more storefronts from a different affili-
ate program. This percentage is 3.27%, quite a low confusion
rate for a problem in 45-way classification.

It must be emphasized, however, that while k-means clus-
tering generally separates Web pages from different affiliate
programs, it does so by modeling the larger affiliate pro-
grams at the expense of the smaller ones. In particular, only
11 out of 44 affiliate programs are represented as the dom-
inant class of one or more clusters; the other 33 programs
are swallowed up by the larger ones. We say a clustering
“error” occurs when a storefront is mapped to a cluster that
contains more storefronts from one or more different affil-
iate programs. The top panel of Figure 5 shows that all
the largest affiliate programs (with over 2000 storefronts)
have error rates less than 15%; conversely, the bottom panel
shows that all the smallest affiliate programs (with fewer
than 100 storefronts) have error rates greater than 95%.

We conclude that unsupervised methods have high accu-
racy but poor coverage of affiliate programs. On one hand,
by distinguishing storefronts in the largest affiliate programs
(which account for over 96% of the Web pages), these meth-
ods may greatly reduce the set of pages that require manual
labeling. On the other hand, for complete coverage of af-
filiate programs, it seems imperative to label at least one
storefront per program. Once these labels are provided,
moreover, we believe that the best approach will be a su-
pervised model, such as NN classification, that exploits the
information in these labels.

4.5.2 Detecting New and Evolving Programs
Lastly we investigate the potential of clustering meth-

ods to detect new and evolving affiliate programs. In our
first experiment, we used the k-means algorithm to clus-
ter the storefronts labeled as “other” from the first three-
month crawl. We then ranked the storefronts in each clus-

1767



ter by their distance to the cluster centroid and manually
examined the top-ranked (i.e., most “central”) ones with our
Web visualization tool. Using this approach, we discovered
a new affiliate program called RxCashCow; the 430 top-
ranked storefronts in one cluster belonged to this program,
and only a small fraction of the top-ranked 1,100 did not.

Finally we revisit the interesting case of ED Express. Re-
call that NN classification failed to identify these storefronts
during the second three-month crawl because the affiliate
program switched to a new template engine. Our last exper-
iment used the k-means algorithm to cluster all the store-
fronts from the second three-month crawl. Our hope was
that the algorithm might separate out the evolved store-
fronts of ED Express, and indeed we found a cluster whose
3,580 top-ranked pages were exactly those generated by the
new template engine.

5. CONCLUSION
We have described an automated approach for profiling

the online storefronts of counterfeit merchandise. We evalu-
ated our approach on hundreds of thousands of storefronts
gathered from a Web crawl of spam-advertised URLs. Our
methods aim to identify the affiliate programs behind these
storefronts, an important first step in tracking and target-
ing illicit e-commerce. Our first experiments showed that
these affiliate programs could be identified, with high accu-
racy, from simple NN classification on bag-of-words features.
With an operational setting in mind, we also showed that
the feature extraction and NN classification only required
a small seed of labeled storefronts to be highly effective.
Our final experiments investigated the potential of unsuper-
vised methods for clustering storefronts by affiliate program.
Here we found that k-means clustering could be used to dis-
cover affiliate programs with large spam footprints, but that
smaller affiliate programs (i.e., those with fewer storefronts)
were not cleanly identified. Overall, our work is an encour-
aging case study in the application of machine learning to
an important class of security problems on the Web.

Acknowledgments
We thank Andreas Pitsillidis and Tristan Halvorson for mak-
ing this data set accessible, as well as Cindy Moore for set-
ting up our computing resources. This work was supported
in part by National Science Foundation grant CNS-1237264,
by the Office of Naval Research MURI grant N00014-09-1-
1081, and by generous research, operational and/or in-kind
support from Google, Microsoft, Yahoo, and the UCSD Cen-
ter for Networked Systems (CNS).

6. REFERENCES
[1] S. N. Bannur, L. K. Saul, and S. Savage. Judging a site by

its content: learning the textual, structural, and visual
features of malicious Web Pages. In Proc. of the 4th ACM
Workshop on Security and Artificial Intelligence, 2011.

[2] T. Cover and P. Hart. Nearest neighbor pattern
classification. In IEEE Transactions in Information
Theory, IT-13, pages 21–27, 1967.

[3] J. Drew and T. Moore. Automatic identification of
replicated criminal websites using combined clustering. In
International Workshop on Cyber Crime (IWCC), IEEE
Security and Privacy Workshops. IEEE, 2014.

[4] T. Halvorson, K. Levchenko, S. Savage, and G. M. Voelker.
XXXtortion? Inferring Registration Intent in the .XXX

TLD. In Proceedings of the International World Wide Web
Conference (WWW), Apr. 2014.

[5] J. P. John, F. Yu, Y. Xie, A. K. and M. Abadi. deSEO:
Combating Search-Result Poisoning. In Proceedings of the
20th USENIX Security Symposium, August 2011.

[6] I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, New York, 1986.

[7] C. Kanich, N. Weaver, D. McCoy, T. Halvorson,
C. Kreibich, K. Levchenko, V. Paxson, G. M. Voelker, and
S. Savage. Show Me the Money: Characterizing
Spam-advertised Revenue. In Proc. of the USENIX
Security Symposium, San Francisco, CA, Aug. 2011.

[8] R. Layton, P. Watters, and R. Dazeley. Automatically
determining phishing campaigns using the uscap
methodology. In eCrime Researchers Summit (eCrime),
2010, pages 1–8, Oct 2010.

[9] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright,
M. Félegyházi, C. Grier, T. Halvorson, C. Kanich,
C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson,
G. M. Voelker, and S. Savage. Click Trajectories:
End-to-End Analysis of the Spam Value Chain. In
Proceedings of the IEEE Symposium and Security and
Privacy, Oakland, CA, May 2011.

[10] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing
Your Enemy: Understanding and Detecting Malicious Web
Advertising. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), October 2012.

[11] J.-L. Lin. Detection of cloaked web spam by using tag-based
methods. Expert Syst. Appl., 36(4):7493–7499, May 2009.

[12] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel. On the
Effectiveness of Techniques to Detect Phishing Sites. In
Proceedings of the Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), 2007.

[13] D. McCoy, H. Dharmdasani, C. Kreibich, G. M. Voelker,
and S. Savage. Priceless: The Role of Payments in
Abuse-advertised Goods. In Proceedings of the ACM
Conference on Computer and Communications Security,
Raleigh, NC, Oct. 2012.

[14] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver,
C. Kreibich, B. Krebs, G. M. Voelker, S. Savage, and
K. Levchenko. PharmaLeaks: Understanding the Business
of Online Pharmaceutical Affiliate Programs. In Proceedings
of the USENIX Security Symposium, Aug. 2012.

[15] T. Moore and B. Edelman. Measuring the Perpetrators and
Funders of Typosquatting. In Proceedings of the 14th
International Conference on Financial Cryptography and
Data Security, 2010.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes 3rd Edition: The Art of
Scientific Computing. Cambridge University Press, New
York, NY, USA, 2007.

[17] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose.
All Your iFRAMEs Point to Us. In Proceedings of the
USENIX Security Symposium, 2008.

[18] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song.
Design and Evaluation of a Real-Time URL Spam Filtering
Service. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2011.

[19] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne.
Tracking Web Spam with HTML Style Similarities. ACM
Trans. Web, 2(1):3:1–3:28, Mar. 2008.

[20] D. Wang, S. Savage, and G. M. Voelker. Juice: A
Longitudinal Study of an SEO Campaign. In Proc. of the
Network and Distributed System Security Sympo sium
(NDSS), San Diego, CA, Feb. 2013.

[21] Y. Zhang, J. Hong, and L. Cranor. CANTINA: A
Content-Based Approach to Detecting Phising Web Sites.
In Proceedings of the International World Wide Web
Conference, pages 639–648, 2007.

1768




