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ABSTRACT
With billions of handsets in use worldwide, the quantity of
mobility data is gigantic. When aggregated they can help
understand complex processes, such as the spread viruses,
and built better transportation systems, prevent traffic con-
gestion. While the benefits provided by these datasets are
indisputable, they unfortunately pose a considerable threat
to location privacy.

In this paper, we present a new anonymization scheme
to release the spatio-temporal density of Paris, in France,
i.e., the number of individuals in 989 different areas of the
city released every hour over a whole week. The density
is computed from a call-data-record (CDR) dataset, pro-
vided by the French Telecom operator Orange, containing
the CDR of roughly 2 million users over one week. Our
scheme is differential private, and hence, provides provable
privacy guarantee to each individual in the dataset. Our
main goal with this case study is to show that, even with
large dimensional sensitive data, differential privacy can pro-
vide practical utility with meaningful privacy guarantee, if
the anonymization scheme is carefully designed. This work is
part of the national project XData (http://xdata.fr) that
aims at combining large (anonymized) datasets provided by
different service providers (telecom, electricity, water man-
agement, postal service, etc.).

1. INTRODUCTION
Mobile phone datasets have become widely available in

recent years and have opened the possibility to improve our
understanding of large-scale social networks by investigat-
ing how people exchange information, interact, and develop
social interactions. While the benefits provided by these
datasets are indisputable, they unfortunately pose a consid-
erable threat to location privacy. Not only this can impact
people lives negatively, this also affects research. Because
privacy is so important to people, companies and researchers
are reluctant to publish mobile phone datasets by fear of
being held responsible for potential privacy breaches. It is
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therefore urgent to develop practical tools for private releases
and analysis of mobility datasets.

This paper focuses on applications that only need location
counts, i.e., the repartition of visitors on a map at a given
period of time. This information can typically be published
by dividing a map into cells, and then releasing the count
(i.e., number of users) associated to each of the cells. How-
ever, it is important to ensure that this publication does not
leak any information about the mobility patterns of indi-
vidual users, which might be trivial when, for example, the
count values are small.

Why Differential Privacy? Privacy has different def-
initions and different models have been proposed. In this
paper, we use differential privacy [10] which has emerged as
a compelling privacy model. The advantage of this model,
compared to the many others proposed in the literature, is
two-fold. First, it provides a formal and measurable privacy
guarantee regardless what other background information or
sophisticated inference technique the adversary uses even in
the future. Second, it is closed with respect to sequential
and parallel composition, i.e., the result of the sequential or
parallel combination of two differential private algorithms is
also differential private.

This has particular importance in practice, since it does
not only simplify the design of anonymization solutions, but
also allows to measure how much privacy remains when a
given dataset, or a set of correlated datasets, is anonymized
(and released) several times, possibly by different entities.

Differential-private schemes often requires adding noise to
the published data (e.g., to the published location counts)
so that it leaks almost no information about any partici-
pating individual, but still reveals aggregated information
about the population as a whole. The variance of the noise
is calibrated to both the sensitivity of the counts (i.e., the
maximal change of the counts due to the inclusion/exclusion
of a single record in a dataset) and a desired privacy level
ε. For large-dimensional data, such as temporal density, the
sensitivity is usually so large that the added noise is much
larger than the actual density count values for stringent pri-
vacy requirement (i.e. ε < 1). Consequently, the resultant
anonymized data is often meaningless.

Contributions. In this paper, we show that, for a given
privacy level (i.e., a given ε), the magnitude of noise can
be substantially reduced by using several optimizations and
by customizing the anonymization mechanisms to the pub-
lic characteristics of datasets and applications. We observe
that the temporal density, of each cell, can be characterized
by a periodic time series. This is explained by the fact that
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aggregated mobility patterns are quite periodic. Moreover
these time series follow very similar trends, as most people
in nearby cells have similar calling patterns. As a conse-
quence, time series can be compressed by sampling, cluster-
ing and low-pass filtering. Sampling and clustering reduce
data sensitivity, which results in lower added noise and bet-
ter performance. We further attenuate the distortion result-
ing from the compression and perturbation phases via novel
optimization and post-processing algorithms. We show ex-
perimentally that the achieved performance is quite high
and that differential privacy can be practical in real-world
applications. However, we believe that there are probably
no differential private anonymization techniques that fit all
applications, and that anonymization algorithms have to be
customized to each application and dataset.

The XData project. This work was done in the context
of the French XData project. XData is a national funded
project under the“Big Data program”, whose goal is to study
the benefit of combining and cross-processing different types
of datasets provided by various service providers (such as
Orange, Electricité de France, La Poste, etc.). However,
according to the European Data Protection laws (Directive
95/46/EC), all datasets have to be anonymized, prior cross-
processing, such that data subjects are no longer identifi-
able. The law does not dictate any specific privacy model,
but stipulates that “to determine whether a person is iden-
tifiable, account should be taken of all the means likely rea-
sonably to be used either by the controller or by any other
person to identify the said person”. We believe that the best
existing model to achieve this goal is probably differential
privacy. This paper shows how to anonymize the mobil-
ity data, provided by Orange, under the differential privacy
model. In particular, we show how to release density infor-
mation. Geographical density is useful in many of applica-
tions envisioned by the XData projet, such as identifying
areas where to install new businesses or build new infras-
tructures.

2. RELATED WORK
Several recent studies have demonstrated the privacy risks

of releasing location data by re-identifying individuals from
geospatial data sets [8, 28, 13]. As a result, a plethora of
privacy-preserving techniques have been introduced, how-
ever, most of them do not provide any formal privacy guar-
antee (see [6] and the references therein).

Differential privacy (DP) was first rigorously presented in
[10] with the Laplace mechanism (LPA) as a first generic
tool to guarantee DP. There exist two relaxations of ε-DP;
(ε,δ)-probabilistic DP [20] and (ε, δ)-indistinguishability [9].
The former guarantees ε-DP with high probability (≥ 1−δ),
while the latter relaxes the bound of ε-DP.

Location privacy has also been addressed in the context
of DP. [5] applies DP to location, and more generally, se-
quential data release. However, this scheme does not release
time information apart from the sequentiality of locations.
Another recent work [2] formalizes location privacy as pro-
tecting the users’ location within a radius r with a level of
privacy that depends on r. This corresponds to a generalized
version of DP. They target LBS applications and add noise
directly to users’ GPS coordinates. Commuting patterns in
U.S. were anonymized in the probabilistic DP model in [20].
This scheme has also been deployed in practice within the
project called OnTheMap by the U.S. Census Bureau. Other

authors [7, 19] apply different spatial decomposition tech-
niques to partition the two dimensional domain into cells,
and then obtain noisy counts for each cell. However, these
techniques are not concerned with releasing multiple counts
over time.

Several DP techniques have been proposed to release time
series. In [12], the authors propose a framework to release
real-time aggregate statistics under DP based on filtering
and adaptive sampling. Some other proposals [11, 4] provide
a weaker guarantee on continuous data streams; they pro-
vide event-level privacy to protect an event (i.e., one user’s
presence at a particular time point), rather than the pres-
ence of that user. As all these works address the real-time
(interactive) release of aggregates, they are usually less ac-
curate than off-line (non-interactive) approaches, which can
access the whole time series and build more accurate models
for perturbation.

The most related work to ours is [24, 17, 23]. All of them
address the off-line release of time series under DP. Ras-
togi and Nath [24] proposed a Discrete Fourier Transform
(DFT) based algorithm which guarantees DP by perturbing
the discrete Fourier coefficients. This technique was further
improved for DP histogram release in [1]. We reuse the im-
proved private DFT algorithm from [1], and further improve
its accuracy at the cost of some privacy. In [17], the time se-
ries are pre-processed by pre-sampling and smoothing them
via averaging. These techniques diminish the global sensi-
tivity of the data, and thereby allows to lower the injected
Laplace noise. We also use a similar sampling technique
to [17] in order to compress time series. However, [17] is
a more general solution and targets even non-periodic time
series where averaging may be a better perturbation model
than DFT. As aggregated location counts are typically pe-
riodic, DFT is a more accurate perturbation model for our
application. Finally, DP-WHERE [23] adds noise to the set
of empirical probability distributions which is derived from
the original CDR datasets, and samples from these distribu-
tions to generate synthetic CDRs. Instead of releasing the
whole CDR dataset, we only aim at releasing the temporal
density of IRIS cells which is a more specific problem. This
mapping between CDRs and IRIS cells influences utility and
is not considered in [23].

3. PRELIMINARIES

3.1 Differential Privacy
Intuitively, differential privacy [10] (DP) requires that the

outcome of any computation be insensitive to the change of
a single record in the dataset. Consequently, for a record
owner, it means that any privacy breach will not be due to
participating in the database.

Definition 1 (Differential Privacy) A privacy mecha-
nism A gives ε-differential privacy if for any database D1

and D2 differing on at most one record, and for any possible
output O ∈ Range(A),

e−ε × Pr[A(D2) = O] ≤ Pr[A(D1) = O] ≤ eε × Pr[A(D2) = O]

where the probability is taken over the randomness of A.

A relaxation of DP is probabilistic-DP [20], where privacy
breaches may occur with very small probability.

1680



Definition 2 (Probabilistic Differential Privacy [20])
A privacy mechanism A gives (ε, δ)-probabilistic differential
privacy if for any database D1 and D2 differing on at most
one record, and for any possible output O ∈ Range(A), we
can partition the output space Ω into Ω1 and Ω2 such that
(1) for all O ∈ Ω1,

e−ε × Pr[A(D2) = O] ≤ Pr[A(D1) = O] ≤ eε × Pr[A(D2) = O]

and (2) for any database D, Pr[A(D) ∈ Ω2] ≤ δ where the
probability is taken over the randomness of A.

The latter definition guarantees that algorithm A achieves
DP with high probability (≥ 1− δ), and the set Ω2 contains
all outputs that are privacy breaches according to Definition
1. The probability of these outputs are bounded by δ. Notice
that with δ = 0 probabilistic DP boils down to Definition
1. Although probabilistic DP has weaker privacy guarantee
than Definition 1, it provides higher utility in practice.

The definition of differential privacy enjoys the property
of sequential composition, which specifies the privacy guar-
antee in a sequence of computation.

Theorem 1 ([21]) Let Ai each provide εi-differential pri-
vacy. A sequence of Ai(D) over the dataset D provides∑
i εi-differential privacy.

3.2 Differential Private Mechanisms
Three principal techniques for achieving (probabilistic)

DP are Laplace mechanism [10] (LPA), Gaussian mecha-
nism [15] (GPA), and Exponential mechanism [22]. A fun-
damental concept of all these techniques is the global sensi-
tivity of a function [10]:

Definition 3 (Global Sensitivity) For any function f :
D → Rd, the sensitivity of f is ∆f = maxD1,D2 ||f(D1) −
f(D2)||1 for all D1,D2 differing in at most one record.

The global sensitivity is also called as L1-sensitivity due to
the L1-norm used in its definition and is denoted by ∆1f .
Similarly, the L2-sensitivity ∆2f of a function f , which is
used later in this paper, is defined by the L2-norm || · ||2.

Laplace mechanism (LPA). A standard mechanism to
achieve differential privacy is to add Laplace noise to the true
output of a function. The noise is generated according to
a Laplace distribution with the probability density function
(PDF) p(x|λ) = 1

2λ
e−|x|/λ, where λ is calibrated as follows.

Theorem 2 ([10]) For any function f : D → Rd, the
mechanism A

A(D) = f(D) + 〈L1(λ), . . . ,Ld(λ)〉

gives ε-differential privacy, if Li(λ) are i.i.d Laplace vari-
ables with scale parameter λ = ∆f/ε.

Gaussian mechanism (GPA). An alternative technique
to achieve probabilistic DP is to add Gaussian noise to the
true output of a function. The noise is generated accord-
ing to the Gaussian distribution with the PDF p(x|σ) =

1√
2πσ

e−x
2/2σ2

.

Theorem 3 ([15]) For any function f : D → Rd, the
mechanism A

A(D) = f(D) + 〈G1(σ), . . . ,Gd(σ)〉

gives (ε, δ)-probabilistic differential privacy for any ε ≤ 1
and σ2 ≥ 2(∆2f)2 ln(4/δ)/ε2, where Gi(σ) are i.i.d Gaus-
sian variables with variance σ2.

Assuming identical values of ε, a Gaussian random vari-
able is more concentrated around 0 than a Laplace random
variable thereby ensuring better utility for GPA. However,
this larger accuracy also entails weaker privacy, since there
is a small probability δ that ε-DP will not hold.

Exponential mechanism. The exponential mechanism
[22] captures all DP mechanisms with a measurable output
space. In particular, it assigns exponentially greater proba-
bilities of being selected to outputs of higher utility so that
the final output would be close to the optimum yet still dif-
ferential private.

Theorem 4 ([22]) Given a utility function u : (D ×R)→
R for a database D, the mechanism A,

A(D, u) =

{
return r with probability ∝ exp

(
εu(D, r)

2∆u

)}
gives ε-differential privacy, where ∆u = max∀r,D1,D2

|u(D1, r)− u(D2, r)|.

3.3 Utility Metrics
The error between the private and original time series is

measured by the following metrics. Consider counts X =
{X0, . . . , Xn−1}. We denote the original time series by X,

the sanitized one by X̂.

Mean Relative Error (MRE): MRE(X, X̂) =

(1/n)
∑n−1
i=0

|X̂i−Xi|
max(γ,Xi)

, where the sanity bound γ mit-

igates the effect of very small counts. Following the
convention [27], we adjust γ to 0.1% of

∑n−1
i=0 Xi.

Pearson Correlation (PC): PC(X, X̂) =∑n−1
i=0 (Xi−

∑
iXi/n)(X̂i−

∑
i X̂i/n)√∑n−1

i=0 (Xi−
∑

iXi/n)2
√∑n−1

i=0 (X̂i−
∑

i X̂i/n)2
. PC measures the

linear correlation between the noisy and the original time
series (i.e., whether they have similar trends), and it always
falls between -1 and 1.

4. PROBLEM DEFINITION
Our goal is to release the spatio-temporal density of 989

non-overlapping areas in Paris, called IRIS cells. Each cell
is defined by INSEE1 and covers about 2000 inhabitants.
The set of all IRIS cells is denoted by L henceforth, and are
depicted in Figure 1 based on their contours2.

We aim to release the number of all individuals who vis-
ited a specific IRIS cell in each hour over a whole week. Since
human mobility trajectories exhibit a high degree of tempo-
ral and spatial regularity [14], one week long period should
be sufficient for most practical applications. Therefore, we
are interested in the time series XL = 〈XL

0 , X
L
1 , . . . , X

L
167〉

of any IRIS cell L ∈ L, where XL
t denotes the number of

individuals at L in the (t+ 1)th hour of the week, such that
any single individual can visit a tower only once in an hour.

1National Institute of Statistics and Economics:
http://www.insee.fr/fr/methodes/default.asp?page=
zonages/iris.htm
2Available on IGN’s website (National Geographic Insti-
tute): http://professionnels.ign.fr/contoursiris
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We will omit t and L in the sequel, if they are unambiguous
in the given context. XL denotes the set of time series of all
IRIS cells in the sequel.

4.1 Dataset
To compute these time series, we use a CDR (Call Data

Record) dataset provided by the French telecom company
Orange3, where T represents the set of cell towers of the
operator, and a cell tower T ∈ T is visited by an individ-
ual at time t, if the operator has a recorded event at time
t at tower T related to the individual. An event can be an
incoming/outgoing call or message to/from the individual.
This dataset contains the events of N = 1, 992, 846 users
at |T| = 1303 towers within the administrative region of
Paris (i.e., the union of all IRIS cells) over a single week
(10/09/2007 - 17/09/2007). Within this interval, the aver-
age number of events per user is 13.55 with a standard de-
viation of 18.33 (assuming that an individual can visit any
tower cell only once in an hour) and with a maximum at
732. The set of all events related to an individual constitute
his/her record (trajectory) in the dataset. Similarly to IRIS
cells, we can create another set of time series XT, where XT

t

denotes the number of visits of tower T in the (t+1)th hour
of the week.

4.2 Computing the time series of IRIS cells
We map the counts in XT to XL as follows. First, we

compute the Voronoi tesselation of the towers cells T which
is shown in Figure 1. Then, we calculate the count of
each IRIS cell in each hour from the counts of its overlap-
ping tower cells; each tower cell contributes with a count
which is proportional to the size of the overlapping area.
More specifically, if an IRIS cell L overlaps with tower cells
{T1, T2, . . . , Tc}, then

XL
t =

c∑
i=1

XTi
t ×

size(Ti ∩ L)

size(Ti)
(1)

at time t.
The rationale behind this mapping is that users are usu-

ally registered at the geographically closest tower at any
time. We acknowledge that this mapping algorithm might
sometimes be incorrect, since the real association of users
and towers depends on several other factors such as signal
strength or load-balancing. Nevertheless, without more de-
tails of the cellular network beyond the towers’ GPS posi-
tion, we are not aware of any better mapping technique.

5. PRIVACY PRESERVING RELEASE OF
SPATIO-TEMPORAL DENSITY

Our aim is to transform the time series of all IRIS cells XL

to a sanitized version X̂L such that X̂L satisfies Definition
1. That is, the distribution of X̂L will be insensitive (up to
ε) to all the visits of any single user during the whole week,

meanwhile the error between X̂L and XL is small.
Our sanitization algorithm is sketched in Algorithm 1.

First, the input dataset is pre-sampled such that only ` visits
are retained per user (Line 1). This ensures that the global
sensitivity of all the time series (i.e., XL) is no more than `.
Then, the pre-sampled time series of each IRIS cell is com-
puted from that of the tower cells using Voronoi-tesselation

3http://www.orange.com

Figure 1: IRIS cells of Paris (left) and Voronoi-tesselation
of tower cells (right)

Algorithm 1 Our sanitization scheme

Input: XT - input time series (from CDR), (ε, δ)-privacy param-
eters, L - IRIS cells, ` - maximum visits per user

Output: Noisy time series X̂L

1: Create X
T

by sampling at most ` visits per user from XT

(Section 5.1)

2: Compute the IRIS time series X
L

from X
T

(Section 4.2)
3: Compute the minimum cover C ⊆ T∪L and the corresponding

time series X
C

(Section 5.2)

4: Perturb X
C

into X̂C (Section 5.3) //see Algorithm 2

5: Apply smoothing on X̂C (Section 5.4)

6: Compute X̂L from X̂C using Formula (1)

and Formula (1) (Line 2). After the largest cells, which cover
the whole city and also have large counts, from T∪L are iden-
tified (Line 3), their time series are perturbed to guarantee
privacy (Line 4). In order to mitigate the distortion of the
previous steps, we apply smoothing on the perturbed time
series as a post-processing step (Line 5). Finally, the time
series of all IRIS cells are computed from the post-processed
time series in C (Line 6).

5.1 Pre-sampling
To perturb the time series of all IRIS cells, we first have to

compute their sensitivity, i.e., ∆1(XL). To this end, we first
need to calculate the sensitivity of the time series of all tower
cells, i.e., ∆1(XT). Indeed, Formula (1) does not change
the L1-sensitivity of tower counts, and hence, ∆1(XT) =
∆1(XL).

∆1(XT) is given by the maximum total number of (tower)
visits of a single user in any input dataset. This upper
bound must universally hold for all possible input datasets,
and is usually on the order of few hundreds; recall that the
maximum number of visits per user is 732 in our dataset.
This would require excessive noise to be added in the per-
turbation phase. We instead follow a different approach and
divide the whole sanitization process into two main steps.
We first perturb a pre-sample of our dataset which better
withstands perturbation, and then mitigate the distortion
effect of sampling in a post-processing step described later
in Section 5.4.

In particular, we truncate each record of any input dataset
by considering at most one visit per hour for each user, and
then select at most ` of such visits per user uniformly at
random over the whole week. This implies that a user can
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contribute with at most ` to all the counts in total regard-
less of the input dataset, and hence, the L1-sensitivity of
the dataset always becomes `. The pre-sampled dataset is

denoted by X, and ∆1(X
T
) = ∆1(X

L
) = `.

5.2 Computing the largest covering cells
To sanitize X

L
, there are two basic (naive) approaches.

First, we can directly perturb the IRIS counts X
L

by ap-

plying the Laplace mechanism: X̂L
t = X

L
t + L(`/ε) for all

L ∈ L. Alternatively, we can first perturb the tower counts

X
T

to obtain X̂T, then compute the noisy IRIS counts X̂L

from X̂T by applying Formula (1). Although both tech-
niques guarantee ε-DP according to Theorem 2, in terms of
utility, they are suboptimal.

Cells with small counts have larger relative error, whereas
larger counts better resist noise. This is due to the fact
that the injected noise is independent of the magnitude of
the original counts but only depends on their sensitivity.
Therefore, the best approach is to first select cells having
the largest counts (which can be either tower or IRIS cells)
such that they cover whole Paris, perturb the counts of these
cells, and then recompute the noisy counts of the smaller
IRIS cells, which were not selected in the cover, from the
larger (noisy) tower counts.

However, selecting the optimal cover of Paris (i.e., the
set of cells having the largest counts) must also be differ-
ential private. Fortunately, a simple heuristic helps us to
accurately approximate the optimal cover without using the
true counts of the cells (that would require to introduce more
noise): cells with large size tend to have large counts4. This
is also confirmed by Figure 2a and 2b. Hence, we re-state
the problem as follows.

How can we select the minimum cardinality subset of cells
C ⊆ T∪L such that C is a complete cover (i.e., covers whole
Paris)?

More formally, let G(V,E) denote a graph, where each
vertex corresponds to a cell in T∪L, and (v, v′) ∈ E iff cells
v and v′ overlap. In this setting, our problem translates to
the classical minimum vertex cover problem [3]. Indeed, as
T and L are also complete covers of Paris, each vertex in V
has at least one edge (a tower cell is always overlapped by
at least one IRIS cell, and vice-verse), and we want to com-
pute the minimum cardinality subset of cells which cover all
the overlapping areas between cells. Although the minimum
vertex cover problem is NP-hard in general, our covering
problem belongs to the special cases which can be efficiently
solved.

Theorem 5 (Minimum cardinality cover) Selecting
the minimum cardinality subset of cells C ⊆ T∪L such that
C is a complete cover can be solved in O(|T||L|

√
|T|+ |L|).

Proof. G(V,E) is bipartite, since the IRIS cells as well
as the tower cells are partitionings of Paris, i.e., there are
no overlapping cells in any of the two sets. Hence, for all
(v, v′) ∈ E, either v ∈ T and v′ ∈ L, or v′ ∈ T and v ∈ L.
For bipartite graphs, the minimum vertex cover problem
is equivalent to the maximum matching problem based on
König’s theorem [3], which can be solved in polynomial time,

e.g., with the Hopcroft-Karp algorithm [16] in O(|E|
√
|V |),

where |V | = |T|+ |L| and |E| ≤ |T||L|.
4Tower cells are represented by their Voronoi polygons as it
is depicted in Figure 1

Figure 2c shows the largest IRIS and tower cells covering
Paris. We computed the mean count of each cell over the
whole week which are illustrated by the cell colors. Appar-
ently, the minimum cover contains cells with larger counts;
the mean counts are 91 on average for the IRIS cells (Figure
2b) and 120 on average for the minimum cover (Figure 2c).

However, care must be taken before computing the cell
counts in the minimum cover C. Since C can contain both
IRIS and tower cells which may overlap, the L1-sensitivity of
all the counts in C can be larger than `. Indeed, if C contains
a tower cell T and one of its overlapping IRIS cell L, then
adding/removing a user who visited T at time t will change

X
T
t with 1, and alsoX

L
t with a non-zero value. A trivial (but

not optimal) solution is to modify the counts of all towers
in C which have overlapping IRIS cells. For example, if T

overlaps with IRIS cells {L1, L2, . . . , Lc}, then X
T
t should

be reduced by
∑c
i=1 X

Li
t × size(Li∩T )

size(T )
.

5.3 Perturbation
After identifying the largest covering cells, their time se-

ries (i.e., X
C
) can be perturbed by adding L(`/ε) to each

count in all time series (see Theorem 2). Unfortunately,
this naive method provides very poor results which is also
illustrated in Figure 3a. Indeed, individual cells have much
smaller counts than the magnitude of the injected noise; the
standard deviation of the Laplacian noise is 141 with ε = 0.3,
which is even larger than the mean count in the minimum
cover.

A better approach exploits (1) the similarity of geograph-
ically close time series, as well as (2) their periodic nature.
In particular, we first cluster nearby less populated cells un-
til their aggregated counts become sufficiently large to resist
noise. The key observation is that the time series of close
cells follow very similar trends, but their counts usually have
different magnitudes. Hence, if we simply aggregate (i.e.,
sum up) all time series within such a cluster, the aggregated
series will have a trend close to its individual components yet
large enough counts to tolerate perturbation. To this end,
we first accurately approximate the time series of individual
cells by normalizing their aggregated time series (i.e., divide
the aggregated count of each hour with the total number
of visits inside the cluster), and scale back with the (noisy)
total number of visits of individual cells.

In order to guarantee DP, we also need to perturb the ag-
gregated time series before normalization. To do so, we ex-
ploit their periodic nature and apply a Fourier-based pertur-
bation scheme [24, 1]: we add noise to the Fourier coefficients
of the aggregated time series, and remove all high-frequency
components that would be suppressed by the noise. As only
low-frequency components are retained and perturbed, this
method preserves the trends of the original data more faith-
fully than LPA.

The whole perturbation process is summarized in Algo-
rithm 2. First, the noisy total number of visits of each cell in
the minimum cover C is computed by adding noise L(2`/ε)

to
∑167
t=0 X

i
t for cell i (Line 1). These noisy total counts are

used to cluster similar cells in Line 2 by invoking Algorithm
3. When the clusters are created, their aggregated time se-
ries (i.e., the sum of all cells’ time series within the cluster)
is perturbed with a Fourier-based perturbation scheme in
Line 5 (Algorithm 4). Finally, the perturbed time series of
each cell i in cover C is computed in Line 7 by scaling back
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Figure 2: Covering Paris with the largest tower and IRIS cells. Each cell is colored based on their mean count. Large cells
tend to have large counts (closer to red), while small cells are less populated (closer to blue). The minimum cover (Figure 2c)
includes large, more populated cells: IRIS cells from the city center, and tower cells around the perimeter.

Algorithm 2 Perturbation

Input: Minimum cover C, Pre-sampled time series X
C

, Minimum

total count τ , Privacy budget ε, δ, Sensitivity ∆1(X
C

) = `

Output: Noisy time series X̂C

1: Ŝi :=
∑167
t=0X

i
t + L(2`/ε) for each i ∈ C

2: E := Cluster(C, τ, Ŝ) //see Algorithm 3
3: for each cluster E ∈ E do

4: X
E

:= 〈
∑
i∈E X

i
0,
∑
i∈E X

i
1, . . . ,

∑
i∈E X

i
167〉

5: X̂E := EFPAG(X
E
, ε/2, δ) //see Algorithm 4

6: for each cell i ∈ E do
7: X̂i := Ŝi · (X̂E

t /||X̂E ||1)
8: end for
9: end for

the normalized aggregated time series with the noisy total
count cell i (i.e., with Ŝi). Since Line 1 guarantees ε/2-DP

to the total counts (∆1(X
C
) = `), it follows from Theorem

1 that Algorithm 2 is (ε, δ)-DP if EFPAG is (ε/2, δ)-DP.

5.3.1 Clustering cells
Algorithm 3 is a simple iterative process that, in each iter-

ation, merges the least visited cluster with its geographically
closest neighboring cluster until all clusters in the resultant
configuration have a total count larger than a predefined
threshold τ . Initially, each cluster is a singleton composed
of an individual cell in the cover. Then, in Line 4, we select
the cluster which has the smallest (noisy) total count, and
merge with its closest neighboring cluster in Line 5-8. The
distance between two clusters are measured with the physi-
cal distance between their cluster centers5. In each step, the
noisy total count of each cluster is computed as the sum of
all (noisy) total counts of each cell within the cluster (Line
7). Since the total counts of cells are noisy, Algorithm 3
preserves DP.

5.3.2 Perturbing aggregated time series
To perturb aggregated time series, we build on the Fourier

Perturbation Algorithm (FPA) [24]:

5The cluster center is the centroid of its consitituent cell
polygons.

Algorithm 3 Cluster cells

Input: Minimum cover C = {c0, c1, . . . , c|C|}, Minimum total

count τ , Noisy total counts Ŝ of cells in C
Output: Cluster configuration E ⊂ 2|C|

1: E := {{c0}, {c1}, {c2}, . . . , {c|C|}}
2: ŜE :=

∑
ci∈E Ŝi for each cluster E ∈ E

3: while ∃E ∈ E such that ŜE < τ do
4: E := arg minE∈E ŜE
5: Let E′ be the geographically closest neighbor of E
6: E := E ∪ E′
7: ŜE := ŜE + ŜE′
8: Remove E′ from E
9: end while

1. Compute the Fourier coefficients F =
〈F0, F1, . . . , Fn−1〉 of the input aggregated time
series X with length n by discrete Fourier transform.

2. Remove the last n− k coefficients from F, which cor-
respond to the high-frequency components in X, and
retain only the first k elements of F, denoted by Fk.
Note that k is an input to the algorithm.

3. Generate the noisy version of Fk, denoted by F̂
k
, by

Laplace mechanism: add i.i.d Laplace noise L(
√
k/ε)

to each coefficient in Fk.

4. Pad F̂
k

to be a n-dimensional vector by appending

n − k zeros, which is denoted by PADn(F̂
k
). Finally,

the inverse DFT is applied to PADn(F̂
k
) to obtain a

noisy version of X.

FPA provably guarantees ε-DP [24]. Enhanced FPA
[1] improves basic FPA by selecting the coefficients to be
removed more effectively. Specifically, in Step 2, EFPA
chooses k probabilistically using the exponential mechanism
such that the values of k which minimize the root-sum-

squared error E||X − X̂||2 ≤
√∑n

i=k+1 |Fi−1|2 + 2k∆2(X)
ε

(RSSE) have exponentially larger probability to be selected.
In this paper, we improve the accuracy of EFPA in two ways.
First, instead of the Discrete Fourier Transform (DFT), we
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Algorithm 4 EFPAG

Input: Truncated time series X with length n, Privacy budget
ε, δ, L2-sensitivity of X: ∆2(X)

Output: Noisy time series X̂ with length n

1: F := DCT(X) // Discrete Cosine Transform

2: Compute uG(X, k) =
√∑n

i=k+1 |Fi−1|2 +
√

2∆2(X)
√
k ln1/2(4/δ)
ε

for all 1 ≤ k ≤ n

3: Select k with probability ∝ exp
(
− ε·uG(X,k)

4∆2(X)

)
4: F̂

k
:= Fk + 〈G(

√
2∆2(X) ln1/2(4/δ)/ε)〉k

5: return X̂ = IDCT(PADn(F̂
k
)) //Inverse DCT
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Figure 3: Noisy time series of an IRIS cell (ε = 0.3, ` = 30)

apply the orthonormal version of the Discrete Cosine Trans-
form (DCT), which tend to provide smaller high frequency
components due to its different boundary conditions [26].
This can result in smaller RSSE when these components
are removed in Step 2. Moreover, since we use orthonormal
DCT, the resultant scheme also preserves ε-DP [1].

Second, instead of adding Laplace noise, we add prop-
erly calibrated Gaussian noise to the first k Fourier coeffi-
cients of X thereby providing larger accuracy at the cost

of weaker privacy. More specifically, when F̂
k

is generated
in Step 3, we employ the Gaussian mechanism instead of
LPA and add i.i.d Gaussian noise G(σ) to each coefficient

in Fk, where σ =
√

2∆2(X) ln1/2(4/δ)/ε to provide (ε, δ)-
probabilistic DP based on Theorem 3. In addition, we se-

lect k with probability ∝ exp
(
− ε·uG(X,k)

4

)
in Step 2, where

uG(X, k) =
√∑n

i=k+1 |Fi−1|2 +
√

2∆2(X)
√
k ln1/2(4/δ)
ε

which

follows from Theorem 5 in [1] and Theorem 3. When we use
GPA in Step 3, the new scheme (with DCT) is denoted by
EFPAG in the rest.

Since Gaussian noise has smaller variance than Laplacian,
EFPAG provides better accuracy than EFPA. Specifically,
the variance of the Gaussian noise added to the Fourier
coefficients is 8∆2(X)2 ln(4/δ)/ε2, which is independent of
the number of retained coefficients (i.e., k). By contrast,
the variance of the Laplace noise added to the coefficients
in EFPA is 8∆2(X)2k/ε2 which linearly increases with the
number of retained coefficients. However, this improvement
also leads to some privacy degradation which is measured
by δ.

EFPAG is summarized in Algorithm 4, where the total
budget ε is uniformly divided between GPA (Line 4) and
exponential mechanism (Line 2), therefore, EFPAG is (ε, δ)-
probabilistically DP due to Theorem 1.
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Figure 4: Our scheme before improvements (ε = 0.3, ` =
30).
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Figure 5: Our scheme after improvements (ε = 0.3, ` = 30)

Finally, in order to employ EFPA(G), we need to compute

the L2-sensitivity of the counts in the cover C, i.e., ∆2(X
C
).

Indeed, since E is a partitioning of C, ∆2(X
E
) = ∆2(X

C
).

Recall that, as a result of pre-sampling, at most a single
visit of a user is retained in any slot, and at most ` visits
per user over the whole week. This means that, for any t,
there is only a single tower whose count can change (by at
most 1) by modifying a single user’s data. From Formula
(1), it follows that the total change of all IRIS cell counts is

at most 1 at any t, and hence ∆2(X
L
) ≤ ∆2(X

T
) =
√
` based

on the definition of L2-norm. Since C ⊆ T ∪ L, ∆2(X
C
) ≤√

`. Figure 3 illustrates the improvement of our approach
(Clustering + EFPAG) over simple LPA.

5.4 Further improvements
Although our approach is clearly superior to LPA, Figure

4 still suggests a large error on average. This difference be-
tween X̂ and X is the result of two errors: the sampling error
(between X and X) is attributed to pre-sampling, whereas

the perturbation error (between X̂ and X) is due to our
perturbation scheme.

As illustrated by Figure 4a, sampling error mainly dis-
torts large counts: although the noisy counts are close to
the counts of the truncated (pre-sampled) time series be-
tween 9:00 AM and 11:00 PM, it is still far from the original
count values. This significantly increases MRE.

In addition, as Figure 4b also shows, noisy counts also
deviate from pre-sampled as well as from original counts
around the local minimas (close to 4:00 AM every day),
which further deteriorates MRE. This perturbation error is
caused by the higher frequency components that are retained
and perturbed by EFPA(G).
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To alleviate these errors, we propose two further improve-
ments: first, we improve the perturbation of total cell counts
(Line 1 in Algorithm 2), which is used in cell clustering (Al-
gorithm 3) and scaling (Line 6 in Algorithm 2). Then, as a
post-processing step, we smooth out small counts (i.e., be-
tween 0:00 and 6:00 AM) through non-linear least-square
fitting to diminish perturbation error.

5.4.1 Improved scaling
Recall that we scale back the normalized aggregated

time series with Ŝi in Line 6 (Algorithm 2), where Ŝi =∑167
t=0 X

i
t +L(2`/ε). Since X

i
is the pre-sampled time series

of cell i, X̂i (Line 6) will be a scaled down version of the
original time series Xi due to the fact that the ` visits per
individual are sampled uniformly at random. Also, as we
have discussed in Section 5.1, adding Laplace noise directly
to the original total count

∑167
t=0 X

i
t is very inaccurate, as

the sensitivity of
∑167
t=0 X

i
t is ∆1(X) which is too large.

We rather perturb the original total count
∑167
t=0 X

i
t using

a different approach: we first approximate the relative fre-
quencies of each tower by another constraint sampling, and
scale back these frequencies to count values with the (noisy)
total number of visits in the dataset. The main idea is that
sampling requires only a small amount of noise to guarantee
privacy, while the total number of all visits is so large that
it tolerates a large noise magnitude.

In particular, we estimate the histogram H where a bin
Hj represents the frequency of visits at tower j, i.e., Hj =∑167
t=0 X

j
t /K, where K denotes the total number of tower

visits in the dataset (K =
∑167
t=0

∑
T∈TX

T
t ). To do so, we

sample a single visit per user uniformly at random, and
create a new histogram H̃ from the sampled visits (with

size N). Using this approximative histogram H̃, the to-
tal number of visits

∑167
t=0 X

j
t of a tower j is computed as

(H̃j + L(2/ε′)) × K̂, where K̂ = K + L(2∆1(X)/ε′) and
∆1(X) is universally fixed for all input dataset6. Finally,
having the noisy

∑167
t=0 X

j
t for each tower cell j, we can also

compute the noisy
∑167
t=0 X

L
t for any IRIS cell L (using For-

mula (1)) and calculate Ŝi for all cell i in C. This technique
is 2 · (ε′/2) = ε′ differential private based on Theorem 1.

Figure 6a compares the accuracy of our sampling approach
to perturb the relative frequencies of each tower (i.e., sam-
pling is followed by adding L(2/ε′) to each Hj) with the
naive Laplace approach (i.e., L(2∆1(X)/ε′) is added to each
Hj without sampling). Sampling clearly boosts the accuracy
of histogram perturbation (Figure 6a) especially for smaller
values of ε′, and eventually yields significantly more accurate
estimation of

∑167
t=0 X

T
t for all towers T (Figure 6b).

The effect of scaling is illustrated in Figure 5a. Recall
that the full privacy budget ε is divided equally between
EFPA(G) and scaling (see Algorithm 1). Hence, our sani-
tization scheme is ε-DP (or (ε, δ)-prob. DP with EFPAG)
based on Theorem 1.

5.4.2 Smoothing
In order to smooth out low (noisy) counts around the local

minimas (around 4:00 AM each day), we fit an exponential
curve to the noisy counts between 0:00 AM and 4:00 AM

6∆1(X) is fixed to 732 in this paper. Notice that although
∆1(X) is large so is K: K = 137, 255, 052 in our dataset,

and |K − K̂|/K is less than 10−5 on average
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Figure 6: Perturbing the total visits
∑167
t=0 X

T
t of each tower

cell T .

where the counts are exponentially decreasing, and another
exponential curve between 4:00 AM and 6:00 AM, where
the counts are exponentially increasing. In particular, we fit
function g(x, a, b) = a·exp(b·x) to the noisy counts, i.e., com-

pute parameters a, b such that the error
∑
i(X̂i−g(xi, a, b))

2

is minimized where xi runs over the hours of the given time
intervals for each day, and then replace the noisy counts
with the values of the fitted function. This is a standard
non-linear least square fitting problem which can be ap-
proximated with any numerical minimization method (e.g.,
Levenberg-Marquardt algorithm [18]). Since this operation
is performed on the noisy time series, it is already private.
The effect of smoothing in illustrated in Figure 5b.

6. PERFORMANCE EVALUATION
We evaluate the utility of our scheme depending on the

guaranteed privacy (i.e., ε) with EFPA and EFPAG, where
δ = 2 · 10−6 < 1/N . The minimum total count τ used in
Algorithm 3 is adjusted such that the expected RSSE is less
than 1% of the total count when all coefficients are retained
in EFPA(G). That is, τ =

√
168 · σ/0.01, where σ2 is the

variance of noise added to each coefficient. We compare
our approaches to the naive Laplace mechanism (LPA) that
adds L(`/ε) noise to each count of each time series in cover
C. We use the CDR dataset described in Section 4.

First, we analyze the utility depending on the pre-
sampling size `. Then, we show how pre-sampling com-
bined with the improved scaling and smoothing boost ac-
curacy, and also report the error distribution among indi-
vidual IRIS cells. Finally, we measure the Earth Mover’s
Distance (EMD) which captures the error between spatial
distributions in terms of geographical distances.

6.1 Utility depending on the pre-sample size
Recall that the number of visits retained per user (i.e., `)

determines the injected noise in the perturbation phase. In
general, larger values of ` imply larger noise, which degrades
utility. On the other hand, smaller values of ` preserve more
information about individuals which results in a more accu-
rate representation of the original dataset. The goal is to
select a value of ` which yields the best trade-off. Neverthe-
less, we experimentally show next that our scheme exhibits
stable performance with quite different values of `.

In Figure 7, we report the utility of our scheme with EF-
PAG for three values of `: 10, 30 and 168. In each case,
perturbation is followed by the improvements described in
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Figure 8: Utility of our scheme with different perturbation
techniques.

Section 5.4. Specifically, we computed the average of MRE
and Pearson correlation over all cells. We repeated the whole
process 20 times and plotted the mean and standard devia-
tion of the average MRE and PC over all executions.

LPA has significantly larger error for all values of `, and
provides especially poor results for smaller values of ε. By
contrast, our scheme does not only provide practical utility
even for stringent privacy guarantee, but also has stable per-
formance for different `. For instance, for ε = 0.3, MRE is
less than 20%, while PC is larger than 0.95. Therefore, the
output of our scheme has almost perfect linear correlation
with the original data thanks to the combination of cluster-
ing and the Fourier perturbation approach. Moreover, the
variations of these values are very moderate: 0.2± 0.03 and
0.95± 0.03, respectively, for different values of `. In the rest
of the paper, we fix ` to 30.

EFPAG and EFPA7 are compared in Figure 8. EFPAG
outperforms EFPA especially for smaller ε: MRE is reduced
by 0.03 and PC is increased by 0.02 on average.

6.2 Pre-sampling with scaling
The distortion effect of pre-sampling is mitigated by the

improved scaling step detailed in Section 5.4.1. Our aim
now is to show that scaling and smoothing indeed results in
better utility. Figure 8 depicts a variation of our scheme,
denoted by ”EFPA−” when the improvements described in
Section 5.4 are not employed after perturbation. The results
show that MRE is reduced by 0.07 on average when the pre-
sample size is diminished to ` = 30 and improvements are
employed. By contrast, PC is increased only by about 0.01
for smaller values of ε; the change is not so significant due
to the fact that scaling does not influence linear correlation,

7Recall that EFPAG adds Gaussian noise whereas EFPA
adds Laplacian noise to the retained Fourier coefficients.
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Figure 9: Error depending on time with EFPAG (ε =
0.3, ` = 30)
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Figure 10: Error and Pearson correlation on IRIS cells with
EFPAG, ` = 30. The box extends from the lower to up-
per quartile values of the cell errors, with a red line at the
median.

and smoothing modifies relatively small number of counts in
general.

In Figure 9, we also plotted the average relative error de-
pending on the time for our scheme with and without im-
provements. In particular, we computed the relative error
and took the average over all cells in each hour. Figure 9a
confirms that scaling significantly diminishes the relative er-
ror in daylight when counts are larger. The improvement
can be almost a factor of 4. This has particular importance
in practice, as location counts in daylight are usually more
important than at night.

6.3 Error variation among IRIS cells
Figure 10 shows through box plots how MRE and Pearson

correlation change among IRIS cells; we compute these met-
rics for each IRIS cell, and compute the corresponding box
plot over the metric values of all cells. Although medians do
not change significantly for different values of ε, MRE has
larger variation for smaller ε, i.e., there are more cells which
have larger error.

The MRE and PC of individual IRIS cells are also illus-
trated by color maps in Figure 11. This figure shows that
our scheme can provide practical utility for most cells with
strong privacy guarantee. Specifically, the average MRE
over all cells is only 0.17 with ε = 0.3.

6.4 Earth Mover’s Distance
In order to compare the sanitized spatial probability dis-

tribution with the original one at a given time, we use Earth
Mover’s Distance (EMD) [25]. EMD measures the “amount
of energy” (or cost) needed to transform one distribution to
another, and is a metric for probability distributions (i.e.,
location counts have to be normalized). Formally, for any
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Figure 11: MRE and PC of each IRIS cell (` = 30, ε = 0.3)

t, EMD(XL
t , X̂

L
t ) = min{fij}

∑
i,j fijdij such that fij ≥ 0,∑

j fij ≤ Xi
t/
∑
kX

k
t ,
∑
i fij ≤ X̂j

t /
∑
k X̂

k
t , where {fij}

denotes the set of all possible flows (each fij represents the
amount of probability mass transported from IRIS cell i to
j), and dij is the geographical distance between the centers
of cells i and j, resp. Intuitively, EMD measures the meters
of error between two spatial density maps. Figure 9b reports
the EMD depending on the time. The mean EMD over the
whole week is 258 meters for EFPA, 188 meters for EFPAG,
and 341 meters for LPA.

7. CONCLUSIONS
The goal of this work is to demonstrate through a real-

world application that differential privacy can be a practi-
cal model for data anonymization, even if the input dataset
has large dimension and/or is highly sensitive. We showed
that, in order to achieve meaningful accuracy, the sanitiza-
tion process has to be carefully customized to the applica-
tion and public characteristics of the dataset. We strongly
believe that there are no “universal” sanitization solutions
that fit all applications, i.e., provide good accuracy in all
scenarios. In particular, achieving the best performance re-
quires to find the most faithful and concise representation of
the data, such that it withstands perturbation. In our ap-
plication (i.e., spatio-temporal density), clustering and sam-
pling with Fourier-based perturbation are seemingly the best
choices due to the periodic nature and large sensitivity of lo-
cation counts. We experimentally showed that our scheme
can provide practical utility and strong privacy guarantee.
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