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ABSTRACT
With the rapid development of online social networks, a growing
number of people are willing to share their group activities, e.g.,
having dinners with colleagues, and watching movies with spouses.
This motivates the studies on group recommendation, which aims
to recommend items for a group of users. Group recommendation
is a challenging problem because different group members have dif-
ferent preferences, and how to make a trade-off among their pref-
erences for recommendation is still an open problem.

In this paper, we propose a probabilistic model named COM
(COnsensus Model) to model the generative process of group ac-
tivities, and make group recommendations. Intuitively, users in a
group may have different influences, and those who are expert in
topics relevant to the group are usually more influential. In addi-
tion, users in a group may behave differently as group members
from as individuals. COM is designed based on these intuitions,
and is able to incorporate both users’ selection history and personal
considerations of content factors. When making recommendations,
COM estimates the preference of a group to an item by aggregat-
ing the preferences of the group members with different weights.
We conduct extensive experiments on four datasets, and the results
show that the proposed model is effective in making group recom-
mendations, and outperforms baseline methods significantly.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering
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Group Recommendation; Collaborative Filtering; Topic Models

1. INTRODUCTION
Recommender systems (RS) aim to suggest items for users based

on their preferences, and they have been widely deployed to as-
sist users to select items in various fields, such as movies (Net-
flix), products (Amazon), restaurants (Yelp), etc. A number of rec-
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Figure 1: An Example of Group Check-in

ommendation techniques have been proposed, such as user/item-
based collaborative filtering (CF) [17, 21], clustering CF [24], ma-
trix factorization [11], etc., and most of them focus on producing
recommendations for individual users. However, people often par-
ticipate in activities together with others, e.g., having dinners with
colleagues, watching movies with spouses, and having picnics with
friends. This calls for recommendation techniques for a group. Un-
fortunately, recommender systems designed for individuals are not
effective in making recommendations for a group of people. Fur-
thermore, an increasing number of group event records are becom-
ing available on the web, since users often share their group activi-
ties on social networks, such as Facebook, Meetup, and Foursquare.
For example, the Foursquare check-in in Figure 1 shows that user
Angele D., together with her husband, visited the Outback steak-
house. The availability of group event data promotes the research
interest on how to make effective recommendations for a group of
users [3, 4, 6, 8, 13, 26], which not only facilitates groups making
decisions, but also helps web services improve user engagement.

However, making accurate recommendations for groups is not
an easy task, because a group consists of multiple users who have
different preferences. How to make a trade-off among their pref-
erences to recommend items for a group is challenging. Previous
solutions to group recommendation can be divided into two types:
memory-based and model-based approaches. Memory-based ap-
proaches further fall in two categories based on the aggregation
strategy: preference aggregation strategy first aggregates the pro-
files of group members into a new profile, and then employs recom-
mendation techniques designed for individuals to make group rec-
ommendations [15, 28]; score aggregation strategy first calculates
a recommendation list for each group member, and then aggregates
these lists for group recommendation [4, 7, 14, 18, 20]. However,
both strategies overlook the interactions between group members,
and use trivial methods to aggregate members’ preferences. Differ-
ent from memory-based approaches, model-based methods exploit
the interactions among members by modeling the generative pro-
cess of a group [13, 26]. However, as to be detailed in Section 2,
the assumptions of these models may not hold in real life.
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To achieve better accuracy, we propose a latent Dirichlet alloca-
tion (LDA) [5] based generative model, named COnsensus Model
(COM), to make group recommendations. COM is novel since it is
built based on the following three considerations that have not been
exploited by previous work:

1. Each group is relevant to several topics, e.g., a picnic group
is relevant to hiking and dining topics, and a movie watch-
ing group consisting of families may be relevant to the ro-
mance and comedy topics. The item selection of a group is
influenced by both these relevant topics and group members’
personal considerations of content factors, such as the geo-
graphical distance to venues for venue recommendation, and
casts of movies for movie recommendation.

2. Users in a group may behave differently as group members
from as individuals, e.g., a user may prefer horror movies
when he is alone, but will select romantic movies when watch-
ing with his wife.

3. Different users have different influences in making decisions
in a group, and the influence degree of a user in a group is
topic-dependent: a movie fan is probably influential in mak-
ing decisions for a movie watching group, but is less influen-
tial in a dining group, because the dining group is less rele-
vant to the movie topic.

Based on the three considerations, we model the generative pro-
cess of a group as follows: each group has a multinomial distribu-
tion over latent topics, and these topics attract a set of users to join.
The item selection of a user is influenced by both the group topic
that attracted her, and her personal considerations of content fac-
tors (Consideration 1). Note that it is the topic of the group, instead
of the user’s, that account for her item selection (Consideration 2).
The final decision of a group is made by aggregating the selections
of all users in the group: if a user is an expert in the relevant topics
of the group, her selections will have a larger weight (Consideration
3). Based on the generative model, we propose a recommendation
method to suggest items for a target group.

In summary, the contributions of this paper are three-fold:

• We propose a generative model COM for modeling the pro-
cess of item selection of a group, which considers members’
topic-dependent influences and members’ group behaviors.

• We develop a recommendation method to make group rec-
ommendations based on COM, which is able to exploit both
users’ selection history and users’ personal considerations of
content factors.

• We evaluate the effectiveness of the proposed method by ex-
tensive experiments on four datasets for event venue rec-
ommendation and movie recommendation. The experimen-
tal results show that our proposed method outperforms five
baselines significantly by various evaluation metrics.

The rest of this paper is organized as follows. In Section 2, we re-
view related work. Section 3 introduces the proposed COM model
and the recommendation method. We present experimental results
in Section 4. Finally, Section 5 concludes this paper.

2. RELATED WORK
We first briefly review recommendation systems in general, and

then focus on techniques for group recommendation.

2.1 Recommender Systems
Recommender systems can be classified into three categories:

content-based, collaborative filtering (CF), and hybrid recommen-
dation approaches [1]. The content-based approaches make rec-
ommendations based on the content features of users (e.g., age,

gender, etc.) and items (e.g., price, category, etc.), but do not ex-
ploit users’ rating/selection history. Thus, when content features
are not sufficient, the content-based techniques will fail to pro-
duce accurate recommendations. In contrast, CF approaches rely
on rating/selection history, but do not make use of content fea-
tures. Consequently, they suffer from the sparsity problem, i.e.,
when the number of users’ ratings is not enough for finding similar
users, the performance of CF techniques will be bad. The hybrid
approaches combine the content-based and CF methods to avoid
their limitations. Our proposed model exploits both users’ selec-
tion history and content information, and thus it belongs to the hy-
brid approaches. In addition, when the content information is not
available, our model will be reduced as a CF model that makes rec-
ommendations based on users’ selection history only.

CF approaches have been extensively studied and can be fur-
ther divided into two categories, namely, memory-based CF and
model-based CF [23]. Memory-based CF approaches employ rat-
ing/selection history to find similar users of the target user, and
then compute a recommendation score for a candidate item by a
weighted combination of historical ratings on the item from these
similar users. In contrast, model-based CF builds recommendation
models using data mining techniques, such as clustering [19], ma-
trix factorization [11], probabilistic topic model [2, 25], etc. Our
model exploits users’ selection history in the model-based manner.

2.2 Group recommendation
Group recommendation techniques have been proposed for var-

ious domains, such as web/news pages [20], tourism [16], restau-
rants [14], music [7], TV programs [28], and movies [18]. Group
recommendation methods in the earlier studies fall into two cate-
gories [3]: the preference aggregation approaches first aggregate
the profiles of the group members into one profile, and makes rec-
ommendations based on the aggregated profile [15, 28]. The score
aggregation approaches, in contrast, first produce recommenda-
tions for each group member respectively, and then aggregate their
recommendation results for the group [4, 7, 14, 18, 20].

Compared with preference aggregation, score aggregation typi-
cally enjoys better flexibility [3, 10, 18], and thus receives more re-
search attention. The score aggregation approaches usually employ
either average (AVG) or least misery (LM) strategy to aggregate
the recommendations of individuals. The AVG strategy averages
the recommendation scores of all group members as the final score,
aiming to maximize the overall satisfactions of a group [15, 28];
the LM strategy takes the smallest recommendation score of group
members as the final score, and tries to make everyone happy [4].
For LM, the recommendation score of an item is largely influenced
by the user who dislikes it most, even if all the others like it very
much. For AVG, an item’s relevance to different users might be
diverse, and the recommendation results might be unfair to some
users. Baltrunas et al. [4] compare different aggregation approaches,
and find that there is no clear winner, and the effectiveness of an ap-
proach depends on the group size and inner group similarity. Amer-
Yahia et al. [3] go one step further, and argue that an item is a good
recommendation for a group if the group members have small dis-
agreements on the item, where the disagreement is defined as the
difference among relevance of the item to different group members.

Recently, several model-based approaches have been proposed.
Seko et al. [22] develop a content-based group recommendation
method based on the assumption that the choice made by a group is
influenced by item genres. However, this approach can be only ap-
plied to pre-defined groups, e.g., couples, while in real-life, groups
are often ad-hoc. Carvalho et al. [6] introduce game theory into
group recommendation by treating a group event as a noncooper-
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ative game among members, and transform the recommendation
problem into finding the Nash equilibrium. However, this method
cannot suggest a specific item, since the equilibrium contains a set
of items.

The model-based approaches proposed in [8, 13, 26] adopt the
same setting as ours. Ye et al. [26] assume that when selecting
items, a group member will follow her friends’ opinions. They
propose a probabilistic generative model to produce group recom-
mendations by aggregating the preferences of pairwise friends in
the group, where one influences the other. However, the strong
assumption of pairwise influence in a group may not be true, espe-
cially when the group is large. In addition, a group does not always
consist of friends. Liu et al. [13] propose a topic model approach
based on the assumption that the influential users will become the
representatives of all groups to make item selections, irrespective
of the group topics and the influential users’ expertise. However,
users’ influences should be topic-dependent: a user may be influ-
ential in a group because of her expertise on the group’s topics, but
may not be in another group. Gorla et al. [8] assume that the recom-
mendation score for an item depends on its relevance to each group
member and its relevance to the group as a whole. They propose
an information-matching based framework to make group recom-
mendations. However, this framework has a high time complexity,
which is O(|U |2|I|2) for each target group, where |U | and |I| are the
sizes of user and item sets, respectively. We implemented and ran
this method, but it could not finish on our datasets after 5 days and
we stopped it. It can only finish on very small data we tried.

In our experiments, we will report comparison results with the
approaches in the three proposals [3,13,26]. In the existing studies,
these approaches have not been empirically compared with each
other.

Finally note that the “group recommendation” defined in [31]
concentrate on personalized recommendation of event-based groups
to a user, which is a totally different task.

3. CONSENSUS MODEL
We first define the group recommendation problem in Section 3.1,

and then introduce the proposed COnsensus Model (COM) in Sec-
tion 3.2. After that, the inference algorithm and the recommen-
dation method are presented in Section 3.3 and 3.4, respectively.
Finally, we present how to incorporate content information into the
model in Section 3.5. All the notations used in this paper are listed
in Table 1.

3.1 Problem Statement
Let U , I, G be the user, item and group sets, respectively. A

group g ∈ G consists of a set of users (group members) ug =

{ug,1, ug,2, ..., ug,|g|}, where ug,i ∈ U , and |g| is the size of the group,
i.e., the number of users in g. In addition, a group g is associ-
ated with an item ig ∈ I, if ig is selected by group g. We define a
group event by <ug, ig>, i.e., the item selection event of the group
members as a whole. For example, the members of a picnic group
selecting a venue for picnic is a group event, and a family selecting
a movie to watch is also a group event.

Then, given a target group gt , the problem of group recommen-
dation is defined as recommending a list of items that users in gt

may be interested in.

3.2 COnsensus Model for Group Recommen-
dation

We model the generative process of a group event based on the
following intuitions:

Table 1: Symbols
Symbol Description
U , I, G user set, item set, group set
K the number of latent topics
N the size of recommendation list

g, |g| the group g, the size of group g
ug the members in group g
ig the item selected by group g
u user u ∈ U
zj, c j the topic and switch of the user-item pair j
i(·) the set of items that are generated when c = (·)
θg distribution of topics specific to group g
φZU

z distribution of users specific to topic z
φZI

z distribution of items specific to topic z
φUI

u distribution of items specific to user u
λu the parameter of Bernoulli distribution specific to

user u for sampling the binary switch c
α, β, ρ, η Dirichlet prior vector for θ, φZU , φUI and φZI

γ Beta prior for λ , where γ = {γ, γt }
nGZ

g,z,¬ j number of times topic z is assigned to group g, ex-
cluding the jth user-item pair

nZU
z,u,¬ j number of times user u is drawn from topic z, ex-

cluding the jth user-item pair
nZI

z,i,¬ j number of times item i is drawn from topic z, ex-
cluding the jth user-item pair

nUI
u,i,¬ j number of times item i is drawn from user u, ex-

cluding the jth user-item pair
nUC

u,c,¬ j number of times switch c is drawn for user u, ex-
cluding the jth user-item pair

• Intuition 1: Each group is relevant to several topics with
different degrees of match, e.g., a picnic group is more rele-
vant to the hiking and dining topics than to the body-building
topic. The topics of a group attract users to join the group.

• Intuition 2: When selecting an item, users in a group have
two considerations. The first is topics, i.e., a user tends to
select the items that are related to the group topic, which at-
tracted her to join the group. The second is users’ personal
considerations of content factors, such as the geographical
distance for venue recommendation, cast lists of movies for
movie recommendation, etc. Most of these factors are user-
specific, and cannot be captured by topics. In addition, differ-
ent users make different trade-offs between group topics and
personal considerations of content factors: some users tend
to select the items that match the group topics best, while
some may treat the personal considerations more important.

• Intuition 3: Users behave differently when selecting items
as members in a specific group and when selecting items as
individuals. In a group, a user tends to match her preference
to the topics of the group.

• Intuition 4: The preference of a group to a candidate item is
determined by the preferences of the group members [3, 8].
In addition to this, we exploit the following new intuition:
the influence of each member on the item selection of the
group is topic-dependent.

Specifically, we use a multinomial distribution θg over latent top-
ics to model the topic preferences of group g (Intuition 1). In ad-
dition, each latent topic z has a multinomial distribution φZU

z over
user set, which represents the relevance of users to the topic z, and
a multinomial distribution φZI

z over item set, which represents the
relevance of items to the topic z. Here φZI

z,i reflects given a topic z,
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how likely the item i is selected; φZU
z,u reveals the appealing degree

of topic z to the user u, or the user u’s expertise on topic z. To model
Intuition 1 that users join a group because of different topics, for
each member in group g, a latent topic z is sampled from its topic
distribution θg, and then a user u is drawn according to φZU

z .
A user in a group selects items either based on the group topics

that attracted her to join the group, or her personal considerations
of content factors (Intuition 2). We use a switch c to decide which
one accounts for the item selection of a user, i.e., if c = 1, the item
is sampled based on the topic-specific multinomial distribution over
items φZI ; if c = 0, the item is drawn from the user-specific multi-
nomial distribution of items φUI . Since different users will make
different trade-offs between group topics and personal considera-
tions of content factors (Intuition 2), in our model, the switch c
is drawn from a user-specific Bernoulli distribution with parameter
λu. In other words, user u is influenced by group topics with prob-
ability λu, and is influenced by her personal considerations with
probability 1 − λu. Note that the Bernoulli distribution for λu has a
Beta prior γ = {γ, γt }.

Next we illustrate the model using an example. Suppose a pic-
nic group is more relevant to both hiking and dining topics than
body-building topic. The three topics are sampled from the topic
distribution of the picnic group, which attract users u1, u2 and u3,
respectively. Then, these three users determine which venue to visit
based on the group topics and their personal considerations of con-
tent factors such as traveling distance. Suppose u1 does not mind
traveling, and the topic “hiking” has a more significant influence to
his selection. Then she may select a distant venue that matches the
hiking topic best. Thus, the switch c for u1 is more likely to be 1.
u2 and u3 will also make trade-offs between group topics and their
personal considerations to select the venue for picnic.

Different from COM, previous topic model based approaches [13,
26] assume that when selecting items, a group member only con-
siders her own topic preference. The assumption may not hold,
because users in a group may behave differently as group members
from that when they make choices as individuals (Intuition 3). For
example, suppose u1 is interested in both hiking and movie topics.
In previous approaches, u1 may select a theater for the picnic group
because of her interest in movie topic. In contrast, in our model,
u1 join the picnic group because of the hiking topic, and thus her
selection will be related to hiking rather than movie.

In summary, the generative process of a collection of group events
is as follows:

• For each topic zk, k = 1, ...,K

– Draw φZU
k ∼ Dirichlet(β);

– Draw φZI
k ∼ Dirichlet(η);

• For each user uv, v = 1, ..., |U |
– Draw φUI

v ∼ Dirichlet(ρ);

– Draw λv ∼ Beta(γ);

• For each group g

– Draw θg ∼ Dirichlet(α);

– For each group member

∗ Draw z ∼ Multinomial(θg);

∗ Draw u ∼ Multinomial(φZU
z );

∗ Draw switch c ∼ Bernoulli(λu);

∗ If c = 0

· Draw i ∼ Multinomial(φUI
u );

∗ If c = 1

· Draw i ∼ Multinomial(φZI
z );

Figure 2: The Graphical Model of COM

The graphical model is shown in Figure 2.
Note that different users in a group will sample different items in

the model, which is in accordance with our experience: users may
have different preferences over items, and thus are likely to make
different choices. In fact, the item selection of a group is often
made by two steps: group members express their own opinions on
item selections first, and then these selections are weighted and a
consensus is reached. As to be detailed in Section 3.4, we propose a
recommendation method that can aggregate the selections of group
members based on their topic-dependent influences, and produce a
single recommendation for the target group.

We remark that the aforementioned generative process is also
applicable to the groups with pre-defined members, since these
groups also have topic distributions. Consider some students plan
to form a club group and the topics of the group are dining, hiking,
etc. The group is formed because its topics attract the members. If
someone is not interested in any of the group topics, she will not
join the group. Thus, the generative process of the club can also
be explained by the proposed model, where the group members are
sampled from the students.

3.3 Parameter Estimation
The total likelihood of the group event corpus is:

P(z,u, c, i|α,β,ρ,η,γ)

=

∫
P(c|λ)P(λ|γ, γt )dλ ·

∫
P(z|θ)P(θ|α)dθ ·∫

P(u|z,φZU )P(φZU |β)dφZU ·∫ ∫
P(i|u,z, c,φUI ,φZI)P(φUI |ρ)P(φZI |η)dφUIdφZI(1)

We employ collapsed Gibbs sampling to obtain samples of the
hidden variable assignment, and to estimate the unknown parame-
ters {λ,φZU ,φUI ,φZI}. For ease of presentation, we define a user u
together with the item i selected by u as a user-item pair j = (u, i),
where the user of j is u ∈ U , and the item of j is i ∈ I.
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Since there are two latent variables in the model, namely z and
c, we employ two-step Gibbs sampling method. We first sample
topics z j for all user-item pairs j, and then sample switches c j for
all j. For each latent variable (e.g., z j), a Gibbs sampling method
computes the full conditional probability for the assignment of the
variable conditioned on all the other assignments (e.g., z¬ j). How-
ever, it is challenging to get the full conditional probability because
of the complex interdependencies between user u, topic z, switch c
and item i: u is sampled based on z, which influences the sampling
of c, while i is sampled based on either z or u depending on c.

To solve this problem, we separate the items generated based on
topics, and the items generated based on users’ personal considera-
tions of content factors. Then, the last part of Equation 1 becomes:

∫ ∫
P(i|u,z, c,φUI ,φZI)P(φUI |ρ)P(φZI |η)dφUIdφZI

=

∫
P(i(0)|u, c,φUI)P(φUI |ρ)dφUI ·∫
P(i(1)|z, c,φZI)P(φZI |η)dφZI (2)

where i(0) is the set of items that are sampled based on users’ per-
sonal considerations of content factors (i.e., c = 0), and i(1) is the
set of items that are sampled based on topics (i.e., c = 1).

Based on the new equation of total likelihood, we can derive the
full conditional distribution of topic z j and switch c j assignments
for each user-item pair j. If the item of j is drawn based on topics,
i.e., c j = 1, we sample z j according to the following probability:

P(z j = k|z¬ j,u, i
(1))

=

∫
P(z|θ)P(θ|α)dθ∫

P(z¬ j |θ)P(θ|α)dθ
·
∫

P(u|z,φZU )P(φZU |β)dφZU∫
P(u|z¬ j,φZU )P(φZU |β)dφZU

·
∫

P(i(1)|z, c,φZI)P(φZI |η)dφZI∫
P(i(1)|z¬ j, c,φZI)P(φZI |η)dφZI

∝
nGZ

g j ,k,¬ j + αk∑
k′∈Z

(nGZ
g j ,k′ ,¬ j + αk′ )

·
nZU

k,u,¬ j + βu∑
u′∈U

(nZU
k,u′ ,¬ j + βu′ )

·
nZI

k,i,¬ j + ηi∑
i′∈I

(nZI
k,i′ ,¬ j + ηi′ )

(3)

where gj is the group of j. If the item of j is drawn based on user’s
personal considerations of content factors, i.e., c j = 0, we have:

P(z j = k|z¬ j,u, i
(0))

∝
nGZ

g j ,k,¬ j + αk∑
k′∈Z(nGZ

g j ,k′ ,¬ j + αk′ )
·

nZU
k,u,¬ j + βu∑

u′∈U (nZU
k,u′,¬ j + βu′ )

(4)

After sampling topics for all user-item pairs, we draw a switch c j

for each j according to the following posterior probability. When
c j = 1, we have:

P(c j = 1|c¬ j,z,u, i)

=

∫
P(c|λ)P(λ|γ, γt )dλ∫

P(c¬ j |λ)P(λ|γ, γt )dλ
·
∫

P(i(0)|u, c,φUI)P(φUI |ρ)dφUI∫
P(i(0)|u, c¬ j,φUI)P(φUI |ρ)dφUI

·
∫

P(i(1)|z, c,φZI)P(φZI |η)dφZI∫
P(i(1)|z, c¬ j,φZI)P(φZI |η)dφZI

(5)

Note that since c j = 1, the second term in the right hand side of
Equation 5 is 1. Thus, we cancel this part, and get:

P(c j = 1|c¬ j,z,u, i)

∝
nUC

u,(1),¬ j + γ

nUC
u,(0),¬ j + nUC

u,(1),¬ j + γ + γt
·

nZI
z j ,i,¬ j + ηi∑

i′∈I(nZI
z j ,i′ ,¬ j + ηi′ )

(6)

Similarly, we calculate the sampling probability for c j = 0:

P(c j = 0|c¬ j,z,u, i)

∝
nUC

u,(0),¬ j + γt

nUC
u,(0),¬ j + nUC

u,(1),¬ j + γ + γt
· nUI

u,i,¬ j + ρi∑
i′∈I(nUI

u,i′,¬ j + ρi′ )
(7)

After sampling a sufficient number of iterations, we calculate the
parameters φZU , φUI , φZI and λ as follows:

φ̂ZU
z,u = P̂(u|z) =

nZU
z,u + βu∑

u′∈U (nZU
z,u′ + βu′ )

(8)

φ̂UI
u,i = P̂(i|u) =

nUI
u,i + ρi∑

i′∈I(nUI
u,i′ + ρi′ )

(9)

φ̂ZI
z,i = P̂(i|z) =

nZI
z,i + ηi∑

i′∈I(nZI
z,i′ + ηi′ )

(10)

λ̂u = P̂(c = 1|u) =
nUC

u,(1)
+ γ

nUC
u,(0)
+ nUC

u,(1)
+ γ + γt

(11)

3.4 Recommendation
When making recommendations for a target group gt , we first

discover its topic distribution based on the group members ugt .
The distribution, denoted by θgt , can be learnt by performing Gibbs
sampling on ugt according to the following equation:

P(z j = k|z¬ j, uj = v,u¬ j) ∝ φ̂ZU
k,v (nGZ

gt ,k,¬ j + αk) (12)

Since the recommendations should match the topic distribution
θgt , based on the generative model, we define the recommendation
score for candidate item i as follows:

P(i|ugt ,θgt ) �
∏

u∈ugt

∑
z∈Z

θgt ,z · φ̂ZU
z,u (̂λu · φ̂ZI

z,i + (1 − λ̂u) · φ̂UI
u,i ) (13)

Equation 13 embeds Intuition 4 (when selecting items, different
users in a group have different influence scores, and the influence
scores are topic dependent) as follows: if the topic z is more rel-
evant to group gt , and a user u is an expert in z, then u will be
more influential in item selection. Recall that the expertise of a
user u on topic z is modeled by φZU

z,u . In Equation 13, θgt ,z · φZU
z,u

is the influence score of user u in group gt for a given topic z, and
λu ·φZI

z,i + (1− λu) ·φUI
u,i is u’s preference to a candidate item i given

topic z. We margin out the topics, and get the overall preference of
u to i. Then the preferences of all members to i are multiplied as the
group preference to i. The rationale is three-fold: 1) the preference
of a group to an item depends on the preferences of all individuals;
2) ranking an item based on the product of preferences is equal to
the geometric mean of these individuals’ preferences. Compared
with the traditional strategies that calculate the arithmetic mean of
preferences (averaging) or concentrate on the smallest preference
(least-misery), the aggregated preference score by geometric mean
is less sensitive to extreme values; 3) this definition matches the
proposed model well.
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3.5 Incorporation of Content Information
The Dirichlet prior ρ to φUI

u allows us to incorporate different
content information into the model. We illustrate the incorporation
using two recommendation tasks, namely, venue recommendation
and movie recommendation.
Venue recommendation for groups: People often visit venues to-
gether with others for shopping, dining, etc. Venue recommen-
dation for a group aims to recommend the venues that the group
members are interested in. For venue recommendation, geograph-
ical distance is an important factor to consider [27, 30]. Previous
studies reported that users tend to visit nearby venues, and the will-
ingness of visiting a venue decreases with the increase of distance
from their current locations. Here, we adopt a power-law function
of distance to model the willingness of a user moving from one
venue to another as [29] does. More specifically, the willingness of
a user to visit a d-km far away venue is defined by Equation 14.

wi(d) = ω · dκ (14)

where ω and κ are parameters of the power law function, which
can be learned by maximum likelihood estimation.

Then, given a user u, the set of venues that she has visited Iu, we
calculate P(i|Iu) for each candidate venue i according to the geo-
graphical distance, and use this value for ρu,i . Based on the Bayes
rule, P(i|Iu) is calculated as follows:

ρu,i = P(i|Iu) ∝ P(i)P(Iu|i)
= P(i)

∏
i′∈Iu

P(i′|i) (15)

where P(i′|i) is proportional to the willingness value in Equation 14,
in which d is the distance between venues i′ and i. �

Movie recommendation for groups: When selecting a movie to
watch, a user may consider several factors, such as genre, cast, etc.
We take the cast as an example to illustrate how to exploit content
information. Intuitively, users tend to watch the movies stared by
their favorite actors or actresses. We incorporate user u’s cast-based
considerations to a movie i by modifying the prior ρu,i as follows:

ρu,i ∝
∑
s∈Si

P(s|u) (16)

where s is a movie star, and Si is the cast list of movie i. P(s|u) is
estimated based on the occurrences of s in u’s watching history. �

Note that the |U | × |I| dimensional matrix φUI requires a large
amount of space, in which each value of φUI

u,i is determined by both

the count nUI
u,i and the prior ρi (Equation 9). Since for each user u,

the values of most items in φUI are 0 (nUI
u,i = 0 and ρu,i = 0), we can

use sparse matrix to store φUI to reduce the space complexity.

4. EXPERIMENTS
We first introduce the setup of the experiments in Section 4.1,

and then present the experimental results in Section 4.2, in which
we compare the recommendation accuracy of our model with five
baselines on four datasets. After that, we analyze which factor in-
fluences group members’ choices more significantly in Section 4.3.
In the end, we show some sample topics discovered by the proposed
model to examine their semantics in Section 4.4.

4.1 Experimental Setup
4.1.1 Datasets

Four real-world datasets are used in our experiments. The first
dataset is used in previous work [12], which is collected from Plan-

Table 2: Statistics of the Datasets
Dataset Plancast Jiepang

MovieLens MovieLens
-Simi -Rand

#Users 41,705 28,888 891 3,689
#Group Events 13,885 23,621 3,000 3,000

#Items 8,016 9,746 441 1,518

Avg. Group Size 20.30 4.68 5 5
Avg. #Items
for a Group

1.00 1.01 14.97 3.73

Avg. #Records
for a User

6.76 3.83 16.83 4.06

Avg. #Friends
for a User

43.29 13.00 N/A N/A

Avg. #Records
for an Item

1.73 2.42 100.06 7.37

cast1 , an event-based social network (EBSN). In Plancast, a user
can follow others’ calendars, and join different events. An event
involves a group of members, and is held at a venue. A venue is
associated with a geographical coordinate. We treat an event as a
group, where the users involved in the event are the group mem-
bers, and the venue of the event is the item selected by them.

Second, we collect 45 million check-ins from Jiapang2 , a location-
based social network (LBSN). As shown in Figure 1, LBSNs allow
users to share their geographical information by check-ins, where
a check-in has a user, time and venue, indicating the user visited
the venue at that time. Each a venue in Jiepang is associated with
its geographical coordinate. However, Jiepang does not contain ex-
plicit group information, and we extract implicit group check-ins
as follows: we assume if a set of friends visit the same venue at the
same time, they are the members of a group. Specifically, the set of
individual check-ins made by friends within 0.5 hour is regarded as
a group check-in. For both Jiepang and Plancast datasets, we aim
to recommend venues for given groups.

The last two datasets are extracted from 1M MovieLens dataset3

by following the approach in [4]. MovieLens allows users to rate
the movies they have watched by stars ranging from 0 to 5. Two
kinds of groups are considered in the experiments: similar and ran-
dom, denoted by MovieLens-Simi and MovieLens-Rand, respec-
tively. Groups in MovieLens-Simi have larger inner similarities
between members, while groups in MovieLens-Rand are randomly
formed. The two datasets simulate two kinds of groups in real-life:
the groups formed by people who have similar preferences, and
the groups that happen to be formed by a set of people. For each
dataset, we randomly select 3000 groups with 5-members. We also
evaluated groups of size 3 and 8, and obtained similar results. The
details for generating the datasets can be found in [4]. Given a
group, if every member gives 4 stars or above to a movie, we as-
sume that the movie is adopted by the group. We also collect the
cast list of each movie from IMDB4 as content information.

The information of the four datasets is shown in Table 2. For
each dataset, we randomly mark off 20% of group events as the test
set to evaluate the recommendation accuracy of different methods.

4.1.2 Evaluation Metrics
Following previous work [3,4,8,13], we evaluate the accuracy of

different methods with three metrics, namely average precision@N
(Pre@N), average recall@N (Rec@N) and normalized discounted

1http://plancast.com/
2http://jiepang.com/
3http://grouplens.org/datasets/movielens/
4http://www.imdb.com/interfaces/
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cumulative gain (nDCG), where N is the number of recommenda-
tions. We consider three values of N (i.e., 5, 10, 20), where 5 is the
default value.

Precision@N is the fraction of the top N recommendations that
are adopted by a group, while recall@N is the fraction of items
adopted by a group (true items) that are contained in the top N
recommendations. Formally, given a group, the precision@N and
recall@N are calculated as:

precision@N =
|{top N recommendations} ∩ {true items}|

|{top N recommendations}| (17)

recall@N =
|{top N recommendations} ∩ {true items}|

|{true items}| (18)

We average the precision@N and recall@N of all testing groups
as the Pre@N and Rec@N, respectively. Note that the average
number of true items of a group in Plancast and Jiepang is close to
1 (Table 2). In this case, Pre@N is proportional to Rec@N, since
|{top N recommendations}| is N times greater than |{true items}|.
Thus, to save space, we only report Rec@5 for the two datasets.

nDCG measures how well a method can rank the true item higher
in the recommendation list. It is calculated as follows:

DCG = rel1 +

N∑
i=2

reli

log2(i)
(19)

nDCG =
DCG
IDCG

(20)

where reli = 1 if the ith item in the recommendation list is adopted
by the group, and reli = 0 otherwise. IDCG is the maximum possi-
ble discounted cumulative gain (DCG) with optimal top N recom-
mendations. We average the nDCG values of all groups as the final
result. In the experiments, N is fixed at 10.

For all metrics, larger value indicates better recommendation
performance.

4.1.3 Recommendation Methods
We evaluate 7 methods in our experiments, namely CF-AVG,

CF-LM, CF-RD [3], SIG [26], PIT [13], and the proposed methods
COMP and COM. To the best of our knowledge, these state-of-
the-art group recommendation methods have not been compared
with each other in previous work, and our evaluation is the first
experimental studies on them.
User-based CF with averaging strategy (CF-AVG): Given a can-
didate item i, CF-AVG first estimates the recommendation score of
each user in the target group by user-based CF, and then uses the
average of these scores as the recommendation score for the group.
User-based CF with least-misery strategy (CF-LM): Given a
candidate item i, CF-LM first estimates the recommendation score
of each user in the target group by user-based CF, and then uses the
smallest score as the recommendation score for the group.
User-based CF with relevance and disagreement (CF-RD) [3]:
This model calculates the recommendation score for a candidate
item i based on the relevance and disagreement of the group, where
the relevance is calculated based on either CF-AVG or CF-LM, and
the disagreement can be either the average difference of recom-
mendation scores of pair-wise group members, or the variance of
members’ recommendation scores.
Social influence based group recommendation (SIG) [26]: SIG
is a topic model based approach, which has been introduced in Sec-
tion 2. Since the MovieLens-Simi and MovieLens-Rand datasets
have no friendship information, we do not report the results of SIG
for them.

Personal impact topic model (PIT) [13]: PIT model assumes that
different users have different impact scores, and in a group, the user
who has a larger impact score is more likely to be selected as the
representative. Given a group of users ugt , PIT model first samples
a representative user r from ugt based on users’ impact scores, and
then r selects a topic based on her topic preference, and finally the
topic generates an item for the group.
COnsensus Model Plain (COMP): To make a fair comparison
with these baselines which do not exploit users’ considerations of
content factors, we use a symmetric Dirichlet prior for φUI to dis-
regard the effect of content information.
COnsensus Model (COM): The proposed model incorporated with
users’ considerations of content factors.

All baselines are evaluated under the optimal settings. For the
hyperparameters in COMP and COM, we take fixed values (α =
50/K, β = η = 0.01, γ = γt = 0.5 and ρ = 0.01 for COMP). The
prior ρ in COM encodes the content-based knowledge, and needs
to be set empirically. Previous work fixes its value as 0.01 [9], and
thus the sum of the prior is 0.01 × |I|. In this paper, we normalize
the value of ρ of each user to a fix value 0.01 × p × |I|, where the
parameter p is used to tune the confidence in the prior knowledge.

4.2 Experimental Results
Precision and Recall Under Different N

We first fix the number of topics K at 250, and vary the number of
recommendations N. The Pre@N and Rec@N values on the four
datasets are plotted in Figure 3. Please note that the MovieLens-
Simi/Rand datasets do not contain social relations, and thus the
baseline SIG cannot be applied to them.
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Figure 3: Pre&Rec under #recommendations made (N)
From Figure 3(a) and 3(b), we can see that the CF-based ap-

proaches, namely, CF-AVG, CF-LM and CF-RD, do not perform
well on the Plancast and Jiepang datasets. This is because the three
methods exploit neither the difference of individuals, nor the inter-
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actions among group members. They assume that users in a group
make choices independently, and aggregate their choices for rec-
ommendations. The performance of SIG is not satisfactory, either.
The reason is that SIG makes group recommendations based on the
social relations between users in a group, and it requires tags of
candidate items. However, in the groups of Plancast, only several
or even none of the members are friends to each other, and neither
of the two datasets has tag information. The lack of social relations
and tags brings down its recommendation accuracy.

In contrast, PIT performs better than the CF based approaches
on the Plancast and Jiepang datasets because PIT utilizes the in-
teractions in a group by differentiating influences of users, and as-
sumes that a user with a larger impact score will be influential in
every group of the user. However, PIT ignores the fact that the
influence of a user will be different across different topics. The
performance of PIT on the two MovieLens datasets is not as good
as on the Plancast and Jiepang datasets. This is because groups in
the two datasets are loosely organized, and users select movie in-
dependently. Since no representative member exists to make item
selections for a group, the basic assumption of PIT does not hold
any more, which results in its bad recommendation accuracy.

Compared with the five baselines, our proposed method COMP
always archives superior recommendation accuracy. For example,
it outperforms CF-AVG, CF-LM, CF-RD, SIG and PIT by 84%,
34%, 76%, 43% and 19%, respectively, for Rec@5 on Plancast.
The reasons are two-fold: on the one hand, COMP considers the
behavior changes of users in a group; on the other hand, it estimates
the topic-dependent influences of users in a group. Compared with
COMP, COM further improves Rec@5 by more than 15% on Plan-
cast, Jiepang and MovieLens-Rand, showing that COM is effective
in incorporating the content information (geographical distance for
Plancast and Jiepang, and cast list for MovieLens-Rand). The im-
provement on MovieLens-Simi is marginal, since its user-item se-
lection matrix has a high density (about 4%). As a result, COMP,
which only utilizes users’ selection history, already achieves very
good accuracy(e.g., Rec@5 is 67.3%), and thus the value of relative
improvement is small.
Precision and Recall Under Different K

We fix the number of recommendations at 5, and vary the number
of topics K from 50 to 400. The Pre@5 and Rec@5 values on the
four datasets are plotted in Figure 4. Since CF-AVG, CF-LM and
CF-RD do not involve topics, their Pre@5 and Rec@5 values do
not vary with K.

For the topic model based approaches, namely, SIG, PIT, COMP
and COM, their Pre@5 and Rec@5 values do not change much
with varying the number of topics. In addition, we notice that
SIG performs worse than CF-AVG, CF-LM and CF-RD on Plan-
cast, but better than these CF-based approaches on Jiepang when
K ≥ 250. This is because the group events of Jiepang are extracted
based on friendships, and thus they fit well with the assumption
of the SIG. PIT’s Rec@5 value is the best among the baselines on
the Plancast and Jiepang datasets, but is worse than that of CF-
AVG, CF-LM and CF-RD on MovieLens-Simi and MovieLens-
Rand. Potential reason is the generative process of groups in the
MovieLens datasets is different from that of PIT model. Our pro-
posed method COMP outperforms the best baselines by about 20%
on the four datasets. After incorporating users’ personal consider-
ations of content factors, COM further improve the Rec@5 values
by more than 15% on the Plancast, Jiepang and MovieLens-Rand
datasets, demonstrating the effectiveness of the proposed model.
nDCG Under Different K

Next, we vary the number of topics K, and examine the nDCG
results of different approaches to see how well they can rank the
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Figure 4: Pre@5&Rec@5 under #topics (K)

true items higher. The results are plotted in Figure 5. We can see
that the results display a similar trend with the previous experi-
mental results based on Pre@5 and Rec@5: PIT performs the best
among the baseline methods on Plancast and Jiepang, but the worst
on MovieLens-Simi and MovieLens-Rand. However, our method
COMP consistently outperforms the best baseline under different
number of topics by more than 15% on the four datasets. COM
achieves the best results, which are at least 16% greater than that of
COMP on Plancast, Jiepang and MovieLens-Rand.
Effect of p

We next examine the effect of p on the recommendation accu-
racy of COM. Recall that after incorporating the users’ personal
considerations of content factors into the prior, we normalize the
prior of each user to p · 0.01 · |I|. Parameter p is set to adjust the
effect of the prior, i.e., larger p implies that the distribution φUI

u is
more influenced by the content information. We examine the rec-
ommendation accuracy of COM under different value of p ranging
from 0.001 to 1000. The Rec@5 and nDCG on four datasets are
plotted in Figure 6. We can see that the recommendation perfor-
mance remains relatively stable when varying the value of p. The
Pre@5 follows a similar trend with Rec@5, and we omit it due to
the space limitation.
Performance for Different Size of Groups

This set of experiments is to study the performance of each rec-
ommendation method for groups of different sizes. We group the
Plancast groups into bins based on group size, and plot the Rec@5
and nDCG curves of each method in Figure 7. The number of top-
ics is fixed at 250. Due to the space limitation, the results on the
other datasets are not given here. Figure 7 shows that the proposed
methods COMP and COM outperform the baselines for groups of
different sizes. Among the baselines, CF-AVG, CF-LM and CF-
RD perform the worst, followed by SIG and PIT. Compared with
that of other methods, the performance of CF-based approaches is
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Figure 5: nDCG under #topics (K)

better for groups of small size, because their group organizations
are simple, and thus these simple aggregating strategies are good
for making recommendations.

4.3 Weight of Topics in Item Selection
In this section, we study the weight of topics in users’ item se-

lections by investigating parameter λu, the probability that a user
selects an item according to group topics.

We first study the effect of the number of topics K on the value
of λu. Specifically, for each dataset, we plot the average λu of all
users as a function of K. The curves of COMP and COM on the
four datasets are shown in Figure 8. We can see that for COMP
which does not exploit the content information, the average λu is
almost not affected by the value of K, and its value is between 0.75
to 0.9. The results reveal that most of items are selected according
to topics, but there is still a set of items that are selected based on
users’ personal considerations of content factors. Compared with
the average λu of COMP, that of COM is much smaller, since ad-
ditional content information is incorporated. The value of λu on
Plancast (around 0.5) is larger than that on Jiepang (around 0.2)
for COM, indicating that topics have larger weight in venue selec-
tions of Plancast users. In addition, the λu values of both COMP
and COM on MovieLens-Simi are larger than those on MovieLens-
Rand, because groups in MovieLens-Simi consist of people with
high similarities, and thus topic is a very important consideration.

Then, we fix the number of topics at 250, and plot the distribution
of λu of COM on the four datasets in Figure 9. We notice that on all
datasets, the λu value of the majority of users is smaller than 0.4,
showing that the personal considerations of content information is
important for most of people. In addition, we see that the curve
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Figure 8: Avg. λu under #topics (K)

of Plancast has a long tail, indicating that a considerable portion
of users treat topics important. In addition, λu on MovieLens-Simi
reaches another peak at λu = 1, showing that in a group with high
inner-similarity, a considerable portion of people select items based
on topics.

4.4 Topic Analysis
We first investigate the venue distribution of each topic generated

by COM on Plancast and Jiepang datasets, where the number of
topics is set to 250. For each topic z, we rank the venues i based
on φZI

z,i . The top 5 venues of 5 randomly selected topics on the two
datasets are plotted in Figure 10. We observe that for each topic, the
top ranked venues are close to each other. This is because topics
are estimated based on users’ group participation history. Since
users tend to join groups held at their nearby venues due to the
spatial constraint, the venues visited by each user fall in a small
geographical region, and thus the top ranked venues of each topic
are close to each other.

Then, we examine the movie distributions of topics of COM on
the MovieLens-Rand dataset. Specifically, we set the number of
topics at 50 for COM, and randomly select 5 topics. For each topic
z, we rank the movies i based on the learnt φZI

z,i . The top 3 movies
of the 5 topics are listed in Table 3. The name of each topic is gen-
erated from the top 10 movies’ genres in IMDB by majority vote.
We can find that the discovered topics are semantically meaningful.

5. CONCLUSION
Recommender systems have been studied for decades, but most

of them are designed for individuals. How to make accurate rec-
ommendations for groups is still an open problem. In this paper,
we propose a probabilistic model COM to simulate the generative
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Figure 10: Venue Distribution of Topics

process of group events and make recommendations for a group of
users. Since users’ item selections are not only influenced by top-
ics, but also by users’ personal considerations of content factors, we
incorporate the content information into the model. In addition, the
proposed model considers the change of users’ behaviors in a group
from as individuals, and differentiates the influences of users in a
group according to topics. Experimental results on four real-world
datasets show that the proposed method outperforms five baselines
significantly.

For the future work, it would be interesting to exploit social re-
lations to make group recommendations, since the friendships in a
group may influence the group’s choices. In addition, several con-
tent factors are difficult to be incorporated into the our model, e.g.,
time. We will investigate how to model such content factors.
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