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ABSTRACT

Users on an online social network site generate a large number of
heterogeneous activities, ranging from connecting with other users,
to sharing content, to updating their profiles. The set of activities
within a user’s network neighborhood forms a stream of updates
for the user’s consumption. In this paper, we report our experience
with the problem of ranking activities in the LinkedIn homepage
feed. In particular, we provide a taxonomy of social network ac-
tivities, describe a system architecture (with a number of key com-
ponents open-sourced) that supports fast iteration in model devel-
opment, demonstrate a number of key factors for effective ranking,
and report experimental results from extensive online bucket tests.
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1. INTRODUCTION

Professional networking site LinkedIn and other social network-
ing sites provide users an easy way to connect with other users and
keep track of various updates from them. An important mechanism
that helps each user keep track of such updates is through a feed of
activities that is centered around her egocentric networks (her con-
nections, people she follows, companies she follows, etc). Some
examples of activities generated by a user’s first degree network
include job changes or profile updates, sharing of content, likes or
comments on a piece of information, joining a group or connecting
with another user. Since the volume of social network activities is
usually large and each user has limited time to consume informa-
tion in his/her feed, it is important to rank activities according their
“relevance” to the user, while keeping the feed fresh and diverse.
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The primary goal of the feed is to maximize long-term user en-
gagement, manifested by a user visiting the site more often. How-
ever, optimizing the visit frequency of a user is difficult in practice
due to long feedback loops. Proxies that are readily measurable
with little feedback delay are often optimized in practice. While
there are several such proxies, the most popular approach is based
on the probability of a user clicking on an activity. Such a click
probability is also called click-through rate (CTR).

Challenges: Ranking activities in social network feeds is challeng-
ing because of the following reasons.

o Scalability: The volume of activities to be ranked is high. The
number of user visits is large. The data to be used for training
CTR prediction models is also large. A ranking system needs
to scale along all these dimensions.

Personalization: There is wide variation in egocentric net-
works (neighborhoods) of users. Users also have different
information needs and feed consumption patterns, and may
prefer different types of activities. A good ranking system
needs to rank activities according to each user’s individual
preference and provide support to test many potential signals
for personalization through fast iteration of machine-learned
models.

This paper describes our experience working with the production
system at LinkedIn. We describe the approaches we took to ad-
dress these challenges and the lessons learned. We would like to
point out at the very outset that this paper is not about presenta-
tion of fundamentally new machine learning methods, but rather
about practical challenges faced when deploying machine learning
methods in a production environment and our attempts to address
them. When studying new data mining and machine learning meth-
ods, testing out-of-sample predictive accuracy of machine-learned
models on retrospective data is usually the main focus . Although
useful, it does not provide the whole story of the challenges in-
volved in deploying models in production.

Before we discuss our ranking system, we first describe a cou-
ple of potential straw man approaches that are practiced in various
industrial settings when dealing with feed recommendation prob-
lems. We did not find these to be satisfactory in our problem set-
ting.

Approach 1 — Reverse chronological ordering of feed activities:
Ranking based on reverse chronological ordering (recency) of ac-
tivities leads to a fresh but not necessarily a relevant feed. We
conducted an online bucket test for three weeks in 2013 compar-
ing pure recency ordering with relevance-based ranking (using our
model that served the majority of users at that time), and found the
CTR of relevance-based ranking to be 43% higher than that of or-



1.6

CTR
1.4

1.2

1.0

80 120

Number of likes

Figure 1: CTR as a function of number of likes.

dering by recency.! By the end of 2013, we further improved our
relevance model and obtained an additional 15% gain. We believe
that a well-designed relevance-based ranking system can signifi-
cantly outperform recency-based ranking. In our scenario, even
after achieving 60% lift (in CTR), there is still more room left for
improvement.

Approach 2 — Ranking by social popularity: On LinkedIn, users
can like (by clicking on the “like button™) or comment on activi-
ties. Social popularity can be defined as the number of likes (i.e.,
“like button” clicks) or comments. It may seem at the first glance
that ranking activities according to their social popularity is good
enough. This is not true in our scenario. Firstly we note that a
non-negligible fraction of activities do not receive any like or com-
ment on LinkedIn, despite being shown to a non-negligible set of
users. For those that do receive likes or comments, the CTR is not
a monotonically increasing function of social popularity as shown
in Figure 1. This does not imply that social popularity is not a use-
ful signal, but that it is extremely sparse and requires systematic
modeling for leverage.

Contributions: In this paper, we make the following contributions:

e We introduce a taxonomy of activities in social network feeds
in Section 3.1.

We present our system architecture and modeling process (as
of 2013) that supports fast model iteration (Section 4). Our
main feature storage system (Voldemort?) and activity index-
ing system (Sensei DB ®) have already been open-sourced.
We are also in the process of open-sourcing our large-scale
model training library.

We illustrate the user behavior when interacting with social
network feeds based on “randomized” data in Section 3. Ran-
domization helps reduce the bias induced by the ranking meth-
ods used during data collection.

We report on extensive experiments based on online bucket
tests (A/B experiments) in Section 5. In particular, we il-
lustrate the effect of freshness, the benefit of impression dis-
counting, and the gains brought in by personalization.

"This experiment only considers each user’s first feed visit in a
session. Subsequent visits in a session are served through other
methods.

Zhttp://www.project-voldemort.com/voldemort/
3http://www.senseidb.com/
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Terminology: In the rest of this paper, the terms activity and item
are used interchangeably both referring to a professional network
activity. The term impression is used to refer to an item’s appear-
ance in a user’s LinkedIn feed. Because users primarily respond to
an activity in the feed through clicks (including clicks on links to
see more information and clicks on buttons to share, like or submit
a comment on the activity), we combine all these responses and
denote it as the click-through rate (CTR) and use it as our primary
measure to optimize in this paper.

2. RELATED WORK

Ranking activities from a user’s interpersonal network has al-
ways been important in social networks. One line of work is to
rank homogeneous tweet feeds in Twitter. Chen et. al. conducted
a set of user studies for information stream recommendation on
Twitter. Their purpose was to manually study how various features
result in various user preferences to the Tweet feeds. They studied
content sources, topic interest of users, and social voting on items
in [8]; and thread length, topic relevance and tie-strength in [7],
respectively. Their work paved the way for the future automated
studies. For example, [1, 11] enriched user profiles with their ac-
tivities on Twitter for a personalized news recommendation system;
and [6] produced different rankers for different sub-communities of
a user’s social network, where these rankers are described as topics
so that the user can rank his/her social feeds by specific topics. As
this line of work mainly focused on homogeneous feeds, they are
essentially close to the earlier personalized news feed recommen-
dation work [10], except that they used additional social network
features like social voting, social tie strength etc. to model the ac-
tivity relevance. Furthermore, this line of work did not conduct
large-scale study.

More recently, researchers started to pay attention to the hetero-
geneous nature of the network activity ranking problem. Starting
from small-scale data, [18] identified different types of user ac-
tivities from a few users’ tweet feeds in Twitter; and [9] investi-
gated the importance of diversity on the Twitter item recommen-
dation and found that content was more relevant to users when it
was highly homogeneous or highly heterogeneous. These works
inferred heterogeneous activity types from Twitter’s text feeds.

Subsequently, researchers started to directly study the hetero-
geneous data. Berkovsky et. al. computed the relevance of the
feed items using user-user relationship strengths and user-action
interest scores for the social feed personalization in the online To-
tal Wellbeing Diet (TWD) portal [3] and an experimental eHealth
portal [2] respectively. These personalized streams attracted more
user attention compared to the chronologically ordered feed lists.
Paek et. al. [19] attempted to understand how people judge the
importance of their newsfeed in Facebook by asking some Face-
book users to rate the importance of their newsfeed posts as well
as their friends’. Classifiers were learned to identify predictive fea-
tures for the newsfeed and friend relevance. Bourke et. al. [4]
improved social stream relevance by leveraging features from mes-
sages, content source, and the users for Facebook. Soh et. al. [20]
recommended Facebook social feeds to users by exploiting their re-
sponse behavior in the past. Based on SocialBlue’s news feeds, [12]
computed the relevance of network activity feeds from the observed
interactions of the individuals in the past. They diversified features
into four types: user-user, user-action, user-object and age of activi-
ties. Some researchers also investigated the heterogeneous network
activity stream personalization problem for enterprise network ac-
tivity streams [13, 14]. They concluded that the activity stream
based user profile is more productive than entity-based user profile
for personalizing the stream. Despite the boom of this line in re-



search, all the above work on heterogeneous activity feed ranking
has not been evaluated on top of large-scale production systems.

The closest related work is [15], where various machine learn-
ing techniques including linear models on features and latent factor
models (matrix factorization and tensor factorization) were applied
to activity ranking in LinkedIn feed. Their focus was on offline
modeling. Here, we present an overview of the end-to-end system
and online bucket test results.

3. DATA ANALYSIS

In this section, we study several important aspects of activity
ranking based on randomized data. In particular, we assigned a
small fraction of users to the random bucket. For each user in the
random bucket, we shuffle (uniformly at random) the top-100 ac-
tivities that could appear in the user’s feed and present the random-
ized feed to the user. For details, see Section 4.2. Such randomized
data helps to reduce the serving bias caused by the ranking algo-
rithm used during the data collection period and the positional bias
caused by potential high likelihood of placing certain kinds of ac-
tivities at certain positions in the feed.

We start by introducing different types of activities in the feed.
We then show some interesting characteristics of our data. They
motivate our relevance modeling described later.

3.1 Taxonomy of Activities

In this section, we present a taxonomy of different types of ac-
tivities in a social network. In general, each activity can be repre-
sented as a triple: (actor, verb, object). For example, member A
connects to member B, member A shares article C', and member
A updates her profile picture D. Each user has two roles in a so-
cial network. On the one hand, a user is an actor who generates
activities for other users to consume. On the other hand, a user is
also a viewer, who receives a stream of activities generated by the
actors in her network. The problem we study is how to rank this
activity stream for each viewer. We note that, in addition to users,
there may be other kinds of actors in the network. For example,
in the LinkedIn network, companies, schools and content channels
are actors as well, which can share different kinds of information.

The type of an activity, also called an activity type, is a triple of
(actor type, verb type, object type), e.g., (member, connect, mem-
ber), (member, share, article) or (member, profile-update, picture).
We broadly classify activities in social networks into the following
five categories and also show examples of activities on LinkedIn in
Table 1.

1. Connection activities: These are the activities that add new
edges in the social network. We can further classify these activities
into:

o Symmetric connection: For example, the event of a member
connecting to another member adds an undirected edge (or
more precisely, a bidirectional edge) to the LinkedIn profes-
sional network.

e Asymmetric connection: For example, the event of a member
starting to follow another member or a company (in order to
receive what the followee shares) adds a directed edge to the
LinkedIn network; the followee will not receive anything from
the follower. Another example is the event of a member join-
ing a group (which connects the member to the group).

2. Informational activities: These are the activities where entities
in the network pass information to others. In the LinkedIn network,
members and companies can share messages, articles, pictures, dis-
cussions (in groups) or jobs.
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Figure 2: Relative CTRs of different activity types over a 10-week
period. The y-axis is log-scaled.

3. Profile activities: These are the activities generated due to
users’ profile changes. Examples of such profile changes on LinkedIn
include updates of profile pictures, contact information, job posi-
tions, etc.

4. Opinion activities: These are activities where users express
their opinions on different kinds of objects (e.g., articles, pictures,
discussions, etc.). Two kinds of opinions are common on social
network sites: like and comment, where the former takes a user
little effort to express his/her opinion, while the latter requires a
user to put his/her opinions into words.

5. Site-specific activities: The above four categories of activities
generally appear on many social network websites. However, each
website may also have some activities specific to its purposes or
needs. For example, LinkedIn is a professional social network and
has job-related activities: job anniversaries, endorsements of users’
skills and job recommendations.

Characteristics of CTR of activity types: Users’ response to dif-
ferent activity types vary. In Figure 2, we show the CTRs of differ-
ent activity types relative to the average CTR of all types for users
in the random bucket. Each curve represents the CTR of an activity
type over a 10-week period. Due to confidentiality reasons, we do
not label the curves. However, the key message from this plot is
that a few activity types have much higher CTRs than others. Also
note that the CTRs of some activity types do not change much over
time, while the CTRs of some other types can have large temporal
variations.

3.2 Freshness

In this section, we show how freshness of activities affects click-
through rate. We consider two aspects of freshness. First, the age
of an activity since its creation. Second, the number of times a user
has seen a particular item in the past. Note that these two notions of
freshness can differ significantly for different users. For example, a
heavy user might see an activity several times within the first hour
of its lifetime. In contrast, a light user who did not visit the feed for
a week would not have seen any activity less than 7 days old.

3.2.1 Effect of Activity Age

To measure the effect of age of activity on CTR, we analyzed the
impression and click data collected from the random bucket (de-
scribed in Section 4.2) over a period of six weeks. Even though the
random shuffling mechanism used in the random bucket helps to



Table 1: Taxonomy of activities on LinkedIn

Category Actor Type Verb Type Object Type
connect or member or
. member
Connection follow company
member join group
Informational member or share aﬁicle, Picture, message,
company discussion, group, job
icture, address, phone,
Profile member profile-update preture, acdress, phone
snapshot, job-change
.. like or article, picture, message,
Opinion member . R .
comment discussion, group, job
member anniversary job-anniversary
member endorse or member
Site-Specific endorse-by
recommend or
member member
recommend-by
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Figure 3: Effect of activity age on CTR for information sharing
(left) and for profile picture updates (right). The CTRs have been
normalized so that the CTR at age O is one.

remove serving and positional biases, the number of times an item
has been seen by a user in the past can still confound the analysis.
To account for any potential bias due to user fatigue from repeated
impressions, we only considered the first impression of an item for
each user. The age of an item was coarsely divided into a few buck-
ets. For example, if the age of an item was between zero and twelve
hours, it was placed in the zero bucket. If the age was between 12
and 24, it was placed in the bucket corresponding to age 12 and so
on. For each of these buckets, we estimated the CTR based on the
items that were presented to users.

The CTR curves of two different activity types are shown in Fig-
ure 3. Due to proprietary reasons, for each activity type, the y-axis
have been normalized based on the CTR of the first bucket. The
plots show that the decay of CTR with age can look different for
different types of activities. In the case of profile picture updates,
there is a spike in CTR a few hours after the activity is created
which then drops down subsequently. In contrast, in the case of
information sharing there is a sharp drop in CTR initially followed
by a much slower decay from there on.

3.2.2  Effect of Repeated Impressions

To determine the variation in CTR with repeated impressions,
we also use the random bucket data. For each activity, we counted
the number of past impressions of the activity for each user. If an
item never appeared in a user’s feed before, the number of past
impressions for that (user, item) pair would be zero.

The behavior of CTR with the number of previous impressions
of the same activity is shown in Figure 4. In this plot, the x-axis
shows the number of times an activity was seen before and the y-
axis shows the corresponding CTR. The plot has been normalized
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Figure 4: Effect of repeated impressions on CTR.

by the CTR of the first impression. It is obvious from the plot that
the CTR of an activity decreases as it is seen multiple times. This
curve suggests the need for discounting the predicted CTR based
on the number of previous impressions of an activity.

3.3 Diversity of the Feed

LinkedIn feed consists of diverse types of activities as introduced
in Section 3.1. In this section, we analyze how CTR changes with
respect to the diversity in the feed using the random bucket data.
For each feed that was presented to a user, we consider the ID of
the actor of the activity at position 10 and count the number of times
activities from the same actor appeared in positions 1 to 9. When
this count is high, this corresponds to a scenario where most activ-
ities in the feed have the same actor. In other words, a high count
reflects lack of actor diversity in the feed. Similarly, we considered
the counts of the same verb type or same object type in positions 1
to 9. To avoid any bias cased by users with very few connections
(thus, it is unlikely to have diverse feeds for them), we restricted
this analysis to only those users who had at least 50 connections.
The decay of CTR with respect to repeated actor ID, verb type and
object type is shown in Figure 5. In all the plots, the y-axis have
been normalized so that the CTR in the case of no repetition (i.e.,
#repetitions = 0) is one. It can be seen that for all the three different
types of repetitions, there is a rapid initial decay in CTR.

3.4 Connection Relationship

Since members on LinkedIn are connected via a professional
network, we can study how the connection relationship between
a viewer and an actor affects whether the viewer would click on
an activity of the actor. A few examples of connection relationship
between a viewer and an actor are in the following.
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Figure 5: Effect of (lack of) diversity on CTR for actor ID, verb type and object type.

Table 2: CTR lift when the viewer and the actor have the same
characteristic compared to the case where they do not.

Viewer-Actor Relationship | CTR Lift
Same Company 66%

Same Job Function 25%

Same Industry 33%

Same Geo Region 24%

Demographic similarities based on age, gender and educa-
tion, etc.

Experience similarities based on the common companies, job
positions, etc.

Skill similarities based on the common skills and similar
skills.

Geo similarities based on the locations of the viewer and the
actor at different resolutions (e.g., city, state and country).

Social network similarities based on connections of the viewer
and the actor.

Effect of connection relationship: We now present some observa-
tions from our data with respect to a couple of these similarity mea-
sures by looking at whether the viewer and the actor belong to the
same company, have the same job function, are in the same industry
or in the same geo-region. Table 2 shows that when the viewer and
the actor have similar characteristics, there is a higher chance that
the viewer would click on an activity of the actor. However, such
behavior also depends on the type of activity. For example, con-
sider whether the viewer and actor are in the same company or not.
Averaged over all activity types, the CTR of “same company” is
66% higher than the CTR of “different companies”. However, Ta-
ble 3 shows that it is not the case for job-change type of activities.
A viewer clicks more often on a job-change of an actor in a differ-
ent company than a job-change of an actor in the same company,
perhaps due to the high likelihood that the viewer already knew her
connections in her company changed jobs.

3.5 Platform Dependence

From our analysis, we observe that users’ interaction with activ-
ities differ significantly across the mobile and desktop platforms.
We first looked at the impression distribution across different age
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Table 3: CTR lift when the viewer and the actor are in the same
company for different types of activities.

Activity Type | CTR Lift
(member, post, message) 207%
(member, share, article) 111%
(member, connect, member) 72%
(member, profile-update, job-change) -10%
35%
0 30% | g 4%
= [}
© 25% — S 2%
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(a) Impression distributions (b) CTR lift

Figure 6: Behavior of different age groups of viewers on mobile
(red) vs. desktop (blue)

groups of the viewer. It is evident from Figure 6a that the distri-
bution of impressions is similar across age groups on the two plat-
forms. We then looked at the CTR by age groups on these two plat-
forms. This is shown in Figure 6b. Due to proprietary reasons, the
plot only shows the deviation of CTR for an age group compared
to the overall CTR on that platform. Surprisingly, although the im-
pressions distribution is similar on the two platforms, different age
groups respond differently on mobile and desktop. This example
shows differences in user behavior across different age groups on
different platforms. It is important to analyze users’ behavioral dif-
ferences on different platforms and build models that capture the
behavior specific to each platform. As another example, we will
show in Section 5 that a mobile specific model performs signifi-
cantly better than simply using a desktop model to rank activities
on our mobile feed.
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4. RELEVANCE SYSTEM

In this section, we first give an overview of our system as of
2013 and then outline our model training process which includes
data collection, large-scale logistic regression and an offline replay
methodology for model evaluation. The primary goal of relevance
modeling is to accurately predict the CTR of a given user-item pair,
i.e., the probability of the user clicking on the item. In additional
to CTR prediction, it is also important to incorporate mechanisms
to ensure freshness and diversity. These will be discussed in Sec-
tion 4.5.

4.1 System Overview

At a high level our system consists of online components for
serving users’ feed requests, and also offline components for gen-
erating features and training models on Hadoop. Figure 7 shows
the main components of our system and their interaction with one
another. We would like to mention that two of these important
components, the feature store (Voldemort) which provides large-
scale feature storage and retrieval, and the item index (SenseiDB)
which indexes items and ranks them according to a scoring model,
have already been open-sourced and we are in the process of open-
sourcing the model training component.

When a user logs in to LinkedIn, the web-server sends a re-
quest for the feed to the feed service. Activities generated on the
LinkedIn professional network are stored in SenseiDB. When the
feed service receives the ID of the viewer, it retrieves the appropri-
ate model for the viewer (depending on the online bucket test run-
ning at that time) and sends the model to SenseiDB to score the can-
didate activities for the viewer stored in SenseiDB. The SenseiDB
stores item specific features (for example: activity type, creation
time etc). Some of our models incorporate additional features that
are either not item specific or are derived through additional com-
putation. For example, we use a score for the affinity of the viewer
to each activity type in our models. Such features are generated by
separate feature pipelines on Hadoop, and pushed to a Voldemort
store which is a distributed key-value store. The feed service can
then access these features efficiently from the Voldemort store. The
feature pipelines generate features from the tracking data which is
a log of impressions (with basic features of activities) and clicks.
The features produced by the feature pipelines are also used in the
training process which generates models for use in SenseiDB. More
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details on model training, features used and evaluation are provided
next.

4.2 Training Data Collection

Collection of training data for our application can be a non-trivial
exercise. In the absence of a good ranking model, a seemingly
natural option is to rank activities in a reverse chronological order
and present to the viewers. The response information (click/no-
click) thus collected could then comprise the training dataset. How-
ever, this method of training data collection can severely suffer
from serving bias in the following way. Usually viewers’ atten-
tion is drawn primarily to the first few results in the feed. So
if the serving scheme never serves activities of certain types to a
viewer, the viewer cannot give his/her feedback on such activities.
At LinkedIn, the frequencies at where different types of activities
are generated are quite different. For example there are many more
member connect member updates in the candidate set of activities
than some other of the other types. This implies that a reverse
chronologically sorted stream of a typical viewer would comprise
of a large number of connection activities and other infrequent ac-
tivities, like job changes, will rarely, if ever, get impressed on the
viewer although they might be more relevant. This leads to data
sparsity problem for a number of activity types.

The most common approach for eliminating serving bias is ran-
dom serving, where activities in the candidate pool are ranked ran-
domly. However, this scheme is likely to cause very poor user ex-
perience due to the following two reasons. First, many irrelevant
and stale activities might get promoted to the top positions. Sec-
ond, the set of activities presented at the first few positions would
change dramatically upon each page reload. Moreover, the feed
would still be dominated by a few types of activities that are more
common than the others.

We overcome the aforementioned problems in the following way.
We first use a ranking algorithm to rank activities. Then, the top-
k results are permuted uniformly at random to prepare the final
feed for the viewer. This scheme removes the serving bias from
the training data to a large extent, without completely sacrificing
user experience. Our training data consists of activities that were
presented using this mechanism. The activities on which a viewer
clicked are considered positive examples and those with which the
viewer did not interact are considered negative examples. Such
training data comes at the cost of reduced user experience due to
randomization. Since model training/re-training is a continuous
process which entails persistent availability of fresh training data,
this cost must to be minimized. This is done by serving this ran-
domized feed to only a small fraction of our viewers, and frequently
changing this bucket of viewers. Also, we keep updating the under-
lying ranking model (which produces the top-k results for random-
ization) to the current best model. This ensures an improving user
experience even for those viewers who happen to fall in the random
serving bucket.

4.3 Model and Features

A score is required to rank the activities in the candidate pool. As
discussed earlier, we use the predicted CTR as the score. To predict
the CTR of each activity, we learn a logistic regression model with
£ regularization. Let y denote the click on the activity described by
feature vector x then the corresponding Bernoulli random variable
Y is modeled as

1

BV = oo

)

where 0 is the parameter vector which we want to learn. Once 6
has been estimated from the training data, for any new example



Xnew We simply use the mean of the Bernoulli distribution as the
predicted CTR, i.e.,
1

CTRpredsicc = P({Y = 1}) = E[Y] = 1+ exp(—0TXnew)

@

We train a logistic regression model with a number of features,
such as features extracted from the viewer’s and actor’s profile, fea-
tures qualifying the connection strength and similarity between the
viewer and the actor, features representing the age of an activity,
features quantifying the affinity between the viewer and the type of
an activity and the affinity between the viewer and the actor. Note
that some of the features are generated using other models — lo-
gistic regression can be thought of as a tool to combine such base
models. We also include interactions among the aforementioned
features.

4.4 Model Training and Offline Evaluation

We train the logistic regression model using a Hadoop based dis-
tributed logistic regression algorithm. Our implementation of lo-
gistic regression is based on the Alternating Direction Method of
Multipliers (ADMM) [5] which is a popular method for solving a
convex optimization problem in a distributed fashion. We are in the
process of making our implementation open source so that others
facing similar challenges can benefit from it. The ADMM algo-
rithm partitions the set of training examples into several blocks.
Each block is assigned to a machine which solves (in parallel) a
convex optimization problem independently on the training exam-
ples in that block. Solutions from different partitions are collected
and a consensus solution is formed. The consensus solution is then
sent to individual machines which update their solutions again.
This process is repeated until convergence. More details can be
found in [5]. This method is scalable and it allows us to train our
models with a large number of training examples collected from
our random bucket.

After we train a model, we need to evaluate the model before de-
ploying it in production. For this, we use a replay methodology for
unbiased offline evaluation of online serving schemes [17, 16]. We
use the offline replay methodology since it is a theoretically sound
way of evaluation. Typically we consider a few weeks of data from
the random bucket (described in Section 4.2), starting from a point
in time after the period over which the training data was collected.
For replay, the activities that were presented at serve time in the ran-
dom bucket are reordered using the candidate model obtained via
training described above. After reordering, we only consider im-
pressions that occur at exactly the same position as they appeared
at serve time. We call these matched impressions and count the to-
tal number of clicks on such matched impressions. We call the total
number of clicks on matched impressions as reward. We typically
consider reward at the first feed position and the reward at the first
three feed positions when comparing our models. Although the
absolute value of reward may not be very meaningful, the relative
rewards obtained from two different models are typically indicative
of which model would perform better in production.

4.5 Reranking

Our model training described above focused only on accurately
modeling the CTR of each user-activity pair. However, we pointed
out in Section 3 that the click-through rate can also be influenced
by aspects such as diversity and freshness.

Although relevance and diversity can be modeled jointly, such
approaches typically require greedily picking the next activity based
on the current set of items, which can be computationally pro-
hibitive in a real online system serving millions of users. Hence
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we use a simple mechanism to enforce diversity in the feed. In this
mechanism, we first score and sort all the candidate activities using
the ranking model. We then go through the ranked list and count
the number of times a particular actor or object appeared on the list
before each item. The score of each item is discounted based on
this count in a way that more prior occurrences of the same actor
or object leads to a stronger discounting. In our experiments, we
simply fix this reranking mechanism for all our models.

It is also important to keep the feed fresh. However, simply
learning age based and impression count based coefficients from
the data may not provide desired level of feed freshness. Since we
also do not want to give a completely time sorted feed, we perform
an additional exponential decay on the score based on the age of
activities. The half lives of this decay are set in accordance with
product requirements (which is influenced by user experience stud-
ies). Similarly, repeated impressions of the same activity is also
discouraged by introducing an additional decay factor that takes
into account past impression counts of the activity. These rerank-
ing modules allow an easy way of tuning the feed to match required
characteristics.

5. EXPERIMENTS

In this section we describe several online bucket tests (A/B ex-
periments) on the LinkedIn feed and a few offline replay experi-
ment results. Most of our experiments are based on a large number
of real users who visited LinkedIn. LinkedIn currently has more
than 300 million members geographically spread across the world.
A large fraction of visitors see the LinkedIn feed.

We continuously test new features and new models in our pro-
duction system. We typically launch a new feature to a small frac-
tion of users and if the feature works well compared to existing
models, we slowly ramp the feature to more users. At any point in
time, we are testing several models in production. It is impossible
to present results from all the models that were in bucket tests. In
this section, we present several interesting experiments focusing on
just one aspect at a time. We also present some results where we
combined a number of useful features in our production system.

5.1 Effectiveness of Replay Analysis

We described our offline replay evaluation metric in Section 4.4.
In this section, we show the offline replay results and the corre-
sponding online replay results for two models. We considered a
baseline model in production that was constructed from the fea-
tures mentioned in Section 4.3. We refer to this as Model A. We
then added features derived from networks of viewer and actor and
learned a new model using our training pipeline. We denote this
model as Model B. In offline replay analysis, Model B showed a
lift of 4.96% at the first feed position over Model A. When we
ran these models in production for two weeks, the lifts that we ob-
served for model B in those two weeks were 3.6% and 5.0% com-
pared to model A. Although the absolute value of the performance
improvement in the first week is slightly different from the offline
lift for most of the models we tried in production, we have found
that replay provides a sound way for deciding whether a model is
a promising candidate for deployment. In the rest of this paper, we
provide bucket test results from models deployed online rather than
focusing on offline analyses.

5.2 Desktop Bucket Test Results

In this section, we show the online bucket test results using sev-
eral new features that we incorporated into our modeling. First, we
show the effect of adding them independently and finally we show
the effect when we combined all the features.
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Effect of freshness.

As we discussed in Section 4.5, we control the freshness of the
feed using an exponential decay on the score based on the age of
the activity. To show how different segments of users behave differ-
ently to different levels of freshness, we consider two models that
we had in our bucket tests. The two models were exactly the same
except for the half life period on the exponential decay. Model A
had an exponential decay with a half life of four days (which means
the score predicted by the model halves every four days), while
model B had an exponential decay with a half life of two days. Al-
though the overall CTR for model B was slightly higher than that
of model A, the results are more interesting when we segment users
and look at the lifts on the individual segments. Users were divided
into four segments (light, moderate, regular, heavy) based on the
number of visits to LinkedIn feed. For heavy users, model B had a
lift of about 25%, while for regular users model B had a smaller lift
of about 7%. However, for moderate and light users, model A had
a lift of 2.3 % and 6.6% respectively over model B. These results
intuitively make sense. Visitors who come to LinkedIn more often
expect to see fresher content, whereas visitors who visit LinkedIn
less often are happy to consume older content.

Impression Discounting.

In the previous paragraph, we described bucket tests with age
based freshness as the criterion. We now consider the effect based
on repeated impressions of items. As we described in Section 3.2.2,
we first estimated how the CTR decays with repeated impressions
of activities. One challenge for impression discounting is that we
have to store the number of past impressions to every activity that
is served to a user. This requires a large key value store, where key
is the ID of an activity and value is the number of past impressions
of that activity for each viewer. We make use of a Voldemort store
which was described in Section 4.1. We store the number of past
impressions for several millions of activities such that these counts
are available at runtime on our production systems. We then ap-
plied impression discounting to our best model at that time. By ap-
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plying impression discounting, there was an improvement in CTR
of about 2.2% during a period of one week. However, for our heav-
iest user segment (who visit our feed more than 10 times on an
average per day), there was an improvement of over 5%.

Model Personalization.

In this section, we show results from couple of model improve-
ments that we achieved through personalization. Our first approach
was to develop an affinity score between viewers and activity types.
As we described in Section 3.1, there are several activity types on
the LinkedIn feed. Since different LinkedIn members can have dif-
ferent affinity towards different types of activities, we model the
affinity between users and activity types. This affinity score was
devised based on historic data of interaction between viewers and
activity types. The basic idea of this score is to segment users
based on their features (such as industry, job seniority, company
size, language etc.). For each segment, we look at those user’s his-
toric data to collect how often they interacted with different activ-
ity types. From all this information, we compute an affinity score
which is then used as a feature in modeling the click-through rate
prediction via logistic regression. A second approach was to use
a personalized age based decay for every user depending on time
based features. This involved utilizing the last visit time of a user
to LinkedIn. This feature effectively personalizes the feed such that
heavy users tend to get fresher content. We note that the model with
the time based feature also included impression discounting when
we tested in production.

We trained models that consisted of each of the above feature in-
dividually combined with the features in our baseline model. The
improvement from adding viewer activity type affinity features and
personalized decay (with impression discounting) were 6.5% and
11.5% respectively over a period of one week. The results from
our bucket tests over the days of the week are also shown in Fig-
ure 8a. While there are some variations over days, the overall trend
clearly indicates performance lifts from personalization and im-
pression discounting.
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Figure 9: Mobile CTR lift over 7 days.

Combining All The Features.

Previous paragraphs showed how adding each feature individu-
ally improved user engagement. We then trained a model jointly
with all the features described in the previous paragraphs (i.e., im-
pression discounting, affinity feature and time based features) com-
bined with the features in our baseline model. Since we usually
discontinue inferior models in our production system, the result in
Figure 8b only compares the all-inclusive model against the best
performing models from Figure 8a which were active at the same
time. As evident from Figure 8b, over a period of one week, the
combined model ("With All Features" in figure) achieved a no-
table improvement of 7.3% over the model including only viewer
activity type affinity ("Viewer-type affinity"), and 5.1% over the
model including only personalized decay and impression discount-
ing ("With Time Features").

5.3 Mobile Bucket Test Results

To understand the effectiveness of using the mobile specific mod-
els, we performed a bucket test for a period of 7 days. The results
are shown in Figure 9. We first partitioned our mobile user base
into 3 buckets. We then use the CTR performance of the best desk-
top model (trained on data from our desktop feeds) to serve traffic
on mobile as the baseline (the curve labeled “desktop” in Figure 9).
We also had a model which was trained using data collected from
the random bucket. The mobile specific model (labeled “mobile”)
consistently outperformed the desktop model. A mobile model
with impression discounting (labeled “mobile+imp_discount”) had
a significant lift over the 7 day’s period.

6. CONCLUSION

We introduced the problem of ranking activities in LinkedIn feed.
We showed the diverse nature of our feed through a taxonomy of
activities. We analyzed various characteristics of our data and ar-
gued that a relevance system should take into account many of these
characteristics to be successful in production. We then described
our system architecture and showed how we collect training data,
generate features, continuously train models using a distributed al-
gorithm and evaluate those models offline before launching them
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in production. Finally, we showed several bucket test results which
show how personalization and other modeling efforts help to im-
prove the system.

Here are some lessons that we learned during the course of this
work:

Good ranking model are found by continuously testing of
different models with different features. it is important to
have a modeling framework that allows fast iteration over
model training, deployment and experimentation.

While learning from data can show impressive gains in the
performance of a system, the models learned from data may
not have all the characteristics we desire. For example, we
learned from data that CTR decays over time. However, the
learned decay factors do not always generate a fresh feed for
each user visit. Other mechanisms are sometimes required to
ensure certain desired user experience.

Different platforms (such as mobile vs desktop) have difter-
ent characteristics. Simply porting a desktop model to serve
mobile feeds may not necessarily work well.

Personalizing our models for user’s tastes and behavior often
gives large improvements in performance.
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