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ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a lung disease
characterized by airflow limitation usually associated with an in-
flammatory response to noxious particles, such as cigarette smoke.
COPD is currently the third leading cause of death in the United
States and is the only leading cause of death that is increasing
in prevalence [15]. It also represents an enormous financial bur-
den to society, costing tens of billions of dollars annually in the
U.S. It is widely accepted by the medical community that COPD is
a heterogeneous disease, with substantial evidence indicating that
genetic variation contributes to varying levels of disease suscepti-
bility. This heterogeneity makes it difficult to predict health de-
cline and develop targeted treatments for better patient care. Al-
though researchers have made several attempts to discover disease
subtypes, results have been inconclusive, in part because standard
clustering methods have not properly dealt with disease manifesta-
tions that may worsen with increased exposure. In this paper we
introduce a transformative way of looking at the COPD subtyping
task. Specifically, we model the relationship between risk factors
(such as age and smoke exposure) and manifestations of disease
severity using Gaussian Processes, which allow us to represent so-
called “disease trajectories”. We also posit that individuals can be
associated with multiple disease types (latent clusters), which we
assume are influenced by genetics. Furthermore, we predict that
only subsets of the numerous disease-related quantitative features
are useful for describing each latent subtype. We model these as-
sociations using two separate beta process priors, and we describe
a variational inference approach to discover the most probable la-
tent cluster assignments. Results are validated with associations to
genetic markers.
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1. INTRODUCTION
COPD is a major cause of chronic morbidity and mortality through-

out the world, being the fourth leading cause of death worldwide
[7]. By 2030 it is estimated that approximately 9 million people
will die annually from the disease in the U.S. [15, 14]. COPD also
imposes an enormous financial burden on society, with an estimated
cost of $2.1 trillion in 2010 globally.

COPD is characterized by airflow limitation resulting from chronic
inflammatory responses in the airways and lungs to noxious parti-
cles or gases. There are two basic components of COPD: emphy-
sema (destruction and loss of lung tissue) and small airways dis-
ease (inflammation and thickening of airway walls). Both of these
processes result in breathing difficulty. Patients often undergo high
resolution computed tomography (CT) scanning, which enables the
direct evaluation of the lungs and airways (Figure 1). Addition-
ally, COPD severity is assessed in the clinic using spirometry, a
technique in which patients blow into a device that measures lung
function.

Tobacco smoke is the most common environmental risk factor of
COPD, but it is known to be a heterogeneous disease, with genetic
factors predisposing individuals to varying levels of disease sever-
ity as a function of exposure. An improved understanding of the
interplay between genetics and exposure should lead to better strat-
ification of patients for prognosis and personalization of therapies.
There have been several large clinical projects to better understand
this complicated disease, one of the largest being COPDGene [17]
(http://www.copdgene.org). A number of authors have also applied
established machine learning approachs in an effort to identify dis-
tinct disease subtypes. [2] applied principal component analysis
(PCA) followed by cluster analysis using the VARCLUS procedure
on eight measures of disease severity. The authors in [6] used fac-
tor analysis to select a subset of features and followed this with K-
means clustering to identify population subgroups which they then
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Figure 1: Left: CT scan illustrating a patient with advanced emphysema. Note that only a fraction of the lung cavity contains viable
lung tissue; the remainder is empty space (emphysema). Right: the zoomed region depicts automatic detection of an airway’s inner
and outer walls, a step in evaluating airway thickening resulting from chronic inflammation.

investigated with genetic analysis. Recently our group performed
a similar analysis in the COPDGene study cohort to identify four
subgroups of subjects that associated with known genetic variants
[4].

Although COPD clustering efforts to date have shed light on the
disease, they have been limited by the application of approaches
that do not specifically model the interplay of the available fea-
tures. In particular, they pool together groups of people with differ-
ent levels of disease severity, though these group differences may
be partly explained by different levels of smoke exposure and age
differences. Here we claim that individuals should be grouped ac-
cording to biological and/or genetic similarity regardless of their
level of disease severity; therefore, we seek associations of indi-
viduals to disease trajectories (i.e., grouping individuals based on
their similarity in response to environmental and/or disease causing
variables). We introduced this concept in a previous paper in which
we described a clustering with constraints method using a Dirich-
let process mixture of Gaussian processes in a variational Bayesian
nonparametric framework [18]. This model assumes that each in-
dividual is a member of a single cluster (disease subtype), and it
assumes that each feature is important for describing each of these
clusters.

Here we introduce a more general framework that 1) permits
both instances and features to belong to more than one cluster, 2)
allows for overlapping clusters, and 3) identifies subsets of features
associated with each cluster. We are again principally motivated
by the concept of disease trajectories, but we allow for the possi-
bility that a given individual may be suffering from multiple dis-
ease subtypes concurrently. Furthermore, it is likely the case that
only a subset of features are needed to describe a particular sub-
type. Because the number of subtypes is unknown, we again turn
to Bayesian nonparametric methods: we will describe a model that
continues to use Gaussian Processes to represent trajectories and
also builds on dual beta processes for instance and feature assign-
ment to the latent subtype variables.

The rest of the paper is layed out as follows. In section 2 we
provide an overview of the theory behind our model, focusing on
Gaussin processes in section 2.1 and Beta processes in section 2.2.
In section 3 we describe our probabilistic model; we define both the
structure and the constituent probability distributions. The update
equations used for variational inference are given in section 4. We
demonstrate algorithm performance on both synthetic and clinical
datasets in section 5 and conclude in section 6.

2. BACKGROUND
The model we propose is an instance of nonparametric overlap-

ping subspace clustering. There are a number of related works
in this context. [11] introduced the Infinite Overlapping Mixture
Model (IOMM), a nonparametric clustering method that allows an
unbounded number of potentially overlapping clusters. Assign-
ments of points to (multiple) clusters is modeled using an Indian
Buffet Process (IBP) and realized with a multiplicative mixture
model likelihood function. This mixture model can be seen as a
nonparametric generalization of the products-of-experts model in-
droduced by [12]. While they assume an unknown number of clus-
ters and that all features are relevant for each cluster, [8] assume
that the number of clusters is known but that features are local to
a particular cluster. Their Bayesian Overlapping Subspace Cluster-
ing (BOSC) model is a hierarchical generative model for matrices
with potentially overlapping sub-block structures.

While [8] used a pair of Beta-Bernoulli distributions with an as-
sumed known number of clusters as priors for the latent row and
column membership vectors, we adopt nonparametric priors based
on dual beta processes: one prior for the association of data in-
stances to latent clusters, and another for the association of ob-
served features to latent clusters. This allows our model to discover
the number of latent clusters best supported by our data, the associ-
ations of instances to those clusters, and the observed features that
best describe them. We continue to use a Gaussian process likeli-
hood function as described in [18], but we extend it using a multi-
plicative mixture model as [11], which permits both instances and
features to be assigned to multiple clusters / subtypes. Importantly,
we perform inference using a variational approach which further
distinguishes our method from both [8] and [11]. In the remain-
der of this section we describe two elements central to our model:
Gaussian and beta processes.

2.1 Gaussian Processes
Gaussian Processes (GPs) have been used extensively for Bayesian

nonlinear regression. We cover the key concepts here as they per-
tain to our framework and refer the reader to [16] for details.

Gaussian Processes can be interpreted as a nonparametric prior
over functions. They have the property that given a finite sampling
of the domain, the corresponding vector of function values, f , are
distributed according to a multivariate Gaussian with mean m (typ-
ically set to 0 in standard practice) and covariance matrix K:

f ⇠ N (f |m,K ) (1)

The elements of K are determined by the kernel function, k : [K ]n,n0 =

k (xn ,xn0
). The choice of kernel function and selection of its pa-
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Figure 2: Ten random draws from Gaussian processes with a
squared exponential kernel (left) and a linear kernel (right).

rameter values controls the behavior of the GP. One popular kernel
function is the squared exponential (SE) given by

k (xn ,xn0
) = ✓0 exp

✓

-

✓1

2

kxn -xn0 k2
◆

(2)

and another, more restrictive kernel function is the linear kernel:

k (xn ,xn0
) = ✓0 + ✓1

D
X

d=1

(xn,d � ✓2)(x
0
n,d � ✓2) (3)

where D is the vector dimension. A collection of random draws
from each of these two kernels is illustrated in Figure 2.

In order to perform GP regression, we assume an observed dataset
of inputs and corresponding (noisy) targets, D ⌘ {xn, yn }Nn=1,
where we model the targets as p (y|f ) = N

�

y|f ,�2
IN

�

. Here,
�

2 is the variance on the target variables. It can then be shown that
the predicted mean and variance of target value y⇤ at some new
input x⇤ are given by

µ⇤ = k

>
⇤
�

K+ �

2
IN

��1
y (4)

�

2
⇤ = �

2
+ k⇤⇤ � k

>
⇤
�

K+ �

2
IN

��1
y (5)

where k⇤⇤ = k (x⇤,x⇤ ) and [k⇤ ]n = k (xn ,x⇤ ).

2.2 Beta Processes
The beta process can be used as a Bayesian nonparametric prior

for sparse latent feature models [9], i.e. as a prior over infinite bi-
nary matrices that indicate associations between instances (rows)
to a potentially infinite number of latent features (columns). Beta
processes are closely related to the Indian Buffet Process (IBP) in-
troduced by [10], which has seen wide applicability to a number of
problems. One limitation of the IBP, however, is that the distribu-
tion on the number of features per object and on the total number
of latent features is coupled through a single parameter. This limits
the expressivity of the prior. [9] later introduced a two-parameter
version of the IBP which enables the amount of sharing between
instances and latent features to be controlled. This is an attractive
feature, but the authors did not describe how to realize this con-
struction in a variational inference framework (which we note has
computational benefits over sampling based inference methods as
used in [9]).

More recently, [3] described a two-parameter, stick-breaking con-
struction for beta process priors specifically for variational infer-
ence approaches. Their prior can be represented in the following
manner

p(Z|V,T,d) p(d|�) p(V|↵) p(T|d,↵) (6)

where Z is the infinite binary matrix and V, T, and d are latent
features in their model. � and ↵ are the model parameters that
control the amount of latent feature sharing between instances. We
refer the reader to [3] for a detailed description of this construction.

3. FORMULATION
The desiderata of the model we propose in this section are a)

the ability to identify the most probable number of latent disease
subtypes, b) the flexibility to assign multiple subtypes to a given
data instance (patient), and c) the capability to identify the subsets
of features that best describe a given subtype.

In the remainder of this section we formalize the elements of our
framework. Let X = [x1 · · ·xQ ] be the N ⇥Q matrix of observed
inputs where N is the number of instances and Q is the dimen-
sion of the inputs. Let Y = [y1 · · ·yD ] be the N ⇥ D matrix
of corresponding target values, where D represents the dimension
of the target variables. We designate the set of latent functions as
n

f (k )
d (x)

o1,D

k=1,d=1
. We collect all latent functions of trajectory

k in the matrix F

(k)
=

h

f

(k)
1 · · · f (k)D

i

, and we designate the com-

plete set of latent functions as
n

F

(k)
o

. We introduce two latent
binary indicator matrices, Zr and Z

c (where the superscripts refer
to the original N ⇥D data matrix: r referring to the rows of that
matrix, and c the columns). Z

r is an N row by infinite column
matrix where each row represents a data instance and each column
represents a latent cluster (subtype). Similarly, Zc is a D row by
infinite column matrix corresponding to the target features. We
place beta process priors on each of these binary matrices using the
stick-breaking construction introduced in [3].

The probabilistic graphical model describing our formulation can
be seen in Figure 3, and the corresponding joint distribution is given
by

p(Y, {F(k)},dr
,V

r
,T

r
,Z

r
,d

c
,V

c
,T

c
,Z

c
) =

p
⇣

Y| {F(k)},Zr
,Z

c
⌘

p
⇣

{F(k)} |X
⌘

⇥

p(dr |�r ) p(Vr |↵r ) p(T
r |dr

,↵r ) p(Z
r |Vr

,T

r
,d

r
)⇥

p(dc |�c) p(Vc |↵c) p(T
c |dc

,↵c) p(Z
c |Vc

,T

c
,d

c
) (7)

where we use two beta process priors – one for representing the
association of instances to the latent clusters (indicated with the r
superscript), and one for representing the association of observed
features to latent clusters (indicated with the c superscript). (See
section 2.2 above and [3] for details about the beta process prior).

The prior placed over the GPs representing each disease trajec-
tory are given by

p
⇣

{F(k)} |X
⌘

=

1
Y

k=1

D
Y

d=1

N
⇣

f

(k)
d |md ,K

(k)
d

⌘

(8)

Note that we specify distinct kernel matrices and mean vectors for
each target feature dimension d .

The likelihood term is given by

p
⇣

Yn,d | {F(k)},Zr
,Z

c
⌘

=

(

1
c(z)

Q1
k=1 N

⇣

Yn,d |F(k)
n,d ,�

2
d

⌘zk
, if z 6= 0

N
�

Yn,d |µ̂d , �̂
2
d

�

, Otherwise
(9)

where zk is the k

th element of the vector z ⌘ Z

r
n,·
J

Z

c
d,·,

the element-wise (Hadamard) product between vectors Z

r
n,· and

Z

c
d,·, and c(z) is the normalization factor. If every element of zk is

0, then Yn,d is assumed to be generated from the noise component,
N
�

Yn,d |µ̂d , �̂
2
d

�

.
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↵r

�r dr
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Figure 3: Probabilistic graphical model for our formulation.

4. INFERENCE
In this section we give the variational inference update equations

that are specific to our model. Variational inference is a method of
approximate inference that makes assumptions (typically a factor-
ization) over the distribution of interest, and it turns an inference
problem into an optimization problem [13]. Additionally, whereas
approximate inference methods based on sampling (such as Monte
Carlo Markov Chain) can be slow to converge, variational inference
enjoys a greater computational advantage in this regard.

For our application, we are interested in the distribution over the
latent variables in our model given our observations:

p
⇣

{F(k)},Zr
,Zc

,d

r
,V

r
,T

r
,d

c
,V

c
,T

c
, |X,Y

⌘

(10)

Direct evaluation of this posterior is intractable, so we approximate
the posterior with a factorized distribution:

p⇤
⇣

{F(k)}
⌘

p⇤
(Zr

) p⇤
(Zc

) p⇤
(d

r
) p⇤

(V

r
) p⇤

(T

r
)⇥

p⇤
(d

c
) p⇤

(V

c
) p⇤

(T

c
) (11)

As described in [3] we have

p⇤
(d

r
k ) = Mult (dr

k |'k ) (12)
p⇤

(V

r
) = Beta (Vr

k | ar
k , b

r
k ) (13)

p⇤
(T

r
) = Gam (T

r
k | ur

k , v
r
k ) (14)

p⇤�
Z

r
n,k

�

= Bern
�

Z

r
n,k |�n,k

�

(15)

and similarly for p⇤
(d

r
), p⇤

(V

r
), p⇤

(T

r
), and p⇤�

Z

c
d,k

�

. Pa-
rameter updates for the variational distributions over dr

k , Vr , and
T

r (similarly for dc
k , Vc , and T

c) can be found in [3]. In the re-
mainder of this section we provide updates for p⇤

⇣

{F(k)}
⌘

, p⇤
(Zr

),
and p⇤

(Zc
).

To derive update expressions for the factors in the variational dis-
tribution, we compute the expectation of the log joint distribution
with respect to the other factors in the variational distribution. In
the case of p⇤

⇣

{F(k)}
⌘

this is

ln p⇤
⇣

{F(k)}
⌘

= E {ln p (·) }+const (16)

where p (·) abbreviates the joint distribution given in Equation 7
and the expectation is with respect to every variable in the the vari-
ational distribution other than {F(k)}. This leads to the variational

distribution over {F(k)}

p⇤
⇣

{F(k)}
⌘

=

K
Y

k=1

D
Y

d=1

N
⇣

f

(k)
d |µ(k)

d ,C

(k)
d

⌘

(17)

where

C

(k)
d =

⇣

K

(k)
d

-1
+R

(k)
d

⌘�1
(18)

µ

(k)
d = C

(k)
d

⇣

K

(k)
d

-1
md +R

(k)
d yd

⌘

(19)

and

R

(k)
d =

�d,k

�

2
d

0

B

B

@

⇠1,d�1,k 0 · · ·

0

. . .
... ⇠N ,d�N ,k

1

C

C

A

(20)

where ⇠n,d is the probability that instance n is associated with any
latent feature that observed feature d can describe and is given by

⇠n,k = 1�
K
Y

k=1

(1-�n,k�d,k ) (21)

Unfortunately, there is no closed form update expression for the
parameters of Zr and Z

c . It can be shown that the difference be-
tween the factorized approximation and the true posterior is min-
imized when a quantity known as the variational lower bound is
maximized. Therefore, we must turn to the variational lower bound
and directly optimize those terms that depend on these parameters.
We proceed by describing updates for Zr ; updates for Zc are ob-
tained analogously. First we note that there are four terms in the
lower bound that directly depend on Z

r :

N
X

n=1

K
X

k=1

'k (1 )E
�

ln p
�

Z

r
n,k |Vk

�  

+

N
X

n=1

K
X

k=1

'k (r > 1 )E
�

ln p
�

Z

r
n,k |Vk ,Tk

�  

�

E {ln p⇤
(Z

r
) }+E

n

ln p
⇣

Y| {F(k)},Zr
,Z

c
⌘o

(22)

Variables 'k and r appear in the stick-breaking construction of the
beta process described in [3].

Expansion of the first term in Equation 22 gives

�n,k'k (1 ) ( (ar
k ) - (brk ) ) (23)

where  (· ) is the digamma function. The second term in Equation
22 expands to

�n,k'k (r > 1)

 

 (ak )�  (ak + bk )�
uk

vk
+

M
X

m=1

�k (m)

!

(24)

where �k (m) is given by

1

m
�(ak + bk )

�(ak + bk +m)

�(ak +m)

�(ak )

✓

vk

vk +m

◆uk

(25)

and M is set to 1, 000 as in [3]. Expansion of the third term in 22
gives

��n,k ln�n,k � (1� �n,k ) ln(1� �n,k ) (26)
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Finally, the last term in 22 expands as
D
X

d=1

 

⇠n,d

"

K
X

k=1

�n,k�d,k g
(k)
n,d � hn,d �

1

2

+

1

2

ln
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2⇡�

2
d

� ⌅n,d

#!

(27)

where we use the following definitions
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2
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(Yn,d � µ̂d)
2 (29)

⌅n,d ⌘ 1

2�

2
d

E

8

<

:

 

K
X

k=1

Z

r
n,kZ

c
d,kF

(k)
n,d

!2
9

=

;

(30)

and we note that the expression in Equation 30 can be evaluated in
a straightforward manner by expanding the terms.

Together Equations 23, 24, 26, and 27 constitute an objective
function for �n,k that we optimize using Brent’s method on the
interval [0, 1]. Brent’s method is a derivative-free optimization al-
gorithm that uses inverse parabolic interpolation when possible to
speed up convergence of the golden section method [1]. An anal-
ogous procedure is applied to update each �d,k using a similar ob-
jective function, except the outer sum in Equation 27 is from n = 1

to N .
There are two terms in the updates for �n,k and �d,k that deserve

special attention. The expectation in Equation 30 is an approxima-
tion the term

E

8

<

:

 

K
X

k=1

Z

r
n,kZ

c
d,kF

(k)
n,d

!2, K
X

k=1

Z

r
n,kZ

c
d,k

9

=

;

(31)

This term emerges as a consequence of using the multiplicative
mixture model, and the sum in the denominator makes this expec-
tation intractable. However, we note that the expression we use in
30 is an upper bound of the original term given that the denomina-
tor in 31 will always be greater than or equal to 1 (recall that the
likelihood given in Equation 9 is only active when z 6= 0). Since it
is the negative of Equation 31 that shows up in the lower bound, our
approximation is in fact a lower bound of the original term. Hence
we are gauranteed to be optimizing a lower bound of the original
lower bound.

The second term of interest also comes from expanding the last
term in Equation 22:

E
(

ln

 

K
X

k

Z

r
n,kZ

c
d,k

!)

(32)

which we again note is intractrable. However, noting that the sum
will always be between 1 and K and that the natural log is a con-
cave function, we can substitute Equation 33 with

lnK
K �1

E
(

K
X

k

Z

r
n,kZ

c
d,k

)

�1 (33)

which is easy to evaluate.

5. EXPERIMENTS
In this section we describe experimental results. We begin by

illustrating our approach on a synthetic dataset and then describe
the application of our algorithm to data taken from the COPDGene
cohort [17].

5.1 Synthetic Example
Our algorithm is designed to identify not only the number of

latent clusters, but also which data instances and which observed
features associate with them. We demonstrate this with a synthetic
example consisting of 120 samples and four observed features. The
first two observed features are designed to be redundant: they both
describe the same two latent clusters, represented by two lines; half
of the samples belong to one line in both features, and the other half
belong to the other. The third observed feature is a noise feature.
Here all samples are drawn from the same normal distribution. The
fourth observed feature contains three line segments that are dis-
tinct from the groupings present in the first two observed features
(each of the three line segments consists of a third of the samples
from each of the two lines described by observed features one and
two).

We ran our algorithm with K = 20, �2
= �̂

2
= 0.2, ↵r

= 3.5,
and �r

= ↵

c
= �

c
= 1.5. We used a linear kernel for each of the

Gaussian processes with ✓0 = 2.0 and ✓1 = 1.5. Except for the
variances, no special attention was given to the parameter settings;
these were the first values selected and they produced the reported
results. The variances provided to the algorithm were the same
values used to generate the samples.

Figure 5.1 illustrates the results. Each latent feature is color-
coded, so it can be seen that the first two observed features both
describe the same two latent clusters. Observed feature three was
correctly identified as a noise feature, i.e. not capable of describing
any of the five latent clusters present in the data set. The algorithm
also found the three latent clusters described by observed feature
four.

5.2 Clinical Experiments
Here we report results from an experiment performed on clinical

data from the COPDGene study, a large epidemiologic and genetic
study of over 10, 000 current and former smokers with and with-
out COPD [17]. All subjects had blood collected for genetic anal-
ysis, and they completed spirometry and chest computed tomog-
raphy (CT) scans, resulting in a large collection of features. The
set of observed features we consider consists of seven lung func-
tion measures: functional residual capacity (FRC), pre- and post-
bronchodilator forced expiratory volume in one second (FEV1),
pre- and post-bronchodilator forced vital capacity (FVC), and pre-
and post-bronchodilator FEV1/FVC. We also consider four CT-
based measures of emphysema: total percent emphysema, the fif-
teenth percentile level of the intensity histogram in the lungs (Perc
15), and percent emphysema in the upper and lower lung lobes. We
also include three airway disease measures: the wall area percent
(WA%), percent gas trapping, and the predicted WA% of an airway
with a 10mm perimeter (Pi10).

The predictors of our model are age, height, and pack years,
which is a measure of life-long smoke exposure defined as the num-
ber of packs per day times the number of years of cigarette smok-
ing. These constitute the inputs to the GP covariance matrices, and
are meant to capture the factors that are causative of COPD sever-
ity. The use of height as a predictor of disease may seem odd, but
it is known to influence lung function given that it affects lung me-
chanics, so we opted to include it in our model. We again choose
to use the linear kernel for our experiments. This amounts to a
form of nonparametric polynomial regression, and there are less
computationally heavy ways to do this than with a Gaussian pro-
cess framework. However, we emphasize that using GPs provide a
much more flexible representation of possible disease trajectories.
But in the absence of constraints between instances or observed
features, we choose a more restrictive class of kernel function so as
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Figure 4: Synthetic example in which five latent clusters (color-coded) are discovered in a data set with four observed features. Left
and left-middle: observed features y1 and y2 are redundant: both are useful for describing the red and green latent clusters. Right-
middle: observed feature y3 is determined to be a noise feature and is not useful for describing any of the five latent clusters. Right:
observed feature y4 describes three latent clusters, distinct from those described by observed features y1 and y2.

Table 1: Inputs and linear kernel parameters used for each GP
in the clinical experiment

Feature Inputs ✓0 ✓0

Pre FEV1/FVC Age, Pack Yrs 1.0 3.5

Post FEV1/FVC Age, Pack Yrs 2.0 3.5

Pre FEV1 Age, Pack Yrs, Height 2.0 3.5

Post FEV1 Age, Pack Yrs, Height 2.0 3.5

Pre FVC Age, Pack Yrs, Height 50.0 3.5

Post FVC Age, Pack Yrs, Height 50.0 3.5

Total % Emph. Age, Pack Yrs 50.0 3.5

Perc 15 Age, Pack Yrs 2e5 3.5

FRC Age, Pack Yrs, Height 5.0 3.5

% Gas Trapping Age, Pack Yrs 500.0 3.5

% Emph. Upper Lobes Age, Pack Yrs 2.0 3.5

% Emph. Lower Lobes Age, Pack Yrs 50.0 3.5

Pi10 Age, Height 2.0 3.5

WA% Pack Yrs, Height 5e3 3.5

to mitigate the effect of local minima during variational inference.
Note that in our previous work we were able to apply more general
kernel functions in the presence of data constraints [18]. We hope
to extend the current approach once such constraints are available.

The inputs and kernel parameters for each of the observed fea-
tures are given in Table 1. In order to guide the selection of inputs
and kernel parameters, we performed standard multi-variate linear
regression on each of the observed features using each of the three
inputs as predictors. For a given observed feature, we only used as
kernel inputs those predictors that had a significant association in
the linear regression model. The slope intercept generated by the
model informed the selection of the ✓0 parameter, which controls
the intercept range over which a draw from the GP is likely to come
from. For all fourteen observed features, we noticed only modest
slope values for each of the regression coefficients. Therefore, we
selected a ✓1 value of 3.5 for all kernel functions; we observed em-
pirically from repeated draws of GPs using this value that slopes
tend to be modest.

We chose �2
d for each of the observed features by taking one

tenth of the variance of the residuals from the multi-variate regres-
sion stage. This was an ad hoc selection, but the measurement vari-
ances for each of the observed features is as yet unknown. The se-
lected values were chosen to be significantly lower than the resid-
ual variances in order to explore subgroups within the data. By
comparison, simply using the residual variances would likely have
caused the algorithm to simply recapitulate the multi-variate re-
gression result, although we did not attempt this experiment. The

Feature Red Blue Green Magenta
Pre FEV1/FVC 1.00 1.00 1.00 1.00
Post FEV1/FVC 1.00 1.00 1.00 1.00

Pre FEV1 1.00 1.00 1.00 1.00
Post FEV1 1.00 1.00 1.00 1.00
Pre FVC 1.00 0.87 0.84 0.40
Post FVC 1.00 1.00 0.59 0.38

Total % Emph. 1.00 1.00 0.92 1.00
Perc 15 0.00 0.20 0.00 1.00

FRC 0.96 1.00 0.88 0.31
% Gas Trapping 1.00 1.00 1.00 1.00

% Emph. Upper Lobes 1.00 1.00 0.49 0.54
% Emph. Lower Lobes 1.00 1.00 0.98 0.65

Pi10 0.00 0.16 0.14 0.13
WA% 0.27 0.218 0.28 0.20

Table 2: Inputs and probability of association to each of four
latent features, labeled by color for easy comparison to other
figures.

noise means and variances, µ̂d and ˆ

�

2
d , were simply chosen to be

the mean and variance of each observed feature.
For the beta process priors, we set K = 20, ↵r

= 3.5, and
�

r
= ↵

c
= �

c
= 1.5 as in the synthetic experiments. We con-

sidered the first 1, 000 subjects to have enrolled in the COPDGene
study, keeping only those that have complete data for all inputs and
observed features, resulting in a collection of 851 subjects. We
deployed our algorithm on our institution’s computer cluster, and
ran 200 jobs in parallel, executing 15 iterations for each job. Us-
ing this dataset with these parameters, each job took approximately
10 hours to complete. For each job we recorded the final varia-
tional lower bound value, and report results for the job that gave
the largest lower bound.

Our algorithm identified four latent clusters in this data set, and
assigned approximately half of the samples to the noise model. For
each of the observed features, we give the probability of each be-
ing associated with each of the latent clusters in Table 2. We see
that both Pi10 and WA% poorly describe the latent clusters; that
is to say, those observed features are better described by the noise
model. This is not unexpected, given that they both rely on di-
rect measurements of airway wall thickness on CT images. Given
that airways are small structures and difficult to measure accurately,
these measurements are known to be noisy. On the other hand, the
lung function measurements tend to do a much better job at de-
scribing the latent clusters.

Figure 5 provides scatter plots for several of the observed fea-
tures, where we have again color-coded the latent clusters. We
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include a plot of Pi10, one of the variables that poorly describes
the latent clusters, to illustrate the lack of structure in the data. It
is also interesting to note that Perc 15 is only useful for describing
two of these latent clusters. Summarizing these data we can iden-
tify two groups of individuals who have preserved lung function
and lung tissue despite increasing age and smoke exposure (red
and blue groups). The magenta and green groups appear to rep-
resent those individuals that are more susceptible to COPD: they
show increased levels of emphysema and gas trapping as well as
lower levels of lung function given increasing age and smoke ex-
posure, with the magenta group being more susceptible than the
green group.

Finally, we evaluate our clustering results by performing genetic
association analysis using several single nucleotide polymorphisms
(SNPs) known to associate with COPD [5]. As a comparison, we
apply the same methodology we used in [4]: K-means clustering
(with K = 4) on a feature set determined by factor analysis. We
note however that our previous analysis was conducted on the en-
tire COPDGene cohort, and here we only consider the 851 subjects
analyzed by our algorithm. Table 3 shows the resulting odds ra-
tios and associated confidence intervals. The odds ratio represents
the effect size of the genetic variant; it is the odds of having the
variant in one subtype divided by the odds of having the variant
in another subtype – values further from 1.0 indicate greater effect
of the genetic variant on membership in that subtype. Odds ratios
are computed with respect to the healthiest group in each cluster-
ing result (the “red” group in the case of our algorithm). In the
genome-wide analyses of COPD, effect sizes for the previously de-
scribed genetic variants were approximately less than or equal to
1.4, suggesting that our approach can identify a more genetically
susceptible subgroup.

6. CONCLUSION
We have introduced a nonparametric overlapping subspace clus-

tering algorithm that relies on dual beta process priors in order to
identify latent cluster structure. Our model finds associations be-
tween data instances and latent clusters, allowing for a given in-
stance to belong to multiple clusters. Additionally, our algorithm
identifies the observed features that best describe the latent clus-
ters and thus serves as a form of feature selection. The likelihood
term in our model is specifically chosen to address the challenges of
disease subtype discovery in COPD: by using Gaussian processes
to represent the dependence between observed features that mea-
sure levels of disease severity and inputs that are causative agents
of disease progression, we can flexibly represent so-called “disease
trajectories”. We believe our contribution represents a step forward
towards a better understanding of a complicated disease that will
hopefully lead to better patient care.

We have made an implementation of our algorithm available on
GitHub here, and the COPDGene data can be obtained from dbGaP
here.
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Figure 5: Scatter plots of COPDGene subjects color-coded by association to discovered latent clusters. The red and blue groups
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values are statistically significant at the p < 0.05 confidence level; a dash indicates that no significant association was found. Our
dual beta-process, Gaussian process algorithm is abbreviated DBP-GP. For the K-means result we abbreviate the two cluster groups
found to have significant genetic associations as C1 and C2. For the DBP-GP groups, we indicate cluster groups using the color-coding
scheme described above. Next to each cluster identifier is the number of samples in that group.
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