
Network Structural Analysis via Core-Tree-Decomposition

Takuya Akiba∗

The University of Tokyo
JST, ERATO,

Kawarabayashi Project
t.akiba@is.s.u-tokyo.ac.jp

Takanori Maehara
National Institute of Informatics

JST, ERATO,
Kawarabayashi Project
maehara@nii.ac.jp

Ken-ichi Kawarabayashi
National Institute of Informatics

JST, ERATO,
Kawarabayashi Project
k_keniti@nii.ac.jp

ABSTRACT
The study of network analysis is still a new science; cur-
rently, the structure of real-world networks is described only
in terms of the coarsest and basic details such as diameter
and degree distribution. To efficiently and effectively im-
plement network analysis techniques, a more comprehensive
grasp of their finer mathematical structure is required. The
seminal work by Leskovec et al. tackled this issue by de-
composing networks into two parts; namely “whiskers” and
“cores.”

In this study, we progress toward this issue by obtaining
a novel “core-tree-decomposition,” which is a variant of the
well-known tree-decomposition. Specifically, we perform ex-
periments to construct core-tree-decompositions for as many
as 40 publicly available datasets. Our decomposition pro-
vides more structural information than the previous method
in the following ways:

1. By comparing the eigenvalue distribution of the cores
obtained by our decomposition method with that of
the Erdős-Rényi random graphs, we confirm that, un-
like the previously defined core, our “core”behaves like
a random graph, i.e., an expander graph. Thus, the
intuition that the cores should be “expander-like” is
confirmed by the eigenvalue distribution of our cores.

2. By deleting the core, we obtain a tree-decomposition
of small width, which behaves like a tree. Therefore,
we can say that whiskers are “tree-like,” and can be
explained in terms of “tree-width.”

3. We show that the cores of real networks widely range
in size, which implies that their tree-widths are also
quite varied. Furthermore, we show theoretical and
empirical evidence that tree-width plays a significant
role in the efficiency of certain types of algorithms.

∗Supported by a Grant-in-Aid for JSPS Fellows (256563).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623753.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining

General Terms
Measurement, Theory, Algorithms

Keywords
Tree-decomposition; tree-width; core-tree-decomposition; ex-
pander; social network; web graph

1. INTRODUCTION
In recent years, considerable interest in graph structures

has been arising in social and information networks, i.e.,
graphs in which the vertices represent underlying social en-
tities and the edges represent interactions between pairs of
vertices. However, the study of network analysis is still in
its infancy; currently, the structure of real-world networks
is described only in terms of the coarsest and basic details
such as diameter and degree distribution. To efficiently and
effectively implement network analysis techniques, a more
comprehensive grasp of their finer mathematical structure
is required. In fact, in most cases, we need to extract such
a structural property.

The seminal work by Leskovec et al. [24] tackled this issue
by decomposing web graphs and social networks into two
parts; namely the “whiskers” and the “cores”. We closely
examine this approach first.

1.1 “Whiskers” and “Core”
In social networks and web graphs, there is a substantial

fraction of vertices that are barely connected to the main
part of the network, i.e., they are part of a small subgraph
between 10 and 100 vertices that are attached to the remain-
der of the network via one or a small number of edges. In
particular, a large fraction of the network comprise vertices
that are not in the “core,” i.e., they are in components at-
tached to the core of the network via a single edge. In fact,
according to [24], their empirical results show that a sub-
stantial fraction of vertices are connected to the main net-
work by a single cut edge, and the largest 2-edge-connected
component of this network contains only around 60% of the
vertices and 80% of the edges of the original network.

This is a motivation to define a “core” and a “whisker”
more precisely. The“core”of a network is the largest 2-edge-
connected component. “Whiskers” are maximal subgraphs

1476

that can be detached from the rest of the network by remov-
ing a single edge. To find whiskers, we only need to detect
bridges (i.e., an edge e such that G− e is disconnected) and
the largest 2-edge-connected component (which is the core),
which can be easily achieved in linear time.

1.2 Structural Properties of Real Networks
In [24], it is stated that web graphs and social networks

should have both numerous small, well-separated, whisker-
like clusters and an expander-like core1. Specifically, the
following should be considered for the structural property of
web graphs and social networks.

1. They should have a relatively large number of com-
paratively small (except when compared with random
graphs), well-connected, and distinct whisker-like com-
munities.

2. They should have a large expander-like core graph,
which may be considered as intermingled communi-
ties, possibly emerging from whisker-like communities.
The boundaries of these communities become less well-
defined as they grow larger, and as they gradually
blend in with the rest of the network.

1.3 Our Contributions
The above two points are certainly realistic network struc-

tures; however, several important questions remain unan-
swered. Our main motivation is the following.

In reality, decomposing web graphs and social
networks into“whiskers”and“cores”using 2-edge-
connected components does not seem to be suf-
ficient to resolve these points.

Let us make our motivations clearer and more specific:

1. The previous“cores”of web graphs and social networks
seem to have several cuts of size two. This suggests
that the “core”defined by a maximal 2-edge-connected
subgraph is not really an expander, because if it were,
it would be globally highly connected. To construct
expander-like cores, what types of operations are re-
quired for web graphs and social networks?

2. In response to the above question, whiskers do not
seem to capture enough structural information. What
type of structure should we define instead of the pre-
vious whiskers?

It turns out that we can answer these questions using our
“core-tree-decomposition” method. This decomposition is
a type of tree-decomposition, which has been extensively
studied in the algorithm research community (for exam-
ples, see [3, 4, 13, 17, 18, 28, 29]). However, in this core-tree-
decomposition, we shall detect a “core” of a given graph.
Specifically, our method allows us to decompose any graph
into two parts, “core” and “almost tree,” such that

the“almost tree”part induces a tree-decomposition
of small tree-width. Specifically, it behaves like
a “tree” (Subsection 2.3).

1For the exact definition of expander graphs, see Subsec-
tion 2.2. For the time being, we can assume that expander
graphs behave like random graphs.

Moreover, such decomposition can be computed very quickly
(Section 3).

We constructed core-tree-decompositions for as many as
40 publicly available datasets. Results from these experi-
ments show that our cores provide more structural network
information in the following sense:

By comparing the eigenvalue distribution of the
cores obtained by our decomposition method with
that of the Erdős-Rényi random graphs, we con-
firm that our “core” behaves like an expander
graph, whereas the“core”defined by 2-edge-connected
components [24] does not. Details are given in
Subsection 6.2.

The intuition behind this fact will be explained in Subsec-
tion 2.4.

In summary, our core-tree-decomposition can resolve the
above two issues in such a way that whiskers are “tree-like,”
which can be explained in the context of tree-width, and the
intuition that the cores should be “expander-like” can be
explained via their eigenvalue distribution. Moreover, our
core-tree-decomposition yields the following features, which
are of independent interest:

1. Our analysis based on core-tree-decomposition scales
to large networks with billions of edges.

2. We observe that many widely used network datasets
have a small core, which implies that they are of small
tree-width. For these datasets, we perform experi-
ments to show that tree-width plays a significant role
in small index space for certain types of algorithms.

3. Social networks tend to have larger cores. Indeed, for
social networks, the size of cores is up to 23% of the
vertices; however, for web graphs, it is at most 13%
of the vertices. These facts contrast with the core de-
fined by 2-edge-connected components [24] that con-
tains 60% of the vertices.

This paper is organized as follows. In the next section, we
introduce tree-decompositions and core-tree-decompositions
that are key concepts in our study. Our decomposition al-
gorithm is explained in Section 3, and the datasets for our
experiments are explained in Section 4. We classify the net-
works into two classes: small and large datasets, where the
former are mainly discussed in Section 5 to deal with full
tree-decompositions, and the latter are only used in Sec-
tion 6 to analyze the structural properties of cores. First,
however, we introduce several additional related works.

Related Work on Tree-Decomposition.
A vast amount of theoretical work has been conducted us-

ing tree-decomposition and tree-width, such as [4,13,17,21,
22,28–30]. In the area of machine learning, tree decomposi-
tion is further employed to solve the probabilistic inference
problem on a small tree-width graph [23,32,35]. Tree-width
is used to characterize a polynomially solvable class of the
constraint satisfaction problem (CSP); under some condi-
tions, a CSP is solvable in polynomial time if and only if
an associated graph is of small tree-width [16], and some
algorithms achieve this bound [11,19].

There are a few recent papers that propose the construc-
tion of a core-tree-decomposition in preprocessing to help-
ing computation [25,3,33]. We use the algorithm presented
in [25] to compute a core-tree-decomposition.

1477

2. KEY CONCEPTS
In this section, we formally define our key concepts: core-

tree-decompositions and expander graphs. Before giving
their definitions, we introduce basic notations from graph
theory and matrix schemes that are required in our paper.

2.1 Basic Notation
Let G = (V,E) be a graph. We use symbols n and m to

denote the number of vertices and edges of a chosen graph.
For a vertex set S ⊆ V , let e(S) be the set of edges between
S and V −S. We define d(S) := |e(S)|. For a vertex v ∈ V ,
d({v}) is simply written as d(v) and is called the degree of v.
If G is a digraph, then d−(v) is the number of edges whose
tail is v.
In this study, we also require a matrix A that arises from

a graph, because this matrix and its eigenvalues help us
decide whether a given graph is close to an expander (Sub-
section 2.2). Formally, given a directed graph G, we are in-
terested in the adjacency matrix. Set the vertex set V (G) =
{1, . . . , n}. Then A(i, j) = 1 if there is an edge from i to j.
If G is undirected, then we assume that G is a bidirectional
graph (i.e., each edge corresponds to both directions). The
transition matrix of G is P = AD−1, where D is a diagonal
matrix and D(i, i) = 1/d−(i).
Let B be an n × n matrix. An eigenvalue decomposition

of B is a decomposition of the form

B = U>ΛU

where U is an orthogonal matrix and Λ is a diagonal matrix.
Each element of Λ is called eigenvalue and the corresponding
row of U is called eigenvector.

2.2 Expander Graph and Tools from Spectral
Graph Theory

Roughly, an expander graph is a sparse graph in which
every subset of the vertices that is not “too large” has a
“large” boundary. (i.e., “globally connected”). One of the
key properties given in our paper is that our core is close
to an expander graph (Subsection 6.2). In this subsection,
we formally define an expander graph. Whether or not a
given graph G is close to an “expander” is important in our
study. We explain our method of solving this at the end of
this subsection.
To formally define an expander graph, we need further

definitions. For a vertex set S ⊆ V ,

µ(S) :=
∑
v∈S

d(v),

and the conductance is defined as φ(S) := d(S)/µ(S). The
conductance of an undirected graph G is

φ(G) := min
S⊆V :µ(S)≤µ(V)/2

φ(S).

We say that a graph G is an η-expander if φ(G) ≥ η. Intu-
itively, if the conductance η is large, then we say that G is
“globally” connected. In this case, we say that G is an ex-
pander. It is well-known that expander graphs behave like
random graphs.
The quantity φ(G) is NP-complete to compute. However,

the following result from Jerrum and Sinclair [20] says that
we can approximately calculate η by considering the second
eigenvalue λ2 of the transition matrix of a graph.

η2/16 ≤ 1− λ2 ≤ η.

Indeed, from spectral graph theory [10], it has been known
that expander graphs and eigenvalue distribution are closely
related. Therefore, to decide whether or not a given graph
G is close to an expander, the easiest way seems to be the
following:

looking at the eigenvalues (and their distribu-
tion) of the transition matrix of G.

We perform this in our experiments in Section 6 (Subsec-
tions 6.1 and 6.2).

2.3 Tree-Decomposition
The main tool in this study is a core-tree-decomposition.

This is based on a tree-decomposition. Let us first define
tree-decomposition and tree-width. Let G be an undirected
graph, T a tree and let V = {Vt ⊆ V (G) | t ∈ V (T)} be a
family of vertex sets Vt ⊆ V (G) indexed by the vertices t
of T . Following [4, 29], the pair (T,V) (or (Vt)t∈T) is called
a tree-decomposition of G if it satisfies the following three
conditions:

• V (G) =
⋃

t∈T Vt,

• for every edge e ∈ E(G) there exists a t ∈ T such that
both ends of e lie in Vt,

• if t, t′, t′′ ∈ V (T) and t′ lies on the path of T between
t and t′′, then Vt ∩ Vt′′ ⊆ Vt′ .

Each Vt is sometimes called a bag. The width of (T,V) (or
(Vt)t∈T) is the number max{|Vt| − 1 | t ∈ T} and the tree-
width of G is the minimum width of any tree-decomposition
of G. In this way, tree-width is a measure of how close a
given graph is to a tree. Specifically, if the tree-width is
small, then it behaves like a tree.

Furthermore, tree-width is a measure of “global” connec-
tivity. To support this claim, let us first observe that in the
framework of tree-width, it is well-known that an expander
graph cannot be of small tree-width. Therefore,

expander graphs are a counterpart of graphs of
small tree-width.

The converse is not quite true, but it is true that,

if the tree-width of a given graph is large, it
contains a “highly” connected set that behaves
like an expander graph (see Section 12.4 of Dies-
tel [12] for more details).

For more details on tree-width, we refer the reader to a sur-
vey by Reed [28]. It turns out that this intuition is very
important for our core-tree-decomposition, which will be de-
fined in the next subsection.

2.4 Core-Tree-Decomposition
We now introduce the most important concept in this pa-

per. We say that G has a “core-tree-decomposition of width
d” if a tree-decomposition (T,V) satisfies the following:

1. r is a root of the tree T , and

2. for all t ∈ T − r, |Vt| ≤ d.

Thus, only the bag Vr has more than d vertices, and indeed,
Vr corresponds to the “core”. Sometimes we call V − Vr the
bounded tree-width part or the small tree-width part.

The purpose of our core-tree-decomposition is the follow-
ing:

1478

Algorithm 1 Core-tree-decomposition algorithm

1: procedure DecomposeGraph(G, d)
2: X ← Empty list of bags
3: O Reduce vertices from those with lower degree
4: while G is not empty do
5: v ← A vertex with minimum degree
6: break if d(v) > d
7: Vv ← ReduceVertex(G, v)
8: Append Vv to list X

9: O Construct the root bag Vr

10: Vr ← V (G)
11: Append Vr to list X
12: O Compute the tree
13: return ConstructTree(X)

1. We want to extract as many vertices in the core as
possible so that the extracted vertices induce a graph
W of small tree-width. If the remaining core is also
small (i.e., it has less than d vertices), then the tree-
width is at most d.

2. Once we are left with extracting vertices from the core
and the remaining core contains more than d vertices,
the core no longer induces a graph of tree-width d.
This suggests that it contains a highly connected sub-
graph that behaves like an expander graph. We want
this core to be close to an expander.

Therefore, we need to choose d. In Section 3, we propose,
given d, an efficient algorithm to obtain our core-tree de-
composition of width d. In Subsection 6.3, we discuss how
to choose d.

3. DECOMPOSITION ALGORITHM
In this section, we explain the algorithm that we use to

construct a core-tree-decomposition. The algorithm is based
on the min-degree heuristic [5, 34], which was originally de-
signed for computing standard tree-decompositions. We use
a modified version that receives a parameter d and produces
a core-tree-decomposition of width d. Note that it can also
compute a standard tree-decomposition by setting d as a
sufficiently large value.
This algorithm is different from Bodlaender’s algorithm [6]

and its successor [27]. The time complexity of these algo-
rithms is Ω(2d(n + m)) time, i.e., the exponential of tree-
width. Therefore, while the algorithms run in linear time
when the tree-width is very small, in practice, tree-width is
not that small and thus they are impractical.

3.1 Algorithm Overview
Note that, in this section, we are only interested in undi-

rected graphs, even if the input graphs are directed. To
handle a directed graph, we apply the following algorithm
to the undirected graph produced by ignoring the direction
of each edge.
The total algorithm is presented as Algorithm 1. It first

generates a list of bags, and then constructs a tree of these
bags. To generate a list of bags, the algorithm repeatedly re-
duces a vertex with minimum degree while minimum degree
is at most d.
Reducing a vertex v involves three steps, as described in

Algorithm 2. First, we create a new bag Vv that includes v
and all its neighbors. Then, we remove vertex v from graph
G. Finally, we add edges between the neighbors to make

Algorithm 2 Reduction of vertex

1: procedure ReduceVertex(G, v)
2: Vv ← {v} ∪NG(v)
3: for all x, y ∈ NG(v) such that x 6= y do
4: O Make v’s neighbors a clique
5: Add edge (x, y) to E(G) if it is not in E(G)

6: Remove v from G
7: return Vv

a clique among those vertices in Vv − v. When no vertex
with degree less than or equal to d remains, we finalize this
process by creating a new bag Vr that consists of all the
remaining vertices. The last bag Vr corresponds to the“core”
and can be arbitrarily large.

After generating the list of bags, the tree of these bags
is constructed. It can be guaranteed that we obtain a valid
core-tree-decomposition by setting the parent of bag Vv as
bag Vp where (Vv − v) ⊆ Vp.

3.2 Efficient Implementation
As reducing a vertex with degree δ adds Θ(δ2) edges, naive

implementation of the above heuristic consumes consider-
able space and time to compute core-tree-decompositions
for today’s large networks. Therefore, the following speed-
up technique is employed to address this issue.

To reduce a vertex v, instead of adding a clique around
v, we add a vertex with a special label, named a hub vertex.
We add edges to make the new hub vertex incident to the
neighbors of v. Note that here we add only O(d(v)) edges.
Then, we handle the resulting graph as if there were cliques
around hub vertices, i.e., we consider that there is an edge
between two vertices that have a hub vertex as a common
neighbor.

4. EXPERIMENTAL SETUP
All experiments are conducted on a Linux server with Intel

Xeon E5-2690 2.90GHz CPU with 256GB memory. Our al-
gorithm is implemented in C++ and compiled with g++v4.6
with -O3 option.

We conducted experiments on a number of real-world net-
works that are publicly available from the following sources:

• Datasets youtube, flickr, livejournal, and orkut

are from the social computing group at the Max Planck
Institute [26]2.

• Datasets in-2004, indochina-2004, it-2004, twitter-
2010, and uk-2007-05 are from the Laboratory for
Web Algorithmics at the Università degli studi di Mi-
lano [9,8, 7]3.

• The other datasets are from the Stanford Network
Analysis Project (SNAP)4.

We classified the networks into two classes: small and
large datasets. Small datasets are mainly discussed in Sec-
tion 5, and large ones are only used in Section 6.

2http://socialnetworks.mpi-sws.org/datasets.html
3http://law.di.unimi.it/datasets.php
4http://snap.stanford.edu/data/

1479

Table 1: Information of small datasets, results of our full tree-decomposition, and sizes of 2-hop indices
constructed by state-of-the-art indexing methods for shortest-path distance queries.

Dataset Information Tree-decomposition Distance Indices (MB)
Name |V | |E| Type Time (s) Width d d/|V | PLL [1] ISL [14]

ca-grqc 5,242 28,980 social (u) 0.02 253 0.048 1.4 3.9
ca-hepth 9,877 51,971 social (u) 0.16 798 0.081 4.4 24.7
wiki-vote 7,115 103,689 social (d) 0.59 1,332 0.187 2.4 23.8
ca-condmat 23,133 186,936 social (u) 1.5 2,160 0.093 13.4 156.8
ca-hepph 12,008 237,010 social (u) 0.52 1,406 0.117 8.8 65.5
email-enron 36,692 367,662 social (d) 1.43 2,178 0.059 8.4 136.1
ca-astroph 18,772 396,160 social (u) 3.34 3,497 0.186 19.5 233.5
email-euall 265,214 420,045 social (d) 1.67 1,033 0.004 84.1 453.0
soc-epinions1 75,879 508,837 social (d) 11.43 5,504 0.073 45.5 1,033.3
soc-slashdot0811 77,360 905,468 social (d) 28.31 8,555 0.111 77.1 1,772.3
soc-slashdot0902 82,168 948,464 social (d) 29.41 9,181 0.112 85.3 2,028.5

web-notredame 325,729 1,497,134 web (d) 0.99 2,938 0.009 95.4 2,835.4
web-stanford 281,903 2,312,497 web (d) 2.82 1,611 0.006 64.3 2,086.7
web-google 875,713 5,105,039 web (d) 80.28 18,229 0.021 712.3 64,540.1
web-berkstan 685,230 7,600,595 web (d) 10.81 3,272 0.005 195.5 10,482.0

p2p-gnutella08 6,301 20,777 p2p (u) 0.12 1,263 0.200 5.0 26.3
p2p-gnutella09 8,114 26,013 p2p (u) 0.19 1,618 0.199 8.0 43.5
p2p-gnutella06 8,717 31,525 p2p (u) 0.66 2,199 0.252 10.2 65.2
p2p-gnutella05 8,846 31,839 p2p (u) 0.35 2,215 0.250 10.5 65.5
p2p-gnutella04 10,876 39,994 p2p (u) 0.61 2,789 0.256 15.8 102.6
p2p-gnutella25 22,687 54,705 p2p (u) 0.9 3,618 0.159 45.8 284.1
p2p-gnutella24 26,518 65,369 p2p (u) 1.59 4,320 0.163 50.0 389.6
p2p-gnutella30 36,682 88,328 p2p (u) 2.04 5,596 0.153 100.9 707.6
p2p-gnutella31 62,586 147,892 p2p (u) 5.78 9,385 0.150 233.6 2,050.2

cit-hepth 27,770 352,807 citation (d) 11.61 8,515 0.307 158.4 687.0
cit-hepph 34,546 421,578 citation (d) 10.21 10,718 0.310 178.4 1,155.1

5. TREE-DECOMPOSITIONS FOR SMALL
DATASETS

First, we study tree-decompositions on smaller datasets.
In this section we focus on standard tree-decompositions,
and then we move to core-tree-decompositions in the next
section. As computing tree-decompositions is considerably
more expensive than core-tree-decompositions with moder-
ate width parameter d, in this section, we only use small
datasets with up to 7.5 million edges, for which we suc-
cessfully obtained a tree-decomposition in 100 seconds. In
Table 1, the information of small datasets and results of our
tree-decomposition are given.
Note that our tree-decompositions are not necessarily op-

timal, and hence the width given in Table 1 is just an upper
bound of tree-width. However, the aim of this section is
to show how informative the width of a tree-decomposition
obtained by our algorithm is. For this purpose, we take
shortest-path distance indexing methods [1, 14] as an exam-
ple and tackle the long-standing question in this field: what
is the key factor in addition to network size that has a large
effect on the size of constructed shortest-path distance in-
dices? We believe that similar results also hold for other
problems where state-of-the-art methods are designed to ex-
ploit the structures of real networks.

5.1 Shortest-Path Distance Indices
There has been great interest in the database research

community in indexing methods that efficiently find the dis-
tance between two arbitrary points on graphs [33,3,1,14,2].
This remains a highly challenging problem with a wide range
of applications such as network-aware search and network
analysis.

In the following section, we focus on two state-of-the-art
indexing methods: pruned landmark labeling [1, 2] and IS-
label [14]. Both are based on the 2-hop cover framework.
The general framework of 2-hop cover is as follows. For
simplicity, we assume that the input graph G is undirected.

For each vertex v, we precompute a label denoted as L(v),
which is a set of pairs (u, δuv), where u is a vertex and δuv =
dG(u, v). We sometimes call the set of labels {L(v)}v∈V an
index. To answer a distance query between vertices s and t,
we compute and answer Query(s, t, L) defined as follows,

Query(s, t, L) =

min {δvs + δvt | (v, δvs) ∈ L(s), (v, δvt) ∈ L(t)} .

We call L a 2-hop cover index of G if Query(s, t, L) is the
correct distance for any pair of vertices s and t.

While both pruned landmark labeling and IS-label use
further sophisticated frameworks based on 2-hop cover, they
can be used to construct standard 2-hop indices. Therefore,
for simplicity, in our experiments we constructed standard 2-
hop indices by these methods, i.e., pruned landmark labeling
was not combined with the bit-parallel labeling technique
and IS-label constructed complete vertex hierarchy.

5.2 Non-Trivial Factors for Index Size
Table 1 lists the sizes of 2-hop indices constructed by the

two methods, pruned landmark labeling [1] and IS-label [14]
for our datasets. The results indicate that, even if two
graphs are of similar size, indices constructed from these
graphs by the same algorithm may be of quite different sizes.

For example, datasets email-enron, ca-astroph, cit-

hepth and cit-hepph have similar sizes in terms of the num-
ber of vertices and edges. However, sizes of indices for these

1480

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

In
d

e
x
 s

iz
e

 (
M

B
)

n d log(n)

PLL
ISL

Figure 1: Actual index sizes and estimation using
the widths of tree-decompositions.

datasets vary largely and, surprisingly, indices for cit-hepph
are approximately ten times larger than those for email-

enron for both indexing algorithms. Similar differences can
be observed from datasets ca-condmat and p2p-gnutella30.
This is because these state-of-the-art indexing methods

heuristically exploit the structures of real networks explic-
itly or implicitly, and thus they depend on the properties of
each network. Indeed, it is proved that 2-hop indices may
have Θ(n2) space for general graphs [15]. Therefore, it is im-
possible to construct small 2-hop indices without exploiting
the network structures.
However, the long-standing question among researchers

in this field is that, having understood this, what is the key
factor besides network size that has a large effect on the
size of constructed shortest-path distance indices? In the
following section, we show that obtaining the width of a
tree-decomposition can take us closer to the answer.

5.3 Qualitative Empirical Analysis
Widths of tree-decompositions obtained using our algo-

rithm are listed in Table 1. We can observe that the dif-
ference in index sizes seems to be highly related to widths.
For example, widths of the tree-decompositions for datasets
email-enron and cit-hepph are 10,718 and 2,178, respec-
tively. Similarly, tree-decompositions for ca-condmat and
p2p-gnutella30 have widths of 1,406 and 5,596, respec-
tively. Interestingly, from our results, index sizes for graphs
with larger widths are almost always larger than those for
graphs with smaller widths. Therefore, tree-width could be
the key factor that has a large effect on the sizes of con-
structed shortest-path distance indices.

5.4 Theoretical Bound with Tree-width
To further analyze the relation between widths of tree-

decompositions and sizes of distance indices, we first present
theoretical analysis result. While there are no non-trivial
theoretical bounds on the size of 2-hop indices that are bet-
ter than O(n2) for general graphs [15], we can prove that
there are small 2-hop indices for graphs of small tree-width.
In what follows, a centroid of a tree T denotes a node

v ∈ V (T) such that any connected component after deleting
v has maximum size V (T)/2. It is easy to prove that any
tree has at least one centroid.

Table 2: Spearman’s correlation between actual in-
dex sizes and estimation with and without width d.

Methods n m n+m d nd logn
PLL [1,2] 0.819 0.774 0.798 0.795 0.899
ISL [14] 0.940 0.792 0.875 0.719 0.983

Theorem 1. Let G be a graph of tree-width d. There is a
distance-aware 2-hop index for G with total size O(nd logn).

Proof sketch. We start from an empty index L. Let
bag Vt be a centroid of the tree-decomposition. We add
the distance d(u, v) to L for all pairs (u, v) where u ∈ V and
v ∈ Vt. We then recurse to each part that can be obtained by
deleting Vt. We add O(nd) pairs in each depth of recursion,
where the maximum depth is O(log n).

5.5 Quantitative Empirical Analysis
Although the aforementioned methods do not necessarily

yield 2-hop indices of that size (i.e., O(nd logn)), we show
that this theoretical bound works quite well as an estima-
tion. Figure 1 illustrates the relation between the estimated
value nd logn and actual sizes of constructed indices show-
ing that these values correlate well.

Moreover, in Table 2, we see that Spearman’s correlation
coefficient between estimation nd logn and actual index sizes
is significantly higher than other estimations such as n and
m. This indicates that the width d of our tree-decomposition
is indeed informative. Note that Spearman’s correlation co-
efficient uses only ranks and thus, for example, the score for
estimation of n2 would be exactly the same as that of n.

6. CORE-TREE-DECOMPOSITIONS FOR
LARGE DATASETS

In this section, we look at datasets of large size (between
5M and 3.6B edges). Because of the time and space con-
straints for our algorithm in Section 3, we cannot fully ob-
tain a tree-decomposition for these datasets; however, we
can apply our proposed algorithm to construct a core-tree-
decomposition for these datasets up to d = 1000. The ex-
perimental results are shown in Table 3. It takes at most
45 minutes to construct a core-tree-decomposition of width

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Erdős-Rényi ran-
dom graph (n = 10000,
m = 99759)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Binary tree with
random edges added
(n = 100000, m =
115041)

Figure 2: Extreme eigenvalues of an Erdős-Rényi
random graph and a binary tree with random edges
added; x axis is for the real part and y axis is for the
imaginary part. Red point is for the whole network
and blue point is for the core.

1481

Table 3: Information of large datasets, size of the largest biconnected components (BC), and results of our
core-tree-decomposition.

Dataset Information BC Size CT-Decomp. Time (s) Core Size |Vr|
Name |V | |E| Type d = 10 d = 100 d = 1000 d = 10 d = 100 d = 1000

wiki-talk 2,394,385 5,021,410 social (d) 65,778 2.21 2.75 6.45 63,366 19,047 15,966
youtube 3,238,848 18,524,095 social (u) 438,730 3.70 8.72 30.33 352,714 129,389 111,556
flickr 1,861,233 22,613,981 social (d) 504,983 2.17 5.88 27.28 318,788 156,117 131,477
soc-pokec 1,632,804 30,622,564 social (d) 1,339,202 1.10 16.17 107.42 1,023,232 648,417 574,188
livejournal 5,284,458 77,402,652 social (d) 3,046,940 6.19 46.91 220.28 2,266,055 1,221,374 1,054,805
orkut 3,072,627 223,534,301 social (u) 2,937,152 0.84 41.37 329.5 2,744,856 1,986,681 1,797,098
twitter-2010 41,652,230 1,468,365,182 social (d) 38,213,230 37.17 383.01 2514.82 24,992,877 7,767,763 5,571,211

web-notredame 325,729 1,497,134 web (d) 72,904 0.28 0.94 1.11 52,927 8,919 3,237
web-google 916,428 5,105,039 web (d) 564,705 1.27 4.81 7.75 322,633 49,645 23,450
in-2004 1,382,908 16,917,053 web (d) 670,103 0.84 3.93 5.14 547,537 47,036 5,583
indochina-2004 7,414,865 194,109,311 web (d) 4,160,949 2.97 32.45 63.02 4,109,397 470,944 53,069
it-2004 41,291,318 1,150,725,436 web (d) 30,683,202 18.00 246.96 741.07 25,771,538 4,711,353 1,366,281
uk-2007-05 105,896,435 3,738,733,648 web (d) 80,399,275 30.05 678.55 2253.75 73,394,948 13,990,744 3,995,511

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) flickr
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) soc-pokec
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) livejournal
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) twitter-2010
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) wiki-talk

Figure 3: Social Networks; red points are the distribution of eigenvalues of the whole network, green points
are those of the largest 2-edge-connected components, and blue points are those of our cores with d = 100.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) in-2004
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) it-2004
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) uk-2007-05
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) web-google
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) web-notredame

Figure 4: Web Graphs; red, green and blues points are the same as in Figure 3.

d = 1000 even for the largest dataset. Furthermore, we
can confirm that there is still a large core even for the case
d = 1000 for these datasets (Table 3). This suggests that our
proposed algorithm will decompose graphs into the “core”
part and the “small tree-width” part.
The main object of this section is to investigate struc-

tural properties of cores. More specifically, we look at the
following points.

1. How close is the core to an expander?

2. What happens if we change d?

3. What is the density of the core?

We propose a way to answer the first question in the next
subsection.

6.1 Typical Eigenvalues
In general, given a graph G, it is difficult to determine how

close it is to an expander. The best way is by looking at the
eigenvalues distribution, as discussed in Subsection 2.2.

For a typical expander graph (Erdős-Rényi random graph
with n = 10000 vertices and m = 99759 edges) and a typical
non-expander graph (binary tree with random edges added.
n = 100000 vertices and m = 115041 edges), we compute
200 extreme eigenvalues of their cores and their whole net-
works, respectively, by the Arnoldi method [31].

We actually conduct experiments only for directed graphs
because there are many more large directed graphs than
large undirected graphs in the datasets, and we want to look

1482

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) flickr
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) soc-pokec
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) livejournal
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) twitter-2010
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) wiki-talk

Figure 5: Social Networks; red points are the distribution of eigenvalues of the whole network, purple points
are those of the core with d = 10, blue points are those of the core with d = 100, and green points are that of
the core with d = 1000.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) in-2004
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) it-2004
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) uk-2007-05
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) web-google
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) web-notredame

Figure 6: Web Graphs; red, green, purple and blue points are the same as in Figure 5.

at the eigenvalues distribution for as many “large” datasets
as possible5; thus, it is fair to look only at digraphs.
The results are shown in Figure 2. Figure 2a is for the

directed version of an Erdös-Rényi random graph, which is
supposed to be a typical expander graph, and Figure 2b is
for a directed complete binary tree with few random edges
added, which is a typical non-expander graph (i.e., a small
tree-width graph). As the transition matrices of directed
graphs are not necessarily symmetric, the eigenvalues may
not be real. Indeed, they contain both the real and imagi-
nary parts, as shown in Figures 2a and 2b.
From Figures 2a and 2b, we can observe that a given net-

work is close to an expander graph if the eigenvalues are
clustered near the origin, and a given network would contain
a subgraph that behaves like a tree (i.e., a small tree-width
graph), if the eigenvalues were scattered. We now look at
real networks.

6.2 How Close the Core is to an Expander
In this subsection, we compare our core with the core

defined by Leskovec et al. [24] (i.e., the maximum 2-edge-
connected component) and the original networks. More pre-
cisely, for ten real (directed) networks that contain five so-
cial networks and five web graphs, we compute 200“extreme”
eigenvalues of their cores (from our core-tree-decompositions),
their maximum 2-edge-connected components, and the whole
networks, by the Arnoldi method [31]. For simplicity, we fix
d = 100, and, in the next subsection, we examine how the
distribution of eigenvalues changes if we change d. The re-
sults are shown in Figure 3 for social networks and in Figure
4 for web graphs.

5Moreover, the eigenvalue distribution for directed graphs
is considerably easier to visualize than that for undirected
graphs.

We conclude that the eigenvalues of whole networks (red
points) are scattered, like the distribution of a non-expander
graph (Figure 2b). The eigenvalues of the maximum 2-edge-
connected components (green points) are also scattered, al-
though the green points are slightly closer to the origin than
the red points. However, the eigenvalues of the cores (blue
points) are clustered relatively near the origin, like the dis-
tribution of an expander graph (Figure 2a). Therefore, we
can conclude that,

neither real networks nor the maximum 2-edge-
connected components are expander, but our cores
of the networks are closer to expander.

There is one more observation we can make from Table 3.
For social networks, except for orkut and soc-pokec (which
seem to have considerably bigger cores than other social net-
works), the size of cores is a maximum of 23% of the vertices
of the original network (when d = 100), but for web graphs,
it is at most 13% of the vertices. These facts are in con-
trast with the maximum 2-edge-connected component (i.e.,
the core defined by Leskovec et al. [24]) which contains 60%
of the vertices, as previously mentioned. Therefore, we can
conclude that

social networks tend to have a larger “core” than
web graphs. Moreover, our core contains a con-
siderably smaller number of vertices than the core
defined by 2-edge-connected components [24].

6.3 Changing Width Parameter d
We now look at cores with respect to the width d of our

core-tree-decomposition for social networks and web graphs,
respectively.

Let us first look at Figure 5 for social networks and Fig-
ure 6 for web graphs, respectively. Our process is as follows.

1483

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
o
re

 s
iz

e

Width parameter

wiki-talk
dblp-2011

youtube
flickr

(a) Small social networks

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

C
o
re

 s
iz

e

Width parameter

web-notredame
web-stanford

web-google
web-berkstan

(b) Small web graphs

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

C
o
re

 s
iz

e

Width parameter

soc-pokec
livejournal

orkut
twitter-2010

(c) Large social networks

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
0

10
1

10
2

10
3

C
o
re

 s
iz

e

Width parameter

in-2004
indochina-2004

it-2004
uk-2007-05

(d) Large web graphs

Figure 7: Size of the cores of core-tree-decompositions for different width parameter d.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

D
e
n
s
it
y

Width parameter

wiki-talk
dblp-2011

youtube
flickr

(a) Small social networks

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

D
e
n
s
it
y

Width parameter

web-notredame
web-stanford

web-google
web-berkstan

(b) Small web graphs

10
1

10
2

10
3

10
0

10
1

10
2

10
3

D
e
n
s
it
y

Width parameter

soc-pokec
livejournal

orkut
twitter-2010

(c) Large social networks

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

D
e
n
s
it
y

Width parameter

in-2004
indochina-2004

it-2004
uk-2007-05

(d) Large web graphs

Figure 8: Density of the cores of core-tree-decompositions for different width parameter d.

For ten real (directed) networks that contain five social net-
works and five web graphs, we compute 200 extreme eigen-
values of the whole networks and of their cores for the cases
d = 10, 100, 1000, respectively, by the Arnoldi method [31].
The results are shown in Figure 5 for social networks and in
Figure 6 for web graphs, respectively.
We can conclude that as d increases, the eigenvalues of

web graph cores are clustered closer to the origin. This indi-
cates that as d increases, the cores of web graphs gets closer
to expander (like the distribution of an expander graph (Fig-
ure 2a)). On the other hand, as d increases, the eigenvalues
of the social network cores are first clustered close to the
origin, but then stay for a while. This indicates that for
social networks, we can stop at some value of d, but for web
graphs, we can increase d. Indeed, d = 100 seems sufficient
for social networks.
This can be further explained from Figure 7 which shows

the size of cores for social networks and web graphs, with
respect to the width d. As the width d increases, the size of
web graph cores decreases. On the other hand, the size of so-
cial network cores first decreases, but then remains constant
a while until the cores of the networks form one bag of core-
tree-decompositions. Indeed, for large social networks, if we
consider d ≥ 100, then the core size does not change con-
siderably, but this is not the case for web graphs. Namely,
the core size still decreases, even if d increases beyond 100.
This indicates that,

for social networks, d = 100 is sufficient in the
sense that the core behaves like an expander, be-
cause increasing d does not affect the expander
property of the core. On the other hand, for web
graphs, we need to increase d (i.e., the core for
the case where d = 1000 gets closer to an ex-
pander than that for the case where d = 100).

6.4 Density of Cores
Let us look at the density of a core with respect to the

width d of our core-tree-decomposition for social networks
and web graphs. Surprisingly, there is a large (and interest-
ing) difference between social networks and web graphs. For
web graphs, as the width d increases, the density continues
to increase. On the other hand, for social networks, as the
width d increases, the density first increases, but then re-
mains constant for a while (or increase very gradually), as
shown in Figure 8.

7. CONCLUSION
In this paper, using the notion of core-tree-decomposition,

we obtained many structural properties for social networks
and web graphs. Specifically, we performed experiments
to construct a core-tree-decomposition for as many as 40
publicly available datasets, and we conclude that whiskers
are “tree-like,” which can be explained in the framework of
tree-with; moreover, the intuition that the cores should be
“expander-like” can be explained via their eigenvalue dis-
tribution. We have also shown that social networks tend
to have larger cores. Indeed, for social networks, the size
of cores is a maximum of 23% of the vertices, but for web
graphs, it is at most 13% of the vertices. Additionally, we
have also demonstrated the theoretical and empirical evi-
dence that tree-width plays a significant role in the efficiency
of certain types of algorithms.

8. REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact

shortest-path distance queries on large networks by
pruned landmark labeling. In SIGMOD, pages
349–360, 2013.

[2] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and
historical shortest-path distance queries on large

1484

evolving networks by pruned landmark labeling. In
WWW, pages 237–248, 2014.

[3] T. Akiba, C. Sommer, and K. Kawarabayashi.
Shortest-path queries for complex networks: exploiting
low tree-width outside the core. In EDBT, pages
144–155, 2012.

[4] S. Arnborg and A. Proskurowski. Linear time
algorithms for np-hard problems restricted to partial
k-trees. Discrete Appl. Math., 2:11–24, 1989.

[5] A. Berry, P. Heggernes, and G. Simonet. The
minimum degree heuristic and the minimal
triangulation process. In WG, volume 2880 of LNCS,
pages 58–70. 2003.

[6] H. L. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J.
Comput., 25(6):1305–1317, 1996.

[7] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Ubicrawler: A scalable fully distributed web crawler.
Software Pract. Ex., 34(8):711–726, 2004.

[8] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
label propagation: A multiresolution coordinate-free
ordering for compressing social networks. In WWW,
pages 587–596, 2011.

[9] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, pages 595–601,
2004.

[10] F. Chung. Spectral Graph Theory. Cbms Regional
Conference Series in Mathematics, 1997.

[11] R. Dechter and J. Pearl. Tree clustering for constraint
networks. Artif. Intell., 38(3):353–366, 1989.

[12] R. Diestel. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer, 2012.

[13] M. Frick and M. Grohe. Deciding first-order properties
of locally tree-decomposable structures. J. ACM,
48(6):1184–1206, 2001.

[14] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong.
Is-label: an independent-set based labeling scheme for
point-to-point distance querying. PVLDB,
6(6):457–468, 2013.

[15] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz.
Distance labeling in graphs. J. Algorithms, 53(1):85 –
112, 2004.

[16] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. J. ACM, 54(1), 2007.

[17] M. Grohe, K. Kawarabayashi, and B. A. Reed. A
simple algorithm for the graph minor decomposition -
logic meets structural graph theory. In SODA, pages
414–431, 2013.

[18] R. Halin. s-function for graphs. J. Geometry,
8:171–186, 1976.

[19] P. Jégou and C. Terrioux. Hybrid backtracking
bounded by tree-decomposition of constraint
networks. Artif. Intell., 146(1):43–75, 2003.

[20] M. R. Jerrum and A. Sinclair. Approximating the
permanent. SIAM J. Comput., 18:1149–1178, 1989.

[21] K. Kawarabayashi and P. Wollan. A shorter proof of
the graph minor algorithm: the unique linkage
theorem. In STOC, pages 687–694, 2010.

[22] K. Kawarabayashi and P. Wollan. A simpler algorithm
and shorter proof for the graph minor decomposition.
In STOC, pages 451–458, 2011.

[23] S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert systems. J.
R. Stat. Soc. Series B, Stat. Methodol., pages 157–224,
1988.

[24] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Math., 6(1):29–123, 2009.

[25] T. Maehara, T. Akiba, Y. Iwata, and
K. Kawarabayashi. Computing personalized pagerank
quickly by exploiting graph structures. PVLDB, 7,
2014. to appear.

[26] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In IMC, pages 29–42, 2007.

[27] L. Perković and B. Reed. An improved algorithm for
finding tree decompositions of small width. Int. J.
Found. Comput. Sci., 11(03):365–371, 2000.

[28] B. Reed. Tree width and tangles: a new connectivity
measure and some applications. Surveys in
Combinatorics, 241:87–162, 1997.

[29] N. Robertson and P. D. Seymour. Graph minors. iii.
planar tree-width. J. Comb. Theory, Ser. B, 36:49–63,
1984.

[30] N. Robertson and P. D. Seymour. Graph minors .xiii.
the disjoint paths problem. J. Comb. Theory, Ser. B,
63(1):65–110, 1995.

[31] Y. Saad. Numerical methods for large eigenvalue
problems, volume 158. SIAM, 1992.

[32] D. Sheldon, T. Sun, A. Kumar, and T. G. Dietterich.
Approximate inference in collective graphical models.
In ICML, pages 1004–1012, 2013.

[33] F. Wei. Tedi: efficient shortest path query answering
on graphs. In SIGMOD, pages 99–110, 2010.

[34] J. Xu, F. Jiao, and B. Berger. A tree-decomposition
approach to protein structure prediction. In CSB,
pages 247–256, 2005.

[35] Y. Zheng, P. Chen, and J.-Z. Cao. Map-mrf inference
based on extended junction tree representation. In
CVPR, pages 1696–1703, 2012.

1485

