
Balanced Graph Edge Partition

Florian Bourse
∗

ENS
Paris, France

florian.bourse@ens.fr

Marc Lelarge
INRIA-ENS

Paris, France
marc.lelarge@ens.fr

Milan Vojnović
Microsoft Research

Cambridge, UK
milanv@microsoft.com

ABSTRACT
Balanced edge partition has emerged as a new approach to
partition an input graph data for the purpose of scaling out
parallel computations, which is of interest for several modern
data analytics computation platforms, including platforms
for iterative computations, machine learning problems, and
graph databases. This new approach stands in a stark con-
trast to the traditional approach of balanced vertex parti-
tion, where for given number of partitions, the problem is to
minimize the number of edges cut subject to balancing the
vertex cardinality of partitions.

In this paper, we first characterize the expected costs of
vertex and edge partitions with and without aggregation of
messages, for the commonly deployed policy of placing a ver-
tex or an edge uniformly at random to one of the partitions.
We then obtain the first approximation algorithms for the
balanced edge-partition problem which for the case of no ag-
gregation matches the best known approximation ratio for
the balanced vertex-partition problem, and show that this
remains to hold for the case with aggregation up to factor
that is equal to the maximum in-degree of a vertex. We
report results of an extensive empirical evaluation on a set
of real-world graphs, which quantifies the benefits of edge-
vs. vertex-partition, and demonstrates efficiency of natural
greedy online assignments for the balanced edge-partition
problem with and with no aggregation.

Categories and Subject Descriptors
E.1 Data [Data Structures]: Graphs and networks; G.2.2
[Mathematics of Computing]: Discrete Mathematics–
Graph Theory, Graph Algorithms; H.2 [Information Sys-
tems]: Database Management

General Terms
Algorithms, Experiments, Performance

∗Work performed as part of a MSR-INRIA joint research
centre project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623660.

Keywords
Graph Edge Partition, Distributed Massive Computations,
Approximation Algorithms, Streaming Heuristics

1. INTRODUCTION
A common approach to scale-out computations on large-

scale input graph data is to partition the graph data and
parallelize the computation on some given number of ma-
chines in a distributed cluster of machines. For example,
this is of interest for iterative computations on input graph
data such as computing the PageRank using the power-
iteration method in systems such as Pregel [23], Giraph [8]
and Spark [39], or for iterative machine learning compu-
tations such as approximate Bayesian inference in systems
such as Graphlab [22, 21], or for efficiently resolving queries
in large-scale databases, e.g. [3], and specifically, graph
databases, e.g., Neo4j [24] and Trinity [30]. An important
problem is to ensure a high-quality of a graph partition with
respect to two criteria: balancing the processing load across
machines and minimizing the communication cost between
different machines.

A traditional approach to placing a graph on a cluster of
k machines is to construct a balanced vertex partition that
equi-partitions the set of vertices to k partitions such that
the number of edges spanning the partitions is minimized.
A new approach was proposed recently in [9] that advocates
to perform an edge partition by equi-partitioning the set of
edges to k partitions such that the amount of communication
required to synchronize the state of vertex-copies is mini-
mized. This new approach is motivated by the observation
that standard tools, e.g., [14, 26] for constructing a balanced
vertex partition perform poorly on power-law graphs [1, 19,
20]. Each cut edge contributes to storage and network over-
head since both machines maintain a copy of the adjacency
information, and in some cases, a ghost vertex per each cut
edge is maintained [10]. Many systems resort to using hash
(random) vertex placement for its simplicity of implementa-
tion. Since the graph partitioning problem is considered to
be intrinsically difficult, this random partition may perform
rather poorly. The design rationale of performing an edge
partition is to allow for more flexibility for processing load
balancing by allowing a single vertex program to span mul-
tiple machines and reduction of communication and storage
overhead by evenly assigning edges to machines. Since each
edge is stored exactly once, changes to edge data do not need
to be communicated.

Little is known about the balanced edge-partition problem
both on the grounds of theoretical computation complexity

1456

and approximation guarantees, and practical methods with
good average-case performance. This is unlike to the tradi-
tional balanced vertex-partition problem which was studied
rather extensively, with the best known approximation guar-
antee of O(

√
log k log n) for the edge-cut cost of a partition

in k clusters of a size n graph [18], and with software tools
being available off-the-shelf, e.g. METIS [12, 13]. An impor-
tant requirement for graph partitioning at scale is to being
able to produce a good-quality graph partition under restric-
tion to make a single pass through the graph data, which is
often referred to as streaming graph partition. Here, again,
we find a number of approaches that have been studied for
the vertex-partition problem, e.g. [32, 34, 25]. On the con-
trary, the study of streaming heuristics for the edge-partition
problem is limited to the study of the PowerGraph heuris-
tic introduced and studied in the original proposal [9] that
advocates the use of edge partitions.

In this paper we study the following two fundamental
questions:

Q1 What are the quantitative performance benefits of us-
ing the edge-partition approach as opposed to using the
traditional vertex-partition approach?

and

Q2 What are the approximation guarantees for the edge-
partition problem and is it possible to achieve a good
average-case performance by using some natural heuris-
tics for the streaming version of the problem?

The first question requires some care to ensure a fair com-
parison. It is important here to compare the two approaches
by using a conforming definition of the cut cost, and we dis-
tinguish two different definitions of a cut cost. The first
definition of a cut cost assumes no aggregation of messages.
In this case for the traditional vertex partition problem, the
cost of a cut corresponds to the number of edges spanning
the partition boundaries, and for the edge partition prob-
lem it corresponds to the number of copies of vertices across
clusters. The second definition of a cut cost assumes aggre-
gation of messages. For the vertex-partition problem, the
cost of fetching messages by a vertex from its neighbor ver-
tices is equal to the number of distinct remote machines to
which the neighbor vertices are assigned. Similarly, for the
edge-partition problem, the cost of synchronizing the state
of a master vertex is equal to the number of distinct remote
machines that contain at least one edge with the given ver-
tex as one of its end-points. The second question is studied
by deriving theoretical approximation guaranteed and em-
pirical evaluation of a large-set of real-world graphs.

Our main contributions can be summarized in the follow-
ing points (n is the number of vertices in the graph, m the
number of edges and k the number of clusters in the parti-
tion):
•We formulate the combinatorial optimization problems for
the balanced vertex-partition and edge-partition problems
with and without aggregation.
• We characterize the expected cost for each of these four
cases under uniform random assignment policy.
• Under uniform random assignment, the expected cost of
edge-partition with aggregation is always less than or equal
to that of the vertex-partition with aggregation.
• For the edge-partition problem with aggregation, we show
a polynomial time O(dmax

√
log k log n)-approximation algo-

rithm, where dmax is the maximum degree of a vertex, for

any graph with m = Ω(k2) edges. From a practical point of
view, we show that from any ’good’ vertex partitioning al-
gorithm, we can derive a ’good’ edge partitioning algorithm
for any sparse graph.
• We show that the edge-partition problem with no aggre-
gation corresponds to a balanced vertex-partition problem
with in-degree-weighted cardinality constraints. Hence, the
edge-partition problem has the same approximation guar-
antees as that of a vertex-partition problem. Again, this
implies that any algorithm for the vertex-partition can be
easily turned into an edge-partition algorithm with similar
performance.
• We report results of an empirical study of a large set of
real-world graphs to evaluate the benefits of using the edge-
partition approach vs. the vertex-partition approach, eval-
uate the quality of edge partitions using the approximation
algorithms derived in this paper. We found that the edge
partitions for the greedy assignment streaming heuristics de-
rived from our offline problem formulations outperform pre-
viously best-known heuristics.

The paper is structured as follows. Section 2 formulates
the problems of vertex- and edge-partition without and with
aggregation. Section 3 provides characterizations of the ex-
pected cost for uniform random assignment of vertices of
edges, and provide the comparison results. In Section 4, we
provide our main results on the approximation guarantees
for the edge-partition problem with and without aggrega-
tion. Streaming heuristics are discussed in Section 5. Em-
pirical evaluation results are provided in Section 6. Related
work is further discussed in Section 7. Finally, we conclude
in Section 8.

2. PROBLEM FORMULATION
In this section, we describe the four different partition

problems.
Given a directed graph G = (V,E) with the set of vertices

V and the set of directed edges E ⊂ V × V . Let n and m
denote the number of vertices and the number of directed
edges, respectively. Throughout the paper, we shall use the
following notation. Let Nin(u) = {v ∈ V, (v, u) ∈ E} and
Nout(u) = {v ∈ V, (u, v) ∈ E} denote the set of vertices
that have edges respectively incoming to and outgoing from
u ∈ V . Let us define din(u) and dout(u) the in-degree and
out-degree of vertex u ∈ V , i.e. din(u) = |Nin(u)|. Note that∑

u∈V din(u) =
∑

u∈V dout(u) = m.
A partition of vertices into k clusters is defined as follows:

yv,i = 1 if vertex v ∈ V is assigned to partition i ∈ [k], and
yv,i = 0 otherwise. Each vertex being assigned to exactly

one cluster, we have
∑k

i=1 yv,i = 1 for all v ∈ V .
Similarly, a partition of edges into k clusters is defined as

follows: xe,i = 1 if edge e ∈ E is assigned to cluster i ∈ [k],
and xe,i = 0, otherwise. Each edge is assigned to exactly

one cluster, thus
∑k

i=1 xe,i = 1, for all e ∈ E.
Each partition problem is characterized by a communica-

tion cost (denoted by C) which has to be minimized under a
condition of balanced loads of the clusters. If we denote by
L(i) the load of cluster i ∈ [k], our partition problems can
be written as:

minimize C(x)

subject to maxi∈[k] Li(x) ≤ (1 + ν)
∑

i∈[k] Li(x)

k
x is a valid partition

1457

In the sequel we call the parameter ν ≥ 0 the load con-
straint. The precise definitions of the communication cost
and the load of a cluster will depend on which problem we
consider: vertex or edge partition with or without aggrega-
tion. Typically, the communication cost between two clus-
ters is assumed to be linear in the number of messages ex-
changed in order to synchronize the states of the replicas
and the load of a cluster is assumed to be linear in the num-
ber of basic operations done by all the elements (vertices
or edges) stored on a cluster. We precisely define the four
different problems in the sequel.

We can also deal with undirected graphs. In this case, we
create the following directed graph from the original graph:
we associate to each undirected edge {uv} two directed edges
(u, v) and (v, u). The problem formulation is then the same
except for the following modification: we require that for
each undirected edge {u, v}, we have x(u,v),i = x(v,u),i. Note
that in this case, din(u) = dout(u) is the degree of vertex u
in the undirected graph and m is twice the number of edges
in the undirected graph.

2.1 Vertex Partition with No Aggregation
In a vertex partition, the cost function to minimize is typ-

ically the number of edges with endpoints in different clus-
ters. This case corresponds to the case with no aggregation.
In the case of k clusters, the number of such edges is given
by:

CVP(y) =
k∑

i=1

∑
(u,v)∈E

yu,i(1− yv,i). (1)

Standard balanced graph partitioning problem asks for an
optimal partitioning of vertices under a balance condition on
the cardinality of clusters. Here, we consider a more general
version where for some given positive weights on vertices
(au, u ∈ V), the load of a cluster is given by:

LVP
i (y) =

∑
u∈V

auyu,i. (2)

For ν ≥ 0, the vertex partition problem with no aggregation
is formulated as the following integer programming problem
denoted (k, a)− V P :

(k, a)-VERTEX PARTITION with NO AGGREGA-
TION:

minimize
∑k

i=1

∑
(u,v)∈E yu,i(1− yv,i)

subject to
∑

u∈V auyu,i ≤ (1 + ν)
∑

v∈V av

k
, i ∈ [k]∑k

i=1 yu,i = 1, u ∈ V
y ∈ {0, 1}n×k

The vertex cardinality constraints are accommodated as
a special case with unit weights: au = 1. We shall use
the notation (k, din) to refer to a balanced vertex partition
with no aggregation problem where the weights correspond
to in-degrees of vertices: au = din(u), for u ∈ V .

2.2 Vertex Partition with Aggregation
When aggregation is possible, the communication cost

changes as edges between two clusters can be lumped to-
gether and then incur only a cost of one. In this case, the
communication cost is simply:

CVPA(y) =
∑
u∈V

k∑
i=1

yu,i
∑
j �=i

⎛
⎝1−

∏
v∈Nin(u)

(1− yv,j)
⎞
⎠ . (3)

The balance condition remains the same as above (2) so that
the vertex partition with aggregation can be formulated as
the following integer programming problem denoted (k, a)−
V PA:

(k, a)-VERTEX PARTITION with AGGREGATION:

minimize
∑

u∈V

∑k
i=1 yu,i

∑
j �=i

(
1−∏v∈Nin(u)

(1− yv,j)
)

subject to
∑

u∈V auyu,i ≤ (1 + ν)
∑

v∈V av

k
, i ∈ [k]∑k

i=1 yu,i = 1, u ∈ V
y ∈ {0, 1}n×k

We shall use the notation (k, dout) to refer to a balanced ver-
tex partition with no aggregation problem where the weights
correspond to in-degrees of vertices: au = dout(u), for u ∈ V .

2.3 Edge Partition with No Aggregation
We consider now a situation where each edge is assigned

to exactly one cluster. As a result, a vertex might have
copies in different clusters. For example in Figure 1, node
u is replicated 3 times, once in each of the clusters 1, 3 and
4. For each vertex v, we assume that there is a designated
master vertex assigned to exactly one cluster whose task is
to collect messages from all neighbors vertices of v, perform
a computation using the input messages, and then commu-
nicate the result to all copies of vertex v. The location of a
master vertex is indicated by zv,i = 1 if the master of ver-
tex v is located in cluster i, and zv,i = 0, otherwise. Note
that the master of a vertex v is not necessarily located in a
cluster that contains at least one copy of vertex v.

In case of no aggregation, we assume that a unit cost is
incurred per each edge incident to a given vertex that re-
sides in a cluster different from that of the master vertex
of the given vertex. For example in Figure 1, suppose that
the master for vertex u is located in cluster 4, then a com-
munication cost of 4 is payed for vertex u as there are four
incoming edges that reside in clusters other than 4. In a dis-
tributed iterative computation, each such copy of a vertex,
will require a message to be sent to the master vertex across
different partitions. More formally, the communication cost
can be written as:

CEP(x, z) =
∑
u∈V

⎛
⎝din(u)− k∑

i=1

zu,i

⎛
⎝ ∑

v∈Nin(u)

x(v,u),i

⎞
⎠
⎞
⎠ .

(4)
Each master vertex is assumed to incur a processing cost
that is equal to the number of edges incident to the corre-
sponding vertex. In a distributed iterative computation, the
processing cost of the master is assumed to be linear in the
number of messages received per iteration. More formally,
the load of cluster i is given by (note it is independent of x):

LEP
i (z) =

∑
u∈V

din(u)zu,i.

Finally, for any ν ≥ 0, the edge partition problem with no
aggregation denoted k −EP is given by:
k-EDGE PARTITION with NO AGGREGATION:

minimize
∑

u∈V

(
din(u)−∑k

i=1 zu,i
(∑

v∈Nin(u)
x(v,u),i

))
subject to

∑
u∈V din(u)zu,i ≤ (1 + ν)m

k
, i ∈ [k]∑k

i=1 xe,i = 1, e ∈ E∑k
i=1 zu,i = 1, u ∈ V

x ∈ {0, 1}m×k

z ∈ {0, 1}n×k

1458

Figure 1: An edge partition (only incoming edges to u are represented).

Note that for directed graphs, the optimal communication
cost is zero. Indeed for any admissible zu,i, we can take
x(v,u),i = zu,i so that the cost becomes: CEP(x, z) = 0.
However for undirected graphs, the communication cost will
generally not be zero because of the constraint x(u,v),i =
x(v,u),i for each undirected edge {u, v}.

2.4 Edge Partition with Aggregation
If aggregation is possible then both the communication

cost and the load are modified as computations are done
locally, the results of these computations are lumped and
then sent to each master. As a result, each vertex u ∈ V
incurs a communication cost which is simply the number
of clusters containing at least an edge (v, u) ∈ E minus
one (corresponding to the cluster containing the master).
Summing the contribution of each vertex, we get:

CEPA(x) =
∑
u∈V

k∑
i=1

(1−
∏

v∈Nin(u)

(1− x(v,u),i))− n. (5)

Now, since computations are made locally, the load of a clus-
ter is simply proportional to the number of edges contained
in this cluster:

LEPA
i (x) =

∑
e∈E

xe,i.

Finally, for any ν ≥ 0, the edge partition problem with no
aggregation denoted k−EPA is given by (note that we can
remove the additive constant n in the cost function without
modifying the optimal solution; we keep it to allow to make
comparison with the other problems):
k-EDGE PARTITION with AGGREGATION:

minimize
∑

u∈V

∑k
i=1(1−

∏
v∈Nin(u)

(1− x(v,u),i))− n
subject to

∑
e∈E xe,i ≤ (1 + ν)m

k
, i ∈ K∑k

i=1 xe,i = 1, e ∈ E
x ∈ {0, 1}m×k

3. RANDOM ASSIGNMENT
In this section we consider the expected cost of random

assignment policy that for the case of edge partition assigns
each edge independently and uniformly at random to one
of k partitions, and likewise for the case of vertex partition
assigns each vertex independently and uniformly at random
to one of k partitions. We shall provide exact characteriza-
tions of these expected costs for the case without and with
aggregation. We then show that aggregation lowers the ex-
pected communication cost (in most cases). Moreover, also
expected costs are the same for edge and vertex partition
with no aggregation, we find that when aggregation is pos-
sible, edge partition has a lower expected cost than vertex
partition. There are two statistics of the in-degree sequence
of a given graph that play an important role here for the

case without and with aggregation, respectively, the number
of (directed) edges: m =

∑
v∈V din(v) and

ψ(din, k) =
1

n

∑
v∈V

(
1− 1

k

)din(v)

.

The latter statistic corresponds to amoment generating func-
tion of the degree sequence evaluated at the value log(1 −
1/k).

3.1 Edge Partition

Proposition 1. For any given graph with sequence of in-
degrees din = (din(v))v∈V , we assign edges independently
and uniformly at random across k clusters. In the case of
edge partition with no aggregation, we assign the master to
a random cluster. Then we have the following expected com-
munication costs:

E[CEP] =

(
1− 1

k

)
m (6)

E[CEPA] = kn(1− ψ(din, k))− n. (7)

Corollary 1. As soon as nk ≥ m, aggregation lowers
the communication cost under a random edge partition, i.e.
E[CEP] > E[CEPA]. Moreover, for any given graph, the gap
between the two expected costs is at least (n−m/k).

Proofs are provided in Appendix [7].

3.2 Vertex Partition

Proposition 2. For any given graph with sequence of de-
grees din = (din(v))v∈V , we assign vertices independently
and uniformly at random across k clusters. Then we have
the following expected communication costs:

E[CVP] =

(
1− 1

k

)
m (8)

E[CVPA] = n(k − 1)(1− ψ(din, k)). (9)

Corollary 2. Aggregation lowers the communication cost
under a random vertex partition, i.e. E[CVP] > E[CVPA].

Proofs are provided in Appendix [7].

3.3 Edge vs. Vertex Partition
Note that the expected costs are the same for the edge

and vertex partitions when there is no aggregation. The
following easy corollary shows that the situation is different
with aggregation:

1459

Corollary 3. For every given graph, the expected cost of
vertex partition with aggregation is greater than the expected
cost of edge partition with aggregation. Moreover, the gap
between the two expected costs is at least nψ(din, k).

Proof. Follows directly from (7) and (9).

4. APPROXIMATION ALGORITHMS
In this section, we restrict ourselves to the undirected case

so that Nin(u) = Nout(u) = N(u), din(u) = dout(u) = d(u)
and

∑
u∈V d(u) = m is twice the number of (undirected)

edges.

4.1 Hardness Results
It is well-known that the (2, 1)-vertex partition problem

with no aggregation, i.e. the minimum bisection problem is
NP -complete but efficient approximation algorithms have
been obtained in [6]. The following theorem shows that it is
not possible to derive a finite approximation factor for each
of the four problems when k is not a constant.

Theorem 1. Each of the four problems with ν = 0: (k, d)-
vertex partition with/with no aggregation and k-edge parti-
tion with/with no aggregation, has no polynomial time ap-
proximation algorithm with finite approximation factor un-
less P = NP .

Proof. The case of (k, 1)-vertex partition with no ag-
gregation is Theorem 2.1 in [17] and the other cases follow
by the same reduction from the 3-Partition problem (details
omitted).

4.2 Edge Partition with Aggregation
For edge partition with aggregation we show that there

exists a polynomial-time algorithm with approximation ra-
tio that matches that of the vertex partition problem up
to a dmax factor, where dmax is the maximum degree of a
vertex. Since the best known approximation ratio for the
vertex partition problem is poly-logarithmic in the number
of vertices of the graph, this yields a poly-logarithmic ap-
proximation algorithm for any sparse graph, i.e. such that
dmax = O(logc n), for some positive constant c. The algo-
rithm uses as a subroutine an approximation algorithm for
the vertex partition problem with no aggregation and the
load of a partition defined to be the sum of degree weighted
vertices assigned to this partition. The algorithm can be
summarized in the following two steps:

• Partition the set of vertices according to an approxi-
mation algorithm for the (k, d)-VP problem with load
parameter ν, and let S1, S2, . . . , Sk denote the output
of this algorithm.

• For each pair of vertex partitions Si and Sj , assign
the set of cut edges with end-vertices in Si and Sj

to partitions i and j such that if the number of such
edges is even, exactly half of edges is assigned to each
partition, and otherwise, either of them gets at least
half of edges (to ensure a balanced partitioning).

Theorem 2. There exists a polynomial-time algorithm that
given a feasible solution y with load constraint ν to (k, d)-
VP of cost CVP(y) outputs a feasible solution x with load

constraint ν + k2

m
to k-EPA of cost CEPA(x) such that

1

dmax
CVP(y) ≤ CEPA(x) ≤ CVP(y). (10)

Proof. The proof consists of two steps. First, we show
that given a feasible vertex partition y for the (k, d)-VP
problem with the load parameter ν, the given construction
of an edge partition x is a feasible solution for the k-EPA
problem with the load parameter ν+k2/m. Second, we show
that the objective functions CEPA(x) and CVP(y) satisfy the
relations in (10).

Suppose y is a feasible solution to the (k, d)-VP problem
and let CVP(y) denote the value of the cut. Let Si be the set
of vertices in partition i, i.e. Si = {v ∈ V : yv,i = 1}. The
total cost of the cut can be expressed as 1

2

∑
i∈[k] |E(Si, V \

Si)| where for A,B ⊂ V , E(A,B) denotes the set of edges
with exactly one end in A and the other end in B. Now,
note that

|E(Si, Si)| = 1

2

(∑
u∈V

yu,id(u)− |E(Si, V \ Si)|
)
.

Since y is assumed to be a feasible assignment,

|E(Si, Si)| ≤ (1 + ν)
m

k
− 1

2
|E(Si, V \ Si)|. (11)

Let us define the edge-partition P1, P2, . . . , Pk as follows:
for each pair i, j ∈ [k] such that i �= j, split E(Si, Sj)
into two sets Pi,j and Pj,i of balanced cardinalities, i.e.
Pi,j , Pj,i ⊂ E(Si, Sj) such that Pi,j ∪Pj,i = E(Si, Sj), Pi,j ∩
Pj,i = ∅, and −1 ≤ |Pi,j |−|Pj,i| ≤ 1. Define Pi = E(Si, Si)∪
∪j �=iPi,j , for i ∈ [k].

It is easy to observe that for all i ∈ [k],

−k + 1 ≤ | ∪j �=i Pi,j | − 1

2
|E(Si, V \ Si)| ≤ k − 1. (12)

Hence

|Pi| = |E(Si, Si) ∪ (∪j �=iPi,j)|
= |E(Si, Si)|+ | ∪j �=i Pi,j |
≤ (1 + ν)

m

k
+ k − 1

≤ (1 + ν +
k2

m
)
m

k

where the first inequality follows by (11) and (12) and the
second inequality is by the fact k − 1 ≤ (1 + ν)(k2/m)m/k.
This implies that the given edge partitioning satisfies the
constraints of the k-EPA problem.

It remains to show that the objective functions CEPA(x)
and CVP(y) satisfy the relations in (10). First note that
only edges cut in the vertex partition y contribute to the
communication cost CEPA(x), indeed removing all the edges
which are not cut in y will not change CVP(y) nor CEPA(x).
Moreover each edge cut in y contribute to at most one in
CEPA(x) so that CEPA(x) ≤ CVP(y).

Inversely, each vertex u ∈ V incurs a cost of at most dmax

in the communication cost CVP(y) (corresponding to the
case where each incident edge to u is cut in y). A vertex u ∈
V incurs a cost of zero in CVP(y) if none of the incident edge
to u is cut. In this last case, the vertex will not contribute
to the communication cost CEPA(x) by previous remark.
Hence we have CVP(y) ≤ dmaxC

EPA(x).

Corollary 4. Assume that m = Ω(k2), then there ex-
ists a polynomial-time algorithm with approximation ratio
O(dmax

√
log k log n) for k-EPA problem with ν = 1.

1460

Proof. This is a corollary of Theorem 2 and an easy
extension of Theorem 1.1 in [18] to the (k, d)-VP problem
showing that there exists a polynomial-time approximation
algorithm with the approximation ratio O(

√
log k log n).

4.3 Edge Partition with No Aggregation
We shall show that the edge partition is in a one-to-one

correspondence to a vertex partition problem. This will
show that the computational complexity of the balanced
edge partition with no aggregation corresponds to that of
a balanced vertex partition problem (with no aggregation).
This reduction will be established by the following simple
two-step construction:

1. Suppose y is an optimal solution to the (k, d)-vertex
partition problem.

2. Then, partition edges by assigning each edge (u, v) ∈ E
to the cluster of either of its end vertices u and v, as
specified by y, arbitrarily.

Theorem 3. k-edge partition problem is in a one-to-one
correspondence with the (k, d)-vertex partition problem.

Proof of this theorem is provided in Appendix [7]. Again
thanks to an easy extension of Theorem 1.1 in [18], we obtain
the following corollary of Theorem 3:

Corollary 5. There exists a polynomial-time algorithm
with approximation ratio O(

√
log k log n) for the k-edge par-

tition problem.

5. STREAMING HEURISTICS
In this section, we discuss streaming heuristics for the bal-

anced edge partition problem without and with aggregation.
We shall first introduce a state-of-the-art heuristic for the
balanced edge partition problem and point out to some of
its deficiencies. We shall then move to introducing a class of
novel streaming heuristics that are inspired by the analysis
of the offline version of the problem in Section 4.

5.1 PowerGraph Heuristic
Suppose edges arrive in an arbitrary order. In the de-

scription of the algorithm below, S(v) will be a set evolving
as edges arrive and it will contain the clusters with at least
one already observed edge incident to vertex v. Initially,
S(v) = ∅, for all v ∈ V . The algorithm defined below re-
quires to know for each arriving edge, the number of unas-
signed edges for each end-vertex of this edge. For this to be
realized, it suffices to know the degree of each vertex, and
then the number of the unassigned edges of a vertex can
be kept as part of the algorithm state (this we omit in the
description presented below).
PowerGraph heuristic Per each arrival of an edge (u, v),
do the following:
1. If the intersection of S(u) and S(v) is non-empty, then
assign edge (u, v) to a cluster I in this intersection.
2. Otherwise, assign edge (u, v) to a cluster I in S(u)∪S(v)
(containing either u or v) with the most unassigned edges.
3. Otherwise, if both S(u) and S(v) are empty, then assign
edge (u, v) to a partition I with the least number of assigned
edges.
4. S(u)← S(u) ∪ {I} and S(v)← S(v) ∪ {I}.

This heuristic can be showed to correspond to a greedy as-
signment that for each arriving edge minimizes the expected
cut cost conditional on that all subsequent edges are assigned
to partitions uniformly at random. This can be seen as a
derandomization of the uniform random assignment, and is
thus guaranteed to yield a cut cost that is guaranteed to be
less or equal to that of the uniform random assignment.

An important observation from the definition of the Pow-
ergraph heuristic is that edges are assigned using a greedy
assignment that prioritizes assignment of an edge to a par-
tition that already contains one of the end-vertices, and the
load balancing of edges is performed only if neither of the
end-vertices have been already assigned. This may result
in a gross imbalance of the partition sizes. For example, a
worst-case is a breadth-first search traversal of a connected
tree, where all edges end up being assigned to one partition,
which results in an extreme imbalance.

5.2 Greedy Online Assignments

5.2.1 Edge partition
For the basic formulation, we derive a greedy online as-

signment for edge partition with aggregation by an irrevo-
cable assignment of edges to clusters as they are observed in
the input stream to a cluster that minimizes the marginal
cost. We denote by Pi the clusters of an edge-partition.
Then for any S ⊂ E, V (S) is the set of vertices spanned
by S, i.e. all vertices adjacent to an edge in S. Note from
(5) that the marginal cost of the cut size by adding an edge
(u, v) to cluster i is equal to

|V (Pi ∪ (u, v))| − |V (Pi)| = |V (Pi ∪ (u, v)) \ V (Pi)|.
It is noteworthy that in any case the marginal cost of the cut
size is either 0, 1 or 2: first, it is zero if the edge is placed in
a cluster in which both of its end-vertices have been already
assigned, second, it is equal to 1 if exactly one of its end-
vertices has been previously assigned, and third, it is equal
to 2 if neither of its vertices have been previously assigned
to this cluster.

Since |V (Pi∪(u, v))\V (Pi)| = 2−|V (Pi)∩{u, v}|, a greedy
online heuristic for minimizing the cut size is to assign each
input edge (u, v) to a cluster i ∈ I where

I = argmaxj∈[k]{|V (Pj) ∩ {u, v}|} (13)

which means that the edge is assigned to a cluster in the
following priority order: (i) in a cluster that already contains
both of its end-vertices, if any exists, (ii) in a cluster that
already contains exactly one of its end-vertices, if any exists,
and else (iii) to an arbitrary cluster. Such an assignment is
greedy with respect to the cost of the cut criteria and is
entirely ignorant of the load balancing criteria.

A way to define a greedy assignment that accounts for
both criteria is to redefine the optimization problem as fol-
lows. Let c : R+ → R+ be an increasing convex function
such that c(0) = 0. Then, redefine k-EPA by moving the
hard constraints into the objective function as a soft penalty
function, as given in here

minimize
∑k

i=1 |V (Pi)|+ c(|Pi|)
(P1, P2, . . . , Pk) ∈ P(G).

The greedy online assignment with respect to this problem
amounts to assigning an input edge (u, v) to a cluster i ∈ I

1461

where

I = argmaxj∈[k]{|V (Pj)∩{u, v}|−[c(|Pj∪(u, v)|)−c(|Pj |)]}.
We refer to this class of greedy assignment policies as the
least incremental cost (IC) assignment.

An alternative class of heuristics is derived by following
an approach pursued for balanced vertex partitioning that
amounts to discounting the marginal benefit in (13) with the
cardinality of the partition. Specifically, for given decreasing
function d : R+ → R, assign an input edge (u, v) to a cluster
I where

I = argmaxj∈[k]{|V (Pj) ∩ {u, v}|d(|Pj |)}.
Notice that unlike to the PowerGraph heuristic, the greedy

online assignments as defined in this section do not require
any extra information about the input data, such as knowing
the degree of each vertex.

5.2.2 Vertex partition
We use as a subroutine a greedy online algorithm for ap-

proximating vertex partitioning defined in [34], which is very
similar to the one described in the previous section. It sup-
poses vertex arrival. The idea of the algorithm is to mini-
mize the following objective function:

∑
i∈[k] |E(Si, V \Si)|+

c(|Si|). This can be done with this greedy online assignment:
Per vertex u arrival, we assign it to a partition i ∈ I where

I = argmaxj∈[k]{|Nin(u) ∩ Pj |+ c(|Pj ∪ u|)− c(|Pj |)}.
We refer to this class of greedy vertex assignment policies as
the vertex partition least incremental cost (VP-IC) assign-
ment.

5.3 Streaming Edge Partition Based on Bal-
anced Vertex Partition

Suppose edges arrival in an arbitrary order. Suppose we
have some partitioning of the vertices Si, for all i ∈ {1..k},
which are balanced with regard to degree weights. We can
derive easily an edge partitioning from this vertex partition-
ing as follows. Per each arrival of an edge (u, v), flip a fair
coin, and do either of the following: (1) assign (u, v) to par-
tition i such that u ∈ Si, or (2) assign (u, v) to partition i
such that v ∈ Si. This will give an edge partitioning with
a communication cost lesser than the vertex partitioning’s
one, and should keep a maxload ratio close to the previous
one thanks to random assignment.

6. EVALUATION
In this section we report results of empirical evaluation of

several hypotheses on a dataset containing samples of five
real-world graphs whose properties are summarized in Ta-
ble 1. This dataset contains samples of real-graphs with
quite some diversity along several dimensions, including the
scale ranging from hundred of thousands to millions of ver-
tices, sparsity ranging from a few to hundreds of edges per
vertex, and type including social graphs, co-purchasing of
products and co-authorship of scientific papers. In the first
part of this section, we shall evaluate expected communica-
tion cost for edge and vertex partition problems with and
without aggregation under random assignment of edges of
vertices, under our benchmark random edge or vertex as-
signment, which is commonly deployed in practice. This

part of our analysis provides empirical support to the fol-
lowing claims:
(H1) For balanced edge partition, aggregation of messages
typically provides significant reduction of the communica-
tion cost.
(H2) Balanced edge partition with aggregation can have
significantly smaller expected communication cost than bal-
anced vertex partition with aggregation.

In the second part, we shall focus on evaluating our ap-
proximation algorithms for balanced edge partition problem,
for the offline and the online version of the problem. For the
online version, we shall compare with previously-proposed
method for balanced edge partition problem, namely Pow-
erGraph heuristics. Our empirical validation results provide
support to the following claims:
(H3) PowerGraph heuristic provides significant reduction of
the communication cost with respect to random edge parti-
tion. However, this is at the expense of a maximum load of
a partition that may assume rather large values.
(H4) Least incremental cost heuristic (described in Sec-
tion 5.2.1) typically has communication cost that is smaller
or equal to that of PowerGraph heuristic and nearly per-
fectly balanced loads of partitions.
(H5) Balanced edge partition derived from a vertex par-
tition with degree-weighted vertices using an offline solver
tends to have significantly smaller communication cost than
online assignment strategies.
(H6) Balanced edge partition derived from a vertex parti-
tion with degree-weighted vertices using the least marginal
cost online heuristic tends to have much smaller communica-
tion cost than random edge assignment, but worse than least
marginal cost strategy for balanced edge partition problem.

6.1 Communication Cost under Random Edge
or Vertex Assignments

We evaluate expected communication costs under random
edge or vertex assignments. In Section 3 we provided a com-
plete characterization of the expected communication costs
under random or vertex assignment, and observed that they
all depend in one way or another on the degree sequence
of the given input graph. The degree distributions of the
graphs in our dataset are showed in Figure 2. As one would
expect they all exhibit some degree of a power-law depen-
dence. For all the examples, the 0.99-quantile of the vertex
degree is in the order of 10 vertices. A notable distinction
of Orkut graph data is that an approximately same portions
of vertices have degrees in the range from one to order ten.
In Figure 3 we show expected communication cost for edge
partition with and without aggregation, and vertex partition
with aggregation versus the number of partitions ranging
from 2 to 32 partitions. In this figure, the circles repre-
sent empirical means computed over 10 repeated partitions.
As one would expect, the empirical means are highly con-
centrated around the expected values computed using the
degree sequence in the characterization results presented in
Section 3. For all graphs in our dataset, aggregation of mes-
sages for balanced edge partition problem yields significant
reduction of communication cost. For a small number of
partitions, the communication cost of edge partition with
aggregation can be as small as 1/10 of that with no aggre-
gation. From Figure 3, we also observe that balanced edge
partition with aggregation typically has smaller communica-
tion cost than vertex partition with aggregation, and there

1462

Nodes Edges Mean degree Median degree 90% quantile Max degree Description
Amazon 334 863 925 872 5.53 3 9 549 Co-purchasing

dblp 317 080 1 049 866 6.62 3 13 343 Co-authorship
Livejournal 3 997 962 34 681 189 17.35 5 41 14 815 Social

Orkut 3 072 441 117 185 083 76.28 44 161 33 313 Social
Youtube 1 134 890 2 987 624 5.27 1 7 28 754 Social

Table 1: Datasets used in our experiments.

10
0

10
1

10
2

10
3

10
4

10
510

−8

10
−6

10
−4

10
−2

10
0

Degree

R
el

at
iv

e
fr

eq
ue

nc
y

(a) Amazon

10
0

10
1

10
2

10
3

10
4

10
510

−8

10
−6

10
−4

10
−2

10
0

Degree

R
el

at
iv

e
fr

eq
ue

nc
y

(b) dblp

10
0

10
1

10
2

10
3

10
4

10
510

−8

10
−6

10
−4

10
−2

10
0

Degree

R
el

at
iv

e
fr

eq
ue

nc
y

(c) Live Journal

10
0

10
1

10
2

10
3

10
4

10
510

−8

10
−6

10
−4

10
−2

10
0

Degree

R
el

at
iv

e
fr

eq
ue

nc
y

(d) Orkut

10
0

10
1

10
2

10
3

10
4

10
510

−8

10
−6

10
−4

10
−2

10
0

Degree

R
el

at
iv

e
fr

eq
ue

nc
y

(e) Youtube

Figure 2: Degree distributions for the graphs in our dataset.

exist cases where the difference is significant. Overall, these
results provide support to hypothesis (H1) and (H2) asserted
at the beginning of this section.

6.2 Approximation Algorithms
We evaluated various approximation algorithms for bal-

anced edge partition problem with respect to the two criteria
of the communication cost and the maximum load of a par-
tition. In Figure 4, we present results for different approx-
imation algorithms for each input graph from our dataset.
RND refers to random edge assignment. VP-IC refers to
edge partition derived as explained in Section 5.3 from a
vertex partitioning given by a greedy online assignment as
defined in Section 5.2.2 with c(x) = αxγ , α = n(k

m
)γ and

γ = 1.5. PG refers to Powergraph heuristic defined in Sec-
tion 5.1. IC refers to greedy online assignment as defined

in Section 5.2.1 with c(x) = α(
∑

u∈x du)
γ , α = m kγ−1

nγ and
γ = 1.5. And, finally, VP-METIS refers to edge partitioning
derived as explained in Section 5.3 from a vertex partitioning
given by the offline tool METIS, which is a state-of-the-art
software tool for approximating balanced vertex partition
problem.

In this part of analysis we evaluate performance of three
one-pass streaming algorithms for balanced edge partition,
including random, least marginal cost, and PowerGraph,
and the approximation algorithm for the offline version of
the problem in Section 4.2. In particular, in the latter case,
we use METIS solver for finding an approximate solution
to the subroutine balanced vertex partition with degree-
weighted vertices. For the online version of the problem, we
observe that for all the graphs in our dataset, least marginal
cost algorithm yields a smaller or equal communication cost
than PowerGraph. We observe that PowerGraph exhibits
varying quality of partition with respect to the maximum
load of a partition, which in some cases attains significantly
larger values than any other method. Especially, under Pow-
erGraph assignment, the maximum load tends to increase
with the number of partitions, and can achieve maximum
load values of more than 10% of extra load to the mean
number of edges per partition. On the other hand, the least

marginal cost assignment achieves nearly perfect load bal-
ancing, and still performs better or nearly equal than Pow-
erGraph with respect to the communication cost. Overall,
these observations provide empirical support to the hypothe-
ses (H3) and (H4). For the offline approximation algorithm
described in Section 4.2, we observe that it can perform
significantly superior performance with respect to the com-
munication cost than one-pass streaming algorithms. This
provides empirical support to hypothesis (H5). Finally, we
also observe that using a one-pass streaming algorithm for
the balanced vertex partition problem with degree-weighted
vertices and then deriving an edge partition from the result-
ing vertex partition can provide significant reduction of the
communication cost with respect to random edge assign-
ment, but worse than the least marginal cost strategy for
balanced edge partition problem. This provides empirical
support to hypothesis (H6). An implication of this hypoth-
esis is that one needs to exercise some care in designing a
scalable partition strategy based on a few passes through
graph data based on the approach in Section 4.2 that uses
a balanced vertex partition problem as a subroutine.

7. RELATED WORK
Traditional balanced graph partitioning problem, referred

to in this paper as the vertex partition problem with no ag-
gregation, has been studied extensively by theoretical com-
puter science and more applied communities. The best known
approximation ratio for this problem is O(

√
log k log n) [17]

and [18], using a semi-definite programming relaxation and
a randomized rounding. The solvers used in practice rely
on a combination of various heuristics, e.g. one commonly
used software is METIS [12, 14, 13] that combines a num-
ber of heuristics including the well-known Kernighan and
Li heuristic [15]. Graph partitioning has attracted a lot of
attention recently by the systems community to scale out
large-scale computations, e.g. for parallel distributed com-
puting in distributed clusters of machines [9, 22, 21, 11, 38,
40, 16], graph databases and graph analytics platforms [30,
37, 36, 4], search and social networks [35, 5, 28], and multi-
core and share memory systems [27, 2, 31, 29]. In recent

1463

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

EP

EPA

VPA

0 10 20 30 40
0

20

40

60

80

100

k

C
E

P
A/C

E
P
 (

%
)

(a) Amazon

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

EP

EPA

VPA

0 10 20 30 40
0

20

40

60

80

100

k

C
E

P
A/C

E
P
 (

%
)

(b) dblp

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

EP

VPA
EPA

0 10 20 30 40
0

20

40

60

80

100

k

C
E

P
A/C

E
P
 (

%
)

(c) Live Journal

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

EP

VPA
EPA

0 10 20 30 40
0

20

40

60

80

100

k

C
E

P
A/C

E
P
 (

%
)

(d) Orkut

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

EP

VPA

EPA

0 10 20 30 40
0

20

40

60

80

100

k

C
E

P
A/C

E
P
 (

%
)

(e) Youtube

Figure 3: Expected communication costs for edge partition, edge partition with aggregation, and vertex
partition with aggregation vs. the number of partitions k.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

RND

PG
IC

VP−METIS

VP−IC

0 10 20 30 40
1

1.01

1.02

1.03

1.04

1.05

k

M
ax

 lo
ad

VP−METIS

PG

VP−IC

IC

(a) Amazon

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

RND

VP−IC

PG
IC

VP−METIS

0 10 20 30 40
1

1.05

1.1

1.15

1.2

k

M
ax

 lo
ad

VP−IC

IC

PG

VP−METIS

(b) dblp

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

RND

IC
PG

VP−IC

0 10 20 30 40
1

1.05

1.1

1.15

1.2

k

M
ax

 lo
ad

IC

PG

VP−IC

(c) Live Journal

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

IC
PG
VP−IC

RND

0 10 20 30 40
1

1.1

1.2

1.3

1.4

1.5

k

M
ax

 lo
ad

IC

PG

VP−IC

(d) Orkut

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

k

C
om

m
un

ic
at

io
n

co
st

 p
er

 e
dg

e

VP−METIS
IC
PG
VP−IC

RND

0 10 20 30 40
1

1.5

2

2.5

3

3.5

4

k

M
ax

 lo
ad

IC
VP−METIS

VP−IC

PG

(e) Youtube

Figure 4: Approximation algorithms: (top) communication cost and (bottom) maximum load.

work, scalable strategies for graph strategies have been in-
vestigated that are based on one-pass streaming algorithms.
An early work in this direction is [32] that focused on the
traditional graph partitioning problem, improved strategies
in [34], and a multi-pass version in [25]. [35] studied local
improvements algorithms that aim at minimizing the cut
subject to a budget constraint on the number of vertices
to reallocate. In this recent work, novel variants of graph
partitioning problems have emerged that are different from
the traditional balanced graph partitioning problem with re-
spect to the definition of the cut cost function and the load
balancing constraints. One such new variant is the balanced
edge partition problem, originally proposed in [9], which we
have studied in this paper.

From a theoretical standpoint, the balanced edge parti-
tion problem is an instance of a submodular function mini-
mization subject to cardinality constraints. For general class
of submodular load balancing problems, the approximation
guarantee of O(

√
n/ log n) was showed to hold in [33]. Our

approximation ratio of O(dmax

√
log k log n) provides a bet-

ter approximation guarantee for the subclass of balanced
edge partition problems for any graphs with dmax = o(

√
n).

8. CONCLUSION
In this paper we analyzed balanced graph edge partition

problem that was recently proposed as an alternative to
traditional balanced graph vertex partition for scaling out
distributed computations in data analytics platforms. We
provided explicit characterization of the expected commu-
nication cost for different variants of the graph partition
problem under commonly deployed scheme of randomly as-
signing edges of vertices to a given number of partitions.
We provided approximation algorithms for balanced edge
partition problem with and without message aggregation.
Interestingly, both problems use a balanced vertex parti-
tion problem as a subroutine, thus allowing us to reutilize
known techniques and off-the-shelf software for this tradi-
tional graph partition problem. For scalable partitioning
based on a single pass through graph data, we showed that
the least marginal cost greedy heuristic provides better per-
formance than the best previously known heuristic with re-
spect to both the communication cost and load balancing
of partitions. The results in this paper present a first step
towards a more thorough analysis of balanced edge parti-
tion problem both on the side of theoretical approximation

1464

guarantees and the design of practical algorithms with good
average-case performance.

9. REFERENCES
[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for

partitioning power-law graphs. In Proc. of the 20th Int’l
Conf. on Parallel and Distributed Processing, IEEE
IPDPS’06, pages 124–124, Washington, DC, USA, 2006.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader.
Scalable graph exploration on multicore processors. In
Proc. of the 2010 ACM/IEEE Int’l Conf. for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.

[3] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and
partitioning. In VLDB ’10, 2010.

[4] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko,
L. Grijncu, T. Jackson, S. Kunnatur, S. Lassen, P. Pronin,
S. Sankar, G. Shen, G. Woss, C. Wang, and N. Zhang.
Unicorn: A system for searching the social graph. In VLDB
’13, 2013.

[5] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii.
Sharding social networks. In ACM WSDM ’13, pages
223–232, New York, NY, USA, 2013.

[6] U. Feige and R. Krauthgamer. A polylogarithmic
approximation of the minimum bisection. SIAM J.
Comput., 31(4):1090–1118, Apr. 2002.

[7] M. V. Florian Bourse, Marc Lelarge. Balanced edge
partition. Technical Report MSR-TR-2014-20, Microsoft
Research, 2014.

[8] T. A. S. F. Giraph. http://giraph.apache.org, 2014.
[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. Powergraph: distributed graph-parallel
computation on natural graphs. In OSDI’12, pages 17–30.
USENIX Association, 2012.

[10] D. Gregor and A. Lumsdaine. The parallel bgl: A generic
library for distributed graph computations. In Proceedings
of POOSC, 2005.

[11] U. Kang, C. E. T., and C. Faloutsos. Pegasus: A peta-scale
graph mining system. In ICDM, pages 229–238, 2009.

[12] G. Karypis and V. Kumar. Metis-unstructured graph
partitioning and sparse matrix ordering system, version 2.0.
1995.

[13] G. Karypis and V. Kumar. Parallel multilevel graph
partitioning. In Proc. of the 10th Int’l Parallel Processing
Symposium, IEEE IPPS ’96, pages 314–319, Washington,
DC, USA, 1996.

[14] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96 – 129, 1998.

[15] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. Bell Syst. Tech. J.,
49(2):291–307, Feb. 1970.

[16] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A system for dynamic
load balancing in large-scale graph processing. In Proc. of
the 8th ACM European Conference on Computer Systems,
ACM EuroSys ’13, pages 169–182, New York, NY, USA,
2013.

[17] A. Konstantin and H. Räcke. Balanced graph partitioning.
In SPAA ’04, pages 120–124, 2004.

[18] R. Krauthgamer, J. S. Naor, and R. Schwartz. Partitioning
graphs into balanced components. In SODA ’09, pages
942–949, 2009.

[19] K. Lang. Finding good nearly balanced cuts in power law
graphs. Technical Report YRL-2004-036, Yahoo! Research
Labs, 2004.

[20] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2008.

[21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: a framework
for machine learning and data mining in the cloud. Proc.
VLDB Endow., 5(8):716–727, Apr. 2012.

[22] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Graphlab: A new framework for
parallel machine learning. In UAI, pages 340–349, 2010.

[23] G. Malewicz, M. H. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In ACM SIGMOD ’10, pages
135–146, 2010.

[24] Neo4j. http://www.neo4j.org, 2014.
[25] J. Nishimura and J. Ugander. Restreaming graph

partitioning: simple versatile algorithms for advanced
balancing. In ACM KDD ’13, pages 1106–1114, 2013.

[26] F. Pellegrini and J. Roman. Scotch: A software package for
static mapping by dual recursive bipartitioning of process
and architecture graphs. In High-Performance Computing
and Networking, volume 1067 of Lecture Notes in Computer
Science, pages 493–498. Springer Berlin Heidelberg, 1996.

[27] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou,
and M. Haridasan. Managing large graphs on multi-cores
with graph awareness. In USENIX ATC’12, pages 4–4,
2012.

[28] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: scaling online social networks. In
ACM SIGCOMM ’10, pages 375–386, New York, NY, USA,
2010.

[29] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming partitions.
In ACM SOSP’13, 2013.

[30] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph
engine on a memory cloud. In Proceedings of the VLDB
Endowment, VLDB ’13, 2013.

[31] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In ACM PPoPP
’13, pages 135–146, New York, NY, USA, 2013.

[32] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In ACM KDD ’12, pages
1222–1230, 2012.

[33] Z. Svitkina and L. Fleischer. Submodular approximation:
Sampling-based algorithms and lower bounds. SIAM J.
Comput., 40(6):1715–1737, Dec. 2011.

[34] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In ACM WSDM ’14, 2014.

[35] J. Ugander and L. Backstrom. Balanced label propagation
for partitioning massive graphs. In ACM WSDM ’13, pages
507–516, 2013.

[36] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,
P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,
J. Hoon, S. Kulkarni, N. Lawrence, M. Marchukov,
D. Petrov, and L. Puzar. TAO: how facebook serves the
social graph. In ACM SIGMOD ’12, pages 791–792, 2012.

[37] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
Graphx: a resilient distributed graph system on spark. In
First International Workshop on Graph Data Management
Experiences and Systems, ACM GRADES ’13, pages
2:1–2:6, 2013.

[38] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective
partition management for large graphs. In ACM SIGMOD
’12, pages 517–528, 2012.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI’12, pages 2–2,
Berkeley, CA, USA, 2012. USENIX Association.

[40] J. Zhou, N. Bruno, and W. Lin. Advanced partitioning
techniques for massively distributed computation. In ACM
SIGMOD ’12, pages 13–24, 2012.

1465

