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ABSTRACT
Logistic regression is one core predictive modeling technique
that has been used extensively in health and biomedical
problems. Recently a lot of research has been focusing on
enforcing sparsity on the learned model to enhance its effec-
tiveness and interpretability, which results in sparse logistic
regression model. However, no matter the original or sparse
logistic regression, they require the inputs to be in vec-
tor form. This limits the applicability of logistic regression
in the problems when the data cannot be naturally repre-
sented vectors (e.g., functional magnetic resonance imaging
and electroencephalography signals). To handle the cases
when the data are in the form of multi-dimensional arrays,
we propose MulSLR: Multilinear Sparse Logistic Regression.
MulSLR can be viewed as a high order extension of sparse lo-
gistic regression. Instead of solving one classification vector
as in conventional logistic regression, we solve for K classi-
fication vectors in MulSLR (K is the number of modes in
the data). We propose a block proximal descent approach
to solve the problem and prove its convergence. The con-
vergence rate of the proposed algorithm is also analyzed.
Finally we validate the efficiency and effectiveness of Mul-
SLR on predicting the onset risk of patients with Alzheimer’s
disease and heart failure.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences ]: Health; G.3 [Probability
and Statistics]: Correlation and Regression Analysis

Keywords
Logistic Regression; Multilinear; Proximal Gradient; Health-
care

1. INTRODUCTION
Clinical risk prediction, such as predicting the onset [27]

or hospitalization [19] risk of patients with chronic diseases,
is an important problem in health informatics. Accurate risk

http://dx.doi.org/10.1145/2623330.2623754 .

prediction can greatly help reduce the unnecessary costs in
hospitals as well as provide the right service at point-of-care.

There has been quite a few existing works in both data
mining and health informatics domains on clinical risk pre-
diction. For example, Sun et al. [27] developed a LASSO
type of method for identifying important risk factors for pre-
dicting the onset risk of heart failure patients. Xiang et al.
[30] proposed a multi-source learning approach for predict-
ing the risk measured by cognitive score of patients with
Alzheimer’s disease. Miravitlles et al. [18] analyzed the fac-
tors associated with increased risk of exacerbation and hos-
pital admission for patients with Chronic Obstructive Pul-
monary Disease (COPD). In most of those works, logistic
regression is at the heart of the predictive modeling process.
Because of the large number of potentially related factors
in different scenarios, a sparsity constraint is usually added
on the learned model coefficients. The resultant model is
referred to as sparse logistic regression, which can do both
prediction and feature selection simultaneously. Depending
on the different sparsity structures the model wants to ex-
plore, we can construct different sparsity-induced regulariza-
tion terms. By adding them to the objective of conventional
logistic regression we can get different types of sparse logistic
regression models [13][17][26].

Until now most of the existing sparse logistic regression
type of approaches assume their inputs are a set of data
vectors. This means that we need to have a vector based
representation for each patient if we want to adopt logistic
regression type of methods to evaluate their risk. However,
many patient medical data are not naturally in vector form.
For example, X-Ray images are two-dimensional; Electroen-
cephalography (EEG) is two dimensional if you stack all sig-
nals captured from different poles; functional Magnetic Res-
onance Imaging (fMRI) is three-dimensional. Even in pa-
tient Electronic Health Records (EHRs), there could be mul-
tiple diagnosis/symptoms accompanied with several drugs
on the same claim. Therefore it is natural to represent a
patient with a diagnosis by drug co-occurrence matrix if we
want to consider the correlation between diagnosis and drugs
when predicting the patient risk. We can also represent the
patients with high order tensors if we want to consider more
than two factors that are inter-correlated with each other.
In these cases, if we still want to apply logistic regression
one straightforward way is to stretch those matrices and
tensors into vectors as people did in image processing, but
this will lose the correlation information among different di-
mensions. Moreover, after stretching the dimensionality of
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the data objects will become very high, which will make
traditional logistic regression inefficient.

Based on the above considerations, many researches on
extending traditional vector based approaches to two (ma-
trix based) or high order (tensor based) approaches have
been becoming more and more popular. For example, two-
dimensional Principal Component Analysis (PCA) [32] and
Linear Discriminant Analysis [33] have been found to be
more effective on face recognition task compared to tradi-
tional vector based PCA and LDA. Cai et al. [4] also extend
Support Vector Machine to multidimensional data and got
better results on document classification. Recently, Huang
and Wang [9] developed a matrix variate logistic regression
model and applied it in electroencephalography data anal-
ysis. Tan et al. [28] further extended logistic regression
to tensor inputs and achieved good performance in a video
classification task.

In this paper, we propose MulSLR, a multi-linear sparse
logistic regression method that can directly take matrices
or tensors as inputs and perform prediction. Because of
the added L1 sparsity regularization terms, we developed a
Block Proximal Gradient (BPG) method to solve the prob-
lem iteratively. We theoretically prove the convergence of
the proposed algorithm and analyze the convergence rate
based on the Kurdyka–Lojasiewicz inequality [3]. Finally
we validate the effectiveness of our algorithm on both syn-
thetic and real world data sets.

It is worthwhile to highlight the following aspects of Mul-
SLR.

• MulSLR is able to directly take matrices and tensors as
inputs, thus the resultant model can encode the corre-
lation structure of the different types of data features.

• MulSLR does not need to stretch the data into vec-
tors for model training, thus it avoids the curse of di-
mensionality and as a result the model can be more
efficiently trained.

• The BPG method we developed to train MulSLR is
theoretically guaranteed to converge. We also analyze
the converge rate of MulSLR.

• We apply MulSLR to evaluate the onset risk of Alzheimer’s
disease and congestive heart failure on real world data
sets and show some interesting results.

The rest of this paper is organized as follows. Section
2 reviews some related works. The details along with the
convergence analysis of MulSLR is introduced in Section 3.
Section 4 presents the experimental results, followed by the
conclusions in Section 5.

2. RELATED WORK
Logistic regression [8] is a statistical classification method

that has widely been used in many application areas, such
as computer vision [23], information retrieval [6] and health
informatics [18][30]. Suppose we have a training data matrix
X = [x1,x2, · · · ,xn] ∈ Rd×n, where xi ∈ Rd (1 6 i 6 n)
is the i-th training data vector. Associated with each xi we
also have its corresponding label yi ∈ {0, 1}. The goal of
logistic regression is to train a linear classification function
f(x) = w>x + b to discriminate the data in class 1 from the

data in class 0 by minimizing the following logistic loss

`org(w, b) =
1

n

n∑
i=1

log
[
1 + exp(−yi(w>xi + b))

]
(1)

where w ∈ Rd is the classification vector and b is the bias.
They can be learned with gradient descent type of approaches.

In many real world applications, the data vectors {xi}ni=1

are usually sparse and high-dimensional (e.g., each patient
could be a tens of thousands dimensional vector with bag-of-
feature representation [27]). To enhance the interpretabil-
ity of the model in these scenarios, we can add a sparsity
regularization term on w and minimize the following `1-
regularized logistic loss

`sp(w, b)=
1

n

n∑
i=1

log
[
1 + exp(−yi(w>xi + b))

]
+λ‖w‖1 (2)

where ‖·‖1 is the vector `1 norm and λ > 0 is a factor trading
off the prediction accuracy and model sparsity. The resul-
tant model is usually referred to as sparse logistic regression
model [12]. Compared with the conventional logistic regres-
sion model obtained by minimizing Jorg, the w obtained by
minimizing Jsp is sparse. In this way, we can not only get
a predictor, but also know what are the feature dimensions
that are important to the prediction, and these are the fea-
tures with nonzero classification coefficients. Zou and Hastie
[34] pointed out that there are some limitations if we only
adopt 1 norm regularization, and they proposed a regular-
ization term called elastic net, which is a mixture of 1 and
2 norm regularizers.

Sparse logistic regression has widely been used in health
informatics because the applications in this field usually not
only want a good prediction performance but also need the
reason why. Basically what are the key factors that will af-
fect the prediction performance. For example, sparse logistic
regression has been used in the prediction of Leukemia [15],
Alzheimer’s disease [22] and cancers [10]. In recent years
people also designed different regularization terms [13][17][26]
to a enforce more complex sparsity patterns on the learned
model. However, all these works require a vector based rep-
resentation of the data. Fig.1 provides a graphical illus-
tration on the difference of traditional vector based logistic
regression and multilinear logistic regression when working
on multi-dimensional data. Those traditional approaches
need to stretch the data into an ultra-high dimensional vec-
tor first before they can be applied. This may suffer from
the curse of dimensionality.

3. METHODOLOGY
We introduce the details of MulSLR in this section. First

we will formally define the problem.

3.1 Problem Statement
Without the loss of generality, we assume each observation

is a tensor X i ∈ Rd1×d2×···dK , suppose its corresponding
response is yi ∈ {0, 1}, then MulSLR assumes

yi ← X i ×1 w1 ×2 w2 · · · ×K wK + b (3)
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(a) Vector based logistic regression

(b) Multilinear logistic regression

Figure 1: Traditional vector based logistic regression
and multilinear logistic regression work on multi-
dimensional data.

where ×k is the mode-k product, and wk ∈ Rdk×1 is the
prediction coefficients on the k-th dimension. Then

X i ×1 w1 ×2 w2 · · · ×K wK

=

d1∑
i1=1

d2∑
i2=1

· · ·
dK∑
iK=1

w1
i1w

2
i2 · · ·w

K
iKX

i
i1i2···iK (4)

Let W = {w1,w2, · · · ,wK} be the set of prediction coeffi-
cient vectors. The loss we want to minimize is

`(W, b) =
1

n

n∑
i=1

`(Xi, yi,W) (5)

=
1

n

n∑
i=1

`(yi,X i ×1 w1 ×2 w2 · · · ×K wK + b)

=
1

n

n∑
i=1

`(yi, f(W,b)(X i))

where for notational convince, we denote

f(W,b)(X i) = X i ×1 w1 ×2 w2 · · · ×K wK + b (6)

The loss function we considered in this paper is Logistic Loss:

`l(W, b) = log[1 + exp(−yif(W,b)(X i))] (7)

We adopt the following elastic net regularization term [34]

R(W) = R1(W) +R2(W) (8)

=

K∑
k=1

λk‖wk‖1 +
1

2

K∑
k=1

µk‖wk‖22 (9)

Then the optimization problem we want to solve is

min
W
J (W, b) = `(W, b) +R(W) (10)

We adopt a Block Coordinate Descent (BCD) procedure to
solve the problem. Starting from some initialization (W(0), b(0)),
at the i-th step of the t-th round of updates, we update
(wk

(t), b(t)) by

(wk
(t), b(t)) (11)

= arg min
(w,b)

[
`(W1∼(k−1)

(t) ,w,W(k+1)∼K
(t−1) , b) + λk‖w‖1 +

µk
2
‖w‖22

]
where

W1∼(k−1)

(t) =
{

w1
(t),w

2
(t), · · · ,wk−1

(t)

}
W(k+1)∼K

(t−1) =
{

wk+1
(t−1),w

k+2
(t−1), · · · ,w

K
(t−1)

}
Algorithm 1 Block Coordinate Descent Procedure

Require: Data set {Xi, yi}ni=1, Regularization parameters
{λk, µk}Kk=1

1: Initialization: (W(0), b(0)), t = 0
2: while Not Converge do
3: for k = 1 : K do
4: Update (wk

(t), b(t,k)) by solving problem (11)
5: t = t+ 1
6: end for
7: end while

3.2 Proximal Gradient Descent
The proximal descent procedure for updating (wi

(t), b(t,k))
is

wk
(t) = (12)

arg min
w

[
(w − w̃k

(t))
>∇wk`(W

1∼(k−1)

(t) , w̃k
(t)W

(k+1)∼K
(t−1) , b(t,k−1))

+
τk(t)
2
‖w − w̃k

(t)‖22 + λk‖w‖1 +
µk
2
‖w‖22

]
where

∇wk`(W, b) =
1

n

n∑
i=1

∇wk log[1 + exp(−yif(W,b)(X i))]

=
1

n

n∑
i=1

−yi
exp(−yif(W,b)(X i))

1 + exp(−yif(W,b)(X i))
∇wkf(W,b)(X

i)

= − 1

n

n∑
i=1

[
1 + exp(yif(W,b)(X i))

]−1

yi∇wkf(W,b)(X
i)(13)

and

∇wkf(W,b)(X
i) (14)

= X i ×1 w1 ×2 w2 · · · ×(k−1) w(k−1) ×(k+1) w(k+1) · · · ×K wK

w̃k
(t) is an extrapolated point defined as

w̃k
(t) = wk

(t−1) + ωk(t)(w
k
(t−1) −wk

(t−2)) (15)

The optimal solution to problem (12) can be obtained as

wk
(t) = Sαk

(t)

(
τk(t)w̃

k
(t) −∇wk`

k
(t)(w̃

k
(t), b(t,k−1))

τk(t) + µk

)
(16)
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where αk(t) = λk/(τ
k
(t) +µk) and Sαk

(t)
is the component-wise

shrinkage operator defined as

(
Sαk

(t)
(v)
)
i

=


vi − αk(t), if vi > αk(t)
vi + αk(t), if vi < −αk(t)
0, if |vi| 6 |αk(t)|

(17)

Similarly we can update b(t,k) as

b(t,k) = arg min
b

[
(b− b̃(t,k))>∇b`(W1∼k

(t) ,W(k+1)∼K
(t−1) , b̃(t,k))

+
τk(t)
2
|b− b̃(t,k)|22

]
(18)

and

∇b`(W, b) =
1

n

n∑
i=1

∇b log[1 + exp(−yif(W,b)(X i))]

= − 1

n

n∑
i=1

[
1 + exp(yif(W,b)(X i))

]−1

yi (19)

b̃(t,k) is the extrapolated point defined as

b̃(t,k) = b(t,k−1) + ωk(t)(b(t,k−1) − b(t,k−2)) (20)

The optimal solution of problem (18) can be obtained by
simple gradient descent as

b(t,k) = b̃t,k −
1

τk(t)
∇b`k(t)(wk

(t), b̃(t,k)) (21)

Putting Eq.(14) and Eq.(19) together, we have the follow-
ing theorem

Theorem 3.1. The partial gradient ∇(wk,b)`(W, b) is Lip-
schitz continuous with constant

τk =

√
2

n

n∑
i=1

(
‖∇wkf(W,b)(X

i)‖2 + 1
)2

(22)

Proof. See Appendix I.

τk(t) in Eq.(16) and Eq.(21) can be set as the Lipschitz con-
stant according to Theorem 3.1. For notational convenience,
we first introduce

∇(t,k)

wk
f(W,b)(X i) (23)

= X i ×1 w1
(t) ×2 w2

(t) · · · ×(k−1) w
(k−1)

(t)

×(k+1) w
(k+1)

(t−1) · · · ×K wK
(t−1)

Then τk(t) can be set as

τk(t) =

√
2

n

n∑
i=1

(∥∥∥∇(t,k)

wk
f(W,b)(X i)

∥∥∥
2

+ 1
)2

(24)

ωk(t) can be set as

ωk(t) = min

ω(t), δω

√√√√τk(t−1)

τk(t)

 (25)

where ω(t) = (η(t−1) − 1)/η(t) with η(0) = 1 and η(t) =
1
2

(
1 +

√
1 + 4η2(t−1)

)
.

Algorithm 2 summarized the whole algorithmic flow of
our algorithm. At each iteration the most time consuming

part is evaluating the gradient, which takes O(n
∏K
i=1 di)

time, that is linear with respect to data set size and data
dimension.

Algorithm 2 Block Proximal Gradient Descent for Multi-
linear Sparse Logistic Regression

Require: Data set {Xi, yi}ni=1, Regularization parameters
{λk, µk}Kk=1, r0 = 1, δω < 1

1: Initialization: (W(0), b(0)), t = 1
2: while Not Converge do
3: for k = 1 : K do
4: Compute τk(t), ω

k
(t) with Eq.(24) and Eq.(25)

5: Compute w̃k
(t),w

k
(t) with Eq.(15) and Eq.(16)

6: Update b̃(t,k), b(t,k) by and Eq.(20) and Eq.(21)
7: end for
8: if `(W(t−1), b(t−1,K)) 6 `(W(t), b(t,K)) then

9: Reupdate wk
(t) and b(t,k) using Eq.(16) and Eq.(21),

with w̃k
(t) = wk

(t−1) and b̃(t,k) = b(t,k−1)

10: end if
11: t = t+ 1
12: end while

3.3 Convergence Analysis

Theorem 3.2. Let W(t) be the sequence generated by Al-

gorithm 1 with 0 6 ωk(t) 6 δω
√
τk(t−1)/τ

k
(t) for δω < 1. Then

when t → ∞, the sequence of (W(t), b(t,k)) will converge to
some point (W̄, b̄).

Proof. See Appendix II.

With Theorem 3.2, it is not hard to see that (W̄, b̄) is
also a stationary point. This is because when W(t) → W̄,

b(t,k) → b̄, according to Eq.(24), τk(t) → τ̄k. Therefore

w̄k = (26)

arg min
w

[
(w − w̄k)>∇wk`(W̄

1∼(k−1), w̄kW̄(k+1)∼K , b̄)

+
τ̄k

2
‖w − w̄k‖22 + λk‖w‖1 +

µk
2
‖w‖22

]
Let r(wk) = λk‖wk‖1 + µk

2
‖wk‖22, then Eq.(26) suggests

0 ∈ ∇wk`(W̄, b̄) + ∂r(wk) (1 6 k 6 K). Similarly, we also
have ∇b`(W̄, b̄) = 0. Therefore (W̄, b̄) is a stationary point.
To establish the convergence rate estimation result, we first
introduce the following K-L inequality.

Definition 3.3. (Kurdyka-Lojasiewicz (K-L) Inequal-
ity) [11] [14] A function f is said to satisfy the Kurdyka-
Lojasiewica inequality at point Ψ̄, if there exists θ ∈ [0, 1)
such that

|f(Ψ)− f(Ψ̄)|θ

dist(0, ∂f(Ψ))
(27)

is bounded for any Ψ near Ψ̄, where ∂f(Ψ) is the limiting
subdifferential of f at Ψ [24], and

dist(0, ∂f(Ψ)) ≡ min{‖Φ‖F : Φ ∈ ∂f(Ψ)} (28)

The K-L inequality was first introduced by Lojasiewicz
[14] on real analytic functions, for which Eq.(27) is bounded
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around any stationary point Ψ̄ for θ ∈ [ 1
2
, 1). Kurdyka later

extended this property to the functions on the o-minimal
structure, and recenttly Bolte et al. [3] further extended
it to non smooth sub analytic functions, and loss function
J (W, b) is one function of such type. Then it satisfies the
K-L inequality. According to [31], we have the following
theorem stating the convergence rate of our BPG method.

Theorem 3.4. Let (W̄, b̄) be a stationary point of the
(W(t), b(t)) sequence, then depending on the θ in Eq.(27),
we have the following convergence rate.

• If θ = 0, then (W(t), b(t)) converges to (W̄, b̄) in finite
iterations.

• If θ ∈ (0, 1
2
], then (W(t), b(t)) converges to (W̄, b̄) at

least linearly, i.e., ‖(W(t), b(t)) − (W̄, b̄)‖F 6 Crt for
some constant C and r < 1.

• If θ ∈ ( 1
2
, 1), then (W(t), b(t)) converges to (W̄, b̄) at

least sublinearly, i.e., ‖(W(t), b(t))−(W̄, b̄)‖F 6 Ct−
1−θ
2θ−1

for some constant C.

Proof. The proof can easily be derived from the proof
of Theorem 2.9 in [31], thus we neglect the details here.

4. EXPERIMENTS
In this section we will present the results of a set of exper-

iments we conducted to test the effectiveness and efficiency
of our method, including both synthetic examples and real
world examples.

4.1 Synthetic Examples
We constructed some synthetic data sets to investigate

two types of questions:

1. Whether MulSLR can effectively discover the latent
data structure or not?

2. What is the scalability behavior of MulSLR when it is
implemented on data sets with different scales?

(a) Sample from class 1 (b) Sample from class 0

Figure 2: Two samples from the synthetic data set
we generated. (a) is from class 1, (b) is from class 0.
The intensities of the pixels indicates the values of
the corresponding entries, where dark means small
values and bright means large values.

In order to answer question 1, we constructed a data set
with two different patterns. Each data object is a square
matrix with size 100 × 100, where the elements in the data

matrices are generated independently from N (0, 1), i.e., uni-
variate Gaussian distribution with zero mean and unit vari-
ance. The upper-left 20 × 20 block was different for the
data matrices in class 1 and class 0 in the following sense.
We generate two vectors w1 ∈ R20 and w2 ∈ R20 whose
elements are generated independently from uniform distri-
bution between 0 and 1. For any data matrix X from class

1, we have w>1 X̂w2 + 1 > 0.5, where X̂ is the upper-left
20× 20 block of X. For any data matrix Y from class 2, we

have w>1 X̂w2 + 1 6 −0.5, where Ŷ is the upper-left 20× 20
block of Y. Therefore there is a special correlation structure
on the two dimensions of those data matrices. Basically the
data from those two classes can only be identified from a
bilinear combination on their upper-left 20× 20 blocks. We
provide two sample data matrices on Fig.2, one from each
class. From the figure we cannot judge whether there is any
differences between them. We generated 1000 samples for
each class and thus the entire data set has 2000 samples.

In our implementation, we initialize w1 ∈ R100,w2 ∈ R100

as uniform vectors, and we iterate the MulSLR until a cer-
tain termination condition is satisfied. Such termination
condition could be either a maximum number of iteration
steps or the absolute difference of objective function value
between two consecutive steps is less than a certain toler-
ance value. For those free parameters we set λ1 = λ2 = 0.01,
µ1 = µ2 = 0.0001, δω = 0.99. We set the maximum number
of iterations to be 100. We randomly select 80% of the data
for training (the data in class 1 and 0 are evenly sampled),
and the rest 20% data for testing. The objective function
value convergence plot is shown in Fig.3 (a), from which
we can see that with the iterations going on, the objective
function value decreases very fast during the first 30 steps,
and decreases slowly from 30 to 60 steps, and becomes al-
most stable from then on. We also evaluated the prediction
performance on the testing data set in terms of Area Un-
der the receiver operating characteristic Curve (AUC) value
using w1 and w2 obtained from each iteration. The pre-
diction AUC versus number of iterations plot is illustrated
in Fig.3 (b), which shows that the prediction performance
also increases very fast during the first 30 steps, and slowly
increase to 1 from step 30 to step 60.

As illustrations, we also plotted the matrix of W = w1w
>
2

after 100 iterations with MulSLR in Fig.4 (b). This is inter-
esting because MulSLR makes decisions with a linear func-
tion, and in two dimension case the weight, or importance
of the (i, j)-th entry is Wij (as w>1 Xw2 = vec(W)>vec(X),
where vec is a function vectorizing a matrix). From the
we can clearly observe a block structure on the upper left
corner. This complies with the latent data structure and
explains the reason why we can achieve a 1 AUC. For com-
parison purpose, we also plotted the matrix of w1w

>
2 after

100 iterations with MulSLR with λ1 = λ2 = 0 in Fig.4 (a),
in which case the sparsity (`1) regularizations on w1 and
w2 do not take effect. We can observe that in this case the
matrix is dense, which is because w1 and w2 are dense vec-
tors. We also checked the predicted AUC value this dense
w1 and w2 can get, which is only 0.6525. This validates
the superiority of sparse multilinear logistic regression over
plain multilinear logistic regression in this case.

To answer the second question, we conducted two sets of
experiments on Mac OS 10.7 with 2.2GHz CPU and 12GB
main memory. In the first set of experiments, we randomly
generated a set of 100×100 data matrices, and we record the
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(a) Objective function loss vs. number of it-
erations

(b) Prediction AUC vs. number of iterations

Figure 3: Convergence plots on the synthetic data.
(a) shows how the objective function value with re-
spect to the number of iterations when training with
80% of the data. (b) shows how the corresponding
testing AUC goes with number of iterations on the
rest 20% data. From the figure we can see that in
this case MulSLR converges in about 60 iterations

averaged running time per iteration for MulSLR with respect
to different data set size. The result is shown in Fig.5(a),
which shows a clear linear trend between the running time
and data scale. In the second set of experiments, we fixed the
data set size to be 100, but varying the data dimensionality
from 50 × 50 to 2000 × 2000. The result is provided in
Fig.5(b), which shows that the trend of that curve is slightly
quadratic (as the entire data dimensionality is the square of
the horizontal axis values). This is in accordance with our
complexity analysis of Algorithm 2.

4.2 Experiments on fMRI Data
Functional magnetic resonance imaging or functional MRI

(fMRI) is a functional neuroimaging procedure using MRI
technology that measures brain activity by detecting associ-
ated changes in blood flow1. fMRI is an effective approach
to investigate alterations in brain function related to the ear-
liest symptoms of Alzheimer’s disease, possibly before devel-
opment of significant irreversible structural damage.

The raw fMRI scans used in our experiments were col-
lected from real clinic cases of 1,005 patients [21], whose
cognitive function scores (semantic, episodic, executive and
spatial - ranges between -2.8258 and 2.5123) were also ac-
quired at the same time using a cognitive function test.

1http://en.wikipedia.org/wiki/Functional_magnetic_
resonance_imaging

(a) No `1 regularizations (b) With `1 regularizations

Figure 4: The matrix of ŵ1ŵ
>
2 , where ŵ1, ŵ2 are the

converged solution over 100 iterations. (a) shows the
result with λ1 = λ2 = 0, i.e., no `1 regularizations. (b)
shows the result of MulSLR with λ1 = λ2 = 0.01.

There are three types of MRI scans that were collected from
the subjects: (1) FA, the fractional anisotropy MRI gives
information about the shape of the diffusion tensor at each
voxel, which reflects the differences between an isotropic dif-
fusion and a linear diffusion; (2) FLAIR, Fluid attenuated
inversion recovery is a pulse sequence used in MRI, which
uncovers the white matter hyperintensity of the brain; (3)
GRAY, gray MRI images revealing the gray matter of the
brain. In the raw scans, each voxel has a value from 0 to 1,
where 1 indicates that the structural integrity of the axon
tracts at that location is perfect, while 0 implies either there
are no axon tracts or they are shot (not working). The raw
scans are preprocessed (including normalization, denoising
and alignment) and then restructured to 3D tensors with a
size of 134 × 102 × 134. Fig.6 demonstrate a sample image
for each of thee three types of scans. Another information
we have for this data set is associated with each sample we
have a label, which could be either normal, Mild Cognitive
Impairment (MCI) or demented.

Because this is a three-class problem and logistic regres-
sion is for binary classification, we constructed three pre-
diction tasks with one-versus-rest strategy, i.e., normal vs.
MCI and demented, MCI vs. normal and demented, de-
mented vs. normal and MCI. For MulSLR, we set the `1
term regularization parameters λ1 = λ2 = λ3 and tune it
from the grid {10−3, 10−2, 10−1, 1, 10, 102, 103} with five fold
cross validation. The `2 term regularization parameters are
set to µ1 = µ2 = µ3 = 10−4. For comparison purpose, we
also implemented the following baseline algorithms:

• Nearest Neighbor (NN). This is the one nearest
neighbor classifier with standard Euclidean distance.

• Support Vector Machine (SVM). This is the regu-
lar vector based SVM method.

• Logistic Regression (LR). This is the traditional
vector based logistic regression method.

• Sparse Logistic Regression (SLR). This is the vec-
tor based sparse logistic regression.

• Multilinear Logistic Regression (MLR). This is
equivalent to MulSLR with all `1 regularization pa-
rameters setting to 0.

We use LIBLINEAR [7] for the implementation of LR and
SLR, and LIBSVM [5] for the implementation of SVM. Note
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(a) FA (b) FLAIR (c) GRAY

Figure 6: Sample images of the three different types of scans.

Table 1: Prediction AUC Comparison for Different Methods and Different Tasks

method normal vs. MCI and demented MCI vs. normal and demented demented vs. normal and MCI

NN 0.5052± 0.0555 0.5085± 0.0473 0.5106± 0.0487
SVM 0.6491± 0.1355 0.5230± 0.0567 0.5409± 0.0473
LR 0.6591± 0.1421 0.5860± 0.1007 0.6203± 0.1253
SLR 0.6595± 0.1396 0.5877± 0.0993 0.6220± 0.1243
MLR 0.6754± 0.0896 0.5994± 0.0627 0.6382± 0.1201

MulSLR 0.6923± 0.0706 0.6015± 0.0520 0.6731± 0.1054

that in order to test those vector based approaches, we need
to stretch those fMRI tensors into very long vectors (with
dimensionality 1,831,512).Table 1 summarized the average
and standard deviation over 5-fold cross validation in terms
of Areas Under the receiver operating characteristics Curve
(AUC) values. The data we used are the FLAIR images.
From the table we can observe that:

• The multilinear methods work better than traditional
vector based approaches. One possible reason is be-
cause there is a clear spatial structure on fMRI images
which those multilinear methods can take advantage
of.

• The sparse methods work better than their non sparse
counterparts. This can also be understood because the
FLAIR images are sparse in nature.

• Discriminating MCI from normal and demented is more
difficult compared with the other two tasks. This is be-
cause MCI is an intermediate state during the progres-
sion of Alzheimer’s disease from normal to demented.

4.3 Experiments on CHF Onset Prediction
Congestive heart failure (CHF), which refers to a condi-

tion where the heart cannot pump enough blood to meet
the body’s needs, is a major chronic illness in the U.S., af-
fecting more than five million patients. It is estimated CHF
costs the nation an estimated $32 billion each year2. Effec-
tive prediction of the onset risk of potential CHF patients
would help identify the patient at risk in time. Thus the de-
cision makers can provide the proper treatment to the right
patients. this can also help save unnecessary costs.

Electronic Health Records (EHR) are systematic collec-
tion of patient health information including diagnosis, med-
ication, lab, procedure, demographics, etc. It has now been
becoming one of the major information source for conduct-
ing healthcare analytics research. The data set we use in

2http://www.cdc.gov/dhdsp/data_statistics/fact_
sheets/docs/fs_heart_failure.pdf

our experiments is from a real world EMR data warehouse
including the longitudinal EHR of 319,650 patients over 4
years. On this data set, we identified 1,000 CHF case pa-
tients, i. e., the patients who are confirmed with CHF with
the identification criterion in [29]. Then we did a group
match according to patient demographics, comorbidities and
primary care physicians similar as in [29] identifying 2,000
control patients. We use the medication orders of those pa-
tients within two years from their operational criteria date
(for case patients, their operational criteria dates are just
their CHF confirmation date. For control patients that date
is just the date of their last records in the database). On each
medication order we use the corresponding pharmacy class
and the primary diagnosis in terms of Hierarchical Condition
Category (HCC) codes [20] for the medication prescription.
In total there are 92 unique pharmacy classes and 195 dis-
tinct HCC codes. Therefore each patient can be represented
as a 92× 195 matrix, where the (i, j)-th entry indicates the
frequency that the i-th drug was prescribed during the two
years with the j-th diagnosis code as primary diagnosis.

The parameters for MulSLR are set in the same manner
as the experiments in last subsection. For comparison pur-
pose, we also implemented NN, SVM, LR, SLR, MLR and
reported the averaged AUC value over 5-fold cross valida-
tion along with their standard deviations on Fig.7. From the
figure we can clearly observe that multilinear methods still
work better than vector based methods (in order to imple-
ment vector based methods, we still need to stretch the pa-
tient matrices into vectors). MulSLR performs better than
MLR, which is the regular ridged bilinear logistic regres-
sion, because the patient matrices formed are typically very
sparse. However, in this case the vector based SLR works
slightly worse than LR, this could be due to the sparsity
structures of the patient matrices get lost when stretching
them into vectors.

One interesting thing to check is the product of wmed,
which is the classification vector on the medication side, and
w>diag, which is the classification vector on the diagnosis side.
Just like what we examined on the toy data. In this way we
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(a) Running time per iteration vs. data set
size

(b) Running time per iteration vs. data di-
mensionality

Figure 5: Averaged running time per iteration of
MulSLR. (a) shows the running time per iteration
vs. data set size plot, where the data dimension-
ality is fixed to 100. (b) shows the running time
per iteration vs. one-side data dimensionality plot,
where the data set size is fixed to 500.

can find some strongly correlated medications and diagno-
sis that could be highly predictive for CHF onset risk. To
achieve this goal, we use all the data to train the wmed and
wdiag and plot their outer-product as in Fig.8 (where we
just show a submatrix due to space limitation), where warm
color indicate high values and cold color indicates small val-
ues. From the image we can observe that:

• Cardiac disease and their corresponding treat-
ment drugs are highly correlated and predic-
tive. For example, Antihypertensive, Antihyperlipi-
demic, Calcium Blocker, Beta Blockers, Cardiotonic
drugs with CHF (HCC080), Acute Myocardial Infarc-
tion (HCC081), Hypertensive Heart Disease (HCC090),
Hypertension (HCC091) diagnosis.

• CHF commorbidities and their corresponding
treatment drugs are predictive. For example, Chronic
Obstructive Pulmonary Disease (COPD) (HCC108) [25]
with Corticosteroids, and also Chronic Kidney Disease
(CKD) (HCC436 and HCC439) [1].

• CHF related symptoms and their correspond-
ing treatment drugs are predictive, such as Gout,
which is a well-known Framingham symptom [16] for
CHF patients.

Actually all those findings are also clinically validated in
those references we cited. We also provide the detailed de-
scription of all HCC codes at https://www.dropbox.com/s/
6e1qbjf1ce7yi6x/hcc_codes.pdf.

Figure 7: Prediction performance for different
methods on the CHF onset prediction task in terms
of averaged AUC value with 5-fold cross validation
along with their standard deviations.

5. CONCLUSIONS
We propose a multilinear sparse logistic regression method

called MulSLR in this paper, which can directly take data
matrices or tensors as inputs and do prediction on that. Mul-
SLR is formulated as an optimization problem and we pro-
pose an effective BCD strategy to solve it. We proved the
convergence and analyzed the convergence rate theoretically.
Finally we validate the effectiveness and efficiency of Mul-
SLR on both synthetic and real world data sets. We demon-
strate that MulSLR can not only achieve good performance,
but also discover interesting predictive patterns.

Appendix I: Proof of Theorem 3.1
Let

W\k = (w1,w2, · · · ,w(k−1),w(k+1), · · · ,wK) (29)

Then for any (W\k,wk, b) and (W\k, ŵk, b̂), we have∥∥∥∇(wk,b)`(W\k,w
k, b)−∇(wk,b)`(W\k, ŵ
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(X i)
)]−1

∣∣∣∣ (‖∇wkf(W,b)(X
i)‖2 + 1

)
6

1

n

n∑
i=1

(
‖∇wkf(W,b)(X

i)‖2 + 1
)2 (∥∥∥wk − ŵk

∥∥∥
2

+ |b− b̂|
)

6

√
2

n

n∑
i=1

(
‖∇wkf(W,b)(X

i)‖2 + 1
)2 ∥∥∥(wk, b

)
−
(
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This completes the proof.

Appendix II: Proof of Theorem 3.2
For notational convenience, we define

`k(t)(w
k, b) = `(W1∼(k−1)

(t) ,wk,W(k+1)∼K
(t−1) , b) (30)
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Figure 8: A sub matrix from the matrix of wmedw
>
diag. Warm color indicates large value, and cold color

indicates small value. Thus warm color indicates MulSLR gives larger weights to the corresponding entry
when making a decision. There are some interesting red blocks in the image. For example, Antihypertensive,
Antihyperlipidemic, Calcium Blocker, Beta Blockers, Cardiotonic drugs with CHF (HCC080), Acute Myocardial
Infarction (HCC081), Hypertensive Heart Disease (HCC090), Hypertension (HCC091) diagnosis. Those are
all cardiac disease and their corresponding treatment drugs. The row of drug Corticosteroids is also warm
because it is used for treating pulmonary disease such as COPD, which is a common commorbidity of CHF.
For similar reason, the column of diagnosis COPD (HCC108) is warm.

With Lemma 2.3 in [2], we have
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As `(W, b) is lower bounded, when T →∞, we have

∞∑
t=0

‖(W(t), b(t,k))− (W(t+1), b(t+1,k))‖22 <∞
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and ‖(W(t−1), b(t−1,k)) − (W(t), b(t,k))‖2F → 0. This com-
pletes the proof.
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