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ABSTRACT
We propose a new algorithm, FAST-PPR, for computing
personalized PageRank: given start node s and target node
t in a directed graph, and given a threshold δ, FAST-PPR
computes the Personalized PageRank πs(t) from s to t, guar-
anteeing a small relative error as long πs(t) > δ. Existing
algorithms for this problem have a running-time of Ω(1/δ);
in comparison, FAST-PPR has a provable average running-
time guarantee of O(

√
d/δ) (where d is the average in-degree

of the graph). This is a significant improvement, since δ is
often O(1/n) (where n is the number of nodes) for applica-

tions. We also complement the algorithm with an Ω(1/
√
δ)

lower bound for PageRank estimation, showing that the de-
pendence on δ cannot be improved.

We perform a detailed empirical study on numerous mas-
sive graphs, showing that FAST-PPR dramatically outper-
forms existing algorithms. For example, on the 2010 Twit-
ter graph with 1.5 billion edges, for target nodes sampled
by popularity, FAST-PPR has a 20 factor speedup over the
state of the art. Furthermore, an enhanced version of FAST-
PPR has a 160 factor speedup on the Twitter graph, and is
at least 20 times faster on all our candidate graphs.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on Discrete Structures; G.2.2 [Graph Theory]:
Graph Algorithms

General Terms
Algorithms,Theory
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1. INTRODUCTION
The success of modern networks is largely due to the abil-

ity to search effectively on them. A key primitive is PageR-
ank [1], which is widely used as a measure of network im-
portance. The popularity of PageRank is in large part due
to its fast computation in large networks. As modern social
network applications shift towards being more customized to
individuals, there is a need for similar ego-centric measures
of network structure.

Personalized PageRank (PPR) [1] has long been viewed as
the appropriate ego-centric equivalent of PageRank. For a
node u, the personalized PageRank vector πu measures the
frequency of visiting other nodes via short random-walks
from u. This makes it an ideal metric for social search, giv-
ing higher weight to content generated by nearby users in
the social graph. Social search protocols find widespread
use – from personalization of general web searches [1, 2, 3],
to more specific applications like collaborative tagging net-
works [4], ranking name search results on social networks [5],
social Q&A sites [6], etc. In a typical personalized search
application, given a set of candidate results for a query, we
want to estimate the Personalized PageRank to each candi-
date result. This motivates the following problem:

Given source node s and target node t, compute the
Personalized PageRank πs(t) up to a small relative error.

Since smaller values of πs(t) are more difficult to detect, we
parameterize the problem by threshold δ, requiring small
relative errors only if πs(t) > δ. Current techniques used for
PPR estimation (see Section 2.1) have Ω(1/δ) running-time
– this makes them infeasible for large networks when the
desired δ = O(1/n) or O((logn)/n).

In addition to social-search, PPR is also used for a variety
of other tasks across different domains: friend recommenda-
tion on Facebook [7], who to follow on Twitter [8], graph
partitioning [9], community detection [10], and other ap-
plications [11]. Other measures of personalization, such as
personalized SALSA and SimRank [12], can be reduced to
PPR. However, in spite of a rich body of existing work [2,
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(a) Running time (in log scale) of different algorithms (b) Relative accuracy of different algorithms

Figure 1: Comparison of Balanced FAST-PPR, Monte-Carlo and Local-Update algorithms in different net-
works – 1000 source-target pairs, threshold δ = 4

n
, teleport probability α = 0.2. Notice that Balanced FAST-

PPR is 20 times faster in all graphs, without sacrificing accuracy. For details, see Section 6.

13, 9, 14, 15, 16, 17], estimating PPR is often a bottleneck
in large networks.

1.1 Our Contributions
We develop a new algorithm, Frontier-Aided Significance

Thresholding for Personalized PageRank (FAST-PPR), based
on a new bi-directional search technique for PPR estimation:
• Practical Contributions: We present a simple imple-
mentation of FAST-PPR which requires no pre-processing
and has an average running-time of O(

√
d/δ)1. We also pro-

pose a simple heuristic, Balanced FAST-PPR, that achieves
a significant speedup in practice.

In experiments, FAST-PPR outperforms existing algorithms
across a variety of real-life networks. For example, in Figure
1, we compare the running-times and accuracies of FAST-
PPR with existing methods. Over a variety of data sets,
FAST-PPR is significantly faster than the state of the art,
with the same or better accuracy.

To give a concrete example: in experiments on the Twitter-
2010 graph [19], Balanced FAST-PPR takes less than 3 sec-
onds for random source-target pairs. In contrast, Monte
Carlo takes more than 6 minutes and Local Update takes
more than an hour. More generally in all graphs, FAST-
PPR is at least 20 times faster than the state-of-the-art,
without sacrificing accuracy.
• Theoretical Novelty: FAST-PPR is the first algorithm
for PPR estimation with O(

√
d/δ) average running-time,

where d = m/n is the average in-degree2. Further, we

modify FAST-PPR to get O(1/
√
δ) worst-case running-time,

by pre-computing and storing some additional information,
with a required storage of O(m/

√
δ).

1We assume here that the desired relative error and teleport
probability α are constants – complete scaling details are
provided in our technical report [18].
2Formally, for (s, t) with πs(t) > δ, FAST-PPR re-
turns an estimate π̂s(t) with relative error c, incurring

O

(
1
c2

√
d
δ

√
log(1/pfail) log(1/δ)

α2 log(1/(1−α))

)
average running-time; refer

to our technical report [18] for complete details.

We also give a new running-time lower bound of Ω(1/
√
δ)

for PPR estimation, which essentially shows that the depen-
dence of FAST-PPR running-time on δ cannot be improved.

Finally, we note that FAST-PPR has the same perfor-
mance gains for computing PageRank with arbitrary pref-
erence vectors [2], where the source is picked from a distri-
bution over nodes. Different preference vectors are used for
various applications [2, 1]. However, for simplicity of pre-
sentation, we focus on Personalized PageRank in this work.

2. PRELIMINARIES
Given G(V,E), a directed graph, with |V | = n, |E| = m,

and adjacency matrix A. For any node u ∈ V , we denote
N out(u), dout(u) as the out-neighborhood and out-degree re-
spectively; similarly N in(u), din(u) are the in-neighborhood
and in-degree. We define d = m

n
to be the average in-degree

(equivalently, average out-degree).
The personalized PageRank vector πu for a node u ∈ V

is the stationary distribution of the following random walk
starting from u: at each step, return to u with probability α,
and otherwise move to a random out-neighbor of the current
node. Defining D = diag(dout(u)), and W = D−1A, the
personalized PageRank (PPR) vector of u is given by:

πTu = αeTu + (1− α)πTu .W, (1)

where eu is the identity vector of u. Also, for a target node
t, we define the inverse-PPR of a node w with respect to t
as π−1

t (w) = πw(t). The inverse-PPR vector {π−1
t (w)}w∈V

of t sums to nπ(t), where π(t) is the global PageRank of t.
Note that the PPR for a uniform random pair of nodes is

1/n – thus for practical applications, we need to consider δ of
the form O(1/n) or O(logn/n). We reinforce this choice of
δ using empirical PPR data from the Twitter-2010 graph in
Section 6.2 – in particular, we observe that only 1% of (s, t)
pairs have PPR greater than 4/n. In order to process real-
time queries, one option would be precompute all answers,
and for each node u, store a list of all targets with PPR
at least δ. This results in O(1) running-time at query, but
requires Ω(1/δ) storage per node, which is not feasible in
large networks. The other extreme is to eschew storage and
compute the PPR at query time – however, as we discuss
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below, existing algorithms for computing PPR have a worst-
case running-time of Ω(1/δ). For the relevant values of δ,
this is infeasible.

2.1 Existing Approaches for PPR Estimation
There are two main techniques used to compute PageR-

ank/PPR vectors. One set of algorithms use the power it-
eration. Since performing a direct power iteration may be
infeasible in large networks, a more common approach is to
use local-update versions of the power method, similar to
the Jacobi iteration. This technique was first proposed by
Jeh and Widom [2], and subsequently improved by other re-
searchers [20, 9]. The algorithms are primarily based on the
following recurrence relation for πu:

πTu = αeTu +
(1− α)

|N out(u)| .
∑

v∈Nout(u)

πTv (2)

Another use of such local update algorithms is for estimat-
ing the inverse-PPR vector for a target node. Local-update
algorithms for inverse-PageRank are given in [14] (where
inverse-PPR is referred to as the ‘contribution PageRank
vector’), and [21] (where it is called ‘susceptibility’). How-
ever, one can exhibit graphs where these algorithms need
a running-time of O(1/δ) to get additive guarantees on the
order of δ.

Eqn. 2 can be derived from the following probabilistic
re-interpretations of PPR, which also lead to an alternate
set of randomized or Monte-Carlo algorithms. Given any
random variable L taking values in N0, let RW (u, L) ,
{u, V1, V2, . . . , VL} be a random-walk of random length L ∼
Geom(α)3, starting from u. Then we can write:

πu(v) = P [VL = v] (3)

In other words, πu(v) is the probability that v is the last
node in RW (u, L). Another alternative characterization is:

πu(v) = αE

[
L∑
i=0

1{Vi=v}

]
,

i.e., πu(v) is proportional to the number of times RW (u, L)
visits node v. Both characterizations can be used to estimate
πu(·) via Monte Carlo algorithms, by generating and storing
random walks at each node [13, 15, 16, 17]. Such estimates
are easy to update in dynamic settings [15]. However, for
estimating PPR values close to the desired threshold δ, these
algorithms need Ω(1/δ) random-walk samples.

2.2 Intuition for our approach
The problem with the basic Monte Carlo procedure –

generating random walks from s and estimating the dis-
tribution of terminal nodes – is that to estimate a PPR
which is O(δ), we need Ω(1/δ) walks. To circumvent this,
we introduce a new bi-directional estimator for PPR: given
a PPR-estimation query with parameters (s, t, δ), we first
work backward from t to find a suitably large set of ‘tar-
gets’, and then do random walks from s to test for hitting
this set.

Our algorithm can be best understood through an analogy
with the shortest path problem. In the bidirectional shortest
path algorithm, to find a path of length l from node s to
node t, we find all nodes within distance l

2
of t, find all

3i.e., P[L = i] = α(1− α)i ∀ i ∈ N0

nodes within distance l
2

of s, and check if these sets intersect.

Similarly, to test if πs(t) > δ, we find all w with πw(t) >
√
δ

(we call this the target set), take O(1/
√
δ) walks from the

start node, and see if these two sets intersect. It turns out
that these sets might not intersect even if πs(t) > δ, so we
go one step further and consider the frontier set – nodes
outside the target set which have an edge into the target
set. We can prove that if πs(t) > δ then random walks are
likely to hit the frontier set.

Our method is most easily understood using the charac-
terization of πs(t) as the probability that a single walk from
s ends at t (Eqn. (3)). Consider a random walk from s to t
– at some point, it must enter the frontier. We can then de-
compose the probability of the walk reaching t into the prod-
uct of two probabilities: the probability that it reaches some
node w in the frontier, and the probability that it reaches t
starting from w. The two probabilities in this estimate are
typically much larger than the overall probability of a ran-
dom walk reaching t from s, so they can be estimated more
efficiently. Figure 2 illustrates this bi-directional scheme.

2.3 Additional Definitions
To formalize our algorithm, we first need some additional

definitions. We define a set B to be a blanket set for t with
respect to s if all paths from s to t pass through B. Given
blanket set B and a random walk RW (s, L), let HB be the
first node in B hit by the walk (defining HB = ⊥ if the
walk does not hit B before terminating). Since each walk
corresponds to a unique HB , we can write P [VL = v] as a
sum of contributions from each node in B. Further, from the
memoryless property of the geometric random variable, the
probability a walk ends at t conditioned on reaching w ∈ B
before stopping is exactly πs(t). Combining these, we have:

πs(t) =
∑
w∈B

P [HB = w] · πw(t). (4)

In other words, the PPR from s to t is the sum, over all
nodes w in blanket set B, of the probability of a random
walk hitting B first at node w, times the PPR from w to t.

Recall we define the inverse-PPR vector of t as π−1
t =

(πw(t))w∈V . Now we introduce two crucial definitions:

Definition 1 (Target Set). The target set Tt(εr) for
a target node t is given by:

Tt(εr) := {w ∈ V : π−1
t (w) > εr}.

Definition 2 (Frontier Set). The frontier set Ft(εr)
for a target node t is defined as:

Ft(εr) :=
( ⋃
v∈Tt(εr)

N in
v

)
\ Tt(εr).

The target set Tt(εr) thus contains all nodes with inverse-
PPR greater than εr, while the frontier set Ft(εr) contains
all nodes which are in-neighbors of Tt(εr), but not in Tt(εr).

2.4 A Bidirectional Estimator
The next proposition illustrates the core of our approach.

Proposition 1. Set εr < α. Fix vertices s, t such that
s /∈ Tt(εr).

1. Frontier set Ft(εr) is a blanket set of t with respect to
s.
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s

Forward Work
(Random-walks)

Figure 2: The FAST-PPR Algorithm: We first work
backward from the target t to find the frontier Ft
(with inverse-PPR estimates). Next we work for-
ward from the source s, generating random-walks
and testing for hitting the frontier.

2. For random-walk RW (s, L) with length L ∼ Geom(α):

P[RW (s, L) hits Ft(εr)] ≥
πs(t)

εr

Proof. For brevity, let Tt = Tt(εr), Ft = Ft(εr). By
definition, we know πt(t) ≥ α – thus t ∈ Tt, since εr < α.
The frontier set Ft contains all neighbors of nodes in Tt
which are not themselves in Tt – hence, for any source node
u /∈ Tt, a path to t must first hit a node in Ft.

For the second part, since Ft is a blanket set for s with re-
spect to t, Eqn. 4 implies πs(t) =

∑
w∈Ft

P [HFt = w]πw(t),
where HFt is the first node where the walk hits Ft. Note that
by definition, ∀w ∈ Ft we have w /∈ Tt – thus πw(t) ≤ εr.
Applying this bound, we get:

πs(t) ≤ εr
∑
w∈Ft

P [HFt = w] = εrP[RW (s, L) hits Ft(εr)].

Rearranging, we get the result.

The aim is to estimate πs(t) through Eqn. 4. By the pre-
vious proposition, Ft(εr) is a blanket set. We will determine
the set Ft(εr) and estimate all quantities in the right side of
Eqn. 4, thereby estimating πs(t).

We perform a simple heuristic calculation to argue that
setting εr ≈

√
δ suffices to estimate πs(t). Previous work

shows that Tt(εr) can be found in O(d/εr) time [14, 21] –
using this we can find Ft(εr). Now suppose that we know
all values of πw(t) (∀w ∈ Ft(εr)). By Eqn. 4, we need
to estimate the probability of random walks from s hitting
vertices in Ft(εr). By the previous proposition, the prob-
ability of hitting Ft(εr) is at least δ/εr – hence, we need
O(εr/δ) walks from s to ensure we hit Ft(εr). All in all, we

require O(d/εr + εr/δ) – setting εr =
√
dδ we get a running-

time bound of O(
√
d/δ). In reality, however, we only have

(coarse) PPR estimates for nodes in the frontier – we show
how these estimates can be boosted to get the desired guar-
antees, and also empirically show that, in practice, using the
frontier estimates gives good results. Finally, we show that
1/
√
δ is a fundamental lower bound for this problem.

We note that bi-directional techniques have been used for
estimating fixed-length random walk probabilities in regular
undirected graphs [22, 23]. These techniques do not extend

to estimating PPR – in particular, we need to consider di-
rected graphs, arbitrary node degrees and walks of random
length. Also, Jeh and Widom [2] proposed a scheme for
PageRank estimation using intermediate estimates from a
fixed skeleton of target nodes. However there are no running-
time guarantees for such schemes; also, the target nodes and
partial estimates need to be pre-computed and stored. Our
algorithm is fundamentally different as it constructs separate
target sets for each target node at query-time.

3. THE FAST-PPR ALGORITHM
We now develop the Frontier-Aided Significance Thresh-

olding algorithm, or FAST-PPR, specified in Algorithm 1.
The input-output behavior of FAST-PPR is as follows:
• Inputs: The primary inputs are graph G, teleport prob-
ability α, start node s, target node t, and threshold δ –
for brevity, we suppress the dependence on G and α. We
also need a reverse threshold εr – in subsequent sections, we
discuss how this parameter is chosen.
• Output: An estimate π̂s(t) for πs(t).

The algorithm also requires two parameters, c and β –
the former controls the number of random walks, while the
latter controls the quality of our inverse-PPR estimates in
the target set. In our pseudocode (Algorithms 1 and2), we
specify the values we use in our experiments – the theoretical
basis for these choices is provided in Section 3.2.

Algorithm 1 FAST-PPR(s, t, δ)

Inputs: graph G, teleport probability α, start node s, tar-
get node t, threshold δ

1: Set accuracy parameters c, β (in our experiments we use
c = 350, β = 1/6).

2: Call FRONTIER(t, εr, β) to obtain target set
Tt(εr), frontier set Ft(εr), and inverse-PPR values
(π−1
t (w))w∈Ft(εr)∪Tt(εr).

3: if s ∈ Tt(εr) then
4: return π−1

t (s)
5: else
6: Set number of walks k = cεr/δ (See Theorem 3 for

details)
7: for index i ∈ [k] do
8: Generate Li ∼ Geom(α)
9: Generate random-walk RW (s, Li)

10: Determine Hi, the first node in Ft(εr) hit by RWi;
if RWi never hits Ft(εr), set Hi = ⊥

11: end for
12: return π̂s(t) = (1/k)

∑
i∈[k] π

−1
t (Hi)

13: end if

FAST-PPR needs to know sets Tt(εr), Ft(εr) and inverse-
PPR values (π−1

t (w))w∈Ft(εr)∪Tt(εr). These can be obtained
(approximately) from existing algorithms of [14, 21]. For the
sake of completeness, we provide pseudocode for the proce-
dure FRONTIER (Algorithm 2) that obtains this informa-
tion. The following combines Theorems 1 and 2 in [21].

Theorem 1. FRONTIER(t, εr, β) algorithm computes es-
timates π̂−1

t (w) for every vertex w, with a guarantee that ∀w,
|π̂−1
t (w) − π−1

t (w)| < βεr. The average running time (over
all choices of t) is O(d/(αεr)), where d = m/n is the average
degree of the graph.

Observe that the estimates π̂−1
t (w) are used to find ap-

proximate target and frontier sets. Note that the running
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Algorithm 2 FRONTIER(G,α, t, εr, β) [14, 21]

Inputs: graph G, teleport probability α, target node t, re-
verse threshold εr, accuracy factor β

1: Define additive error εinv = βεr
2: Initialize (sparse) estimate-vector π̂−1

t and (sparse)

residual-vector rt as:

{
π̂−1
t (u) = rt(u) = 0 if u 6= t

π̂−1
t (t) = rt(t) = α

3: Initialize target-set T̂t = {t}, frontier-set F̂t = {}
4: while ∃w ∈ V s.t. rt(w) > αεinv do
5: for u ∈ N in(w) do

6: ∆ = (1− α). rt(w)
dout(u)

7: π̂−1
t (u) = π̂−1

t (u) + ∆, rt(u) = rt(u) + ∆
8: if π̂−1

t (u) > εr then

9: T̂t = T̂t ∪ {u} , F̂t = F̂t ∪N in(u)
10: end if
11: end for
12: rt(w) = 0
13: end while
14: F̂t = F̂t \ T̂t
15: return T̂t, F̂t, (π̂

−1
t (w))w∈F̂t∪T̂t

time for a given t is proportional to the frontier size |F̂t|.
It is relatively straightforward to argue (as in [21]) that∑
t∈V |F̂t| = Θ(nd/(αεr)).
In the subsequent subsections, we present theoretical anal-

yses of the running times and correctness of FAST-PPR.
The correctness proof makes an excessively strong assump-
tion of perfect outputs for FRONTIER, which is not true.
To handle this problem, we have a more complex variant of
FAST-PPR that can be proven theoretically – refer to our
technical report [18] for details. Nonetheless, our empiri-
cal results show that FAST-PPR does an excellent job of
estimating πs(t).

3.1 Running-time of FAST-PPR

Theorem 2. Given parameters δ, εr, the running-time of
the FAST-PPR algorithm, averaged over uniform-random
pairs s, t, is O(α−1(d/εr + εr/δ)).

Proof. Each random walk RW (u,Geom(α)) takes 1/α
steps on average, and there are O(εr/δ) such walks per-
formed – this is the forward time. On the other hand, from
Theorem 1, we have that for a random (s, t) pair, the aver-
age running time of FRONTIER is O(d/(αεr)) – this is the
reverse time. Combining the two, we get the result.

Note that the reverse time bound above is averaged across
choice of target node; for some target nodes (those with
high global PageRank) the reverse time may be much larger
than average, while for others it may be smaller. However,
the forward time is similar for all source nodes, and is pre-
dictable – we exploit this in Section 5.2 to design a balanced
version of FAST-PPR which is much faster in practice. In
terms of theoretical bounds, the above result suggests an
obvious choice of εr to optimize the running time:

Corollary 1. Set εr =
√
dδ. Then FAST-PPR has an

average per-query running-time of O(α−1
√
d/δ).

3.2 FAST-PPR with Perfect FRONTIER
We now analyze FAST-PPR in an idealized setting, where

we assume that FRONTIER returns exact inverse-PPR esti-
mates – i.e., the sets Tt(εr), Ft(εr), and the values {π−1

t (w)}
are known exactly. This is an unrealistic assumption, but it
gives much intuition into why FAST-PPR works. In partic-
ular, we show that if π(s, t) > δ, then with probability at
least 99%, FAST-PPR returns an estimate with relative er-
ror at most 1/4; furthermore, if π(s, t) < δ, then FAST-PPR
returns an estimate with additive error at most δ/4. Note
that the above guarantees are chosen for ease of exposition –
in our main theoretical result (provided in our technical re-
port [18]), we show that FAST-PPR can achieve any desired
relative error target and success probability.

Theorem 3. For any s, t, δ, εr, FAST-PPR outputs an
estimate π̂s(t) such that with probability > 0.99:

|πs(t)− π̂s(t)| ≤ max(δ, πs(t))/4.

Proof. We choose c = max (48 · 8e ln(100), 4 log2(100));
this choice of parameter c is for ease of exposition in the
computations below, and has not been optimized.

To prove the result, note that FAST-PPR performs k =
cεr/δ i.i.d. random walks RW (s, L). We use Hi to denote
the first node in Ft(εr) hit by the ith random walk. Let

Xi = π−1
t (Hi) and X =

∑k
i=1Xi. By Eqn. 4, E[Xi] =

πs(t), so E[X] = kπs(t). Note that π̂s(t) = X/k. As result,
|πs(t)− π̂s(t)| is exactly |X − E[X]|/k.

It is convenient to define scaled random variables Yi =
Xi/εr and Y = X/εr before we apply standard Chernoff
bounds. We have |πs(t) − π̂s(t)| = (εr/k)|Y − E[Y ]| =
(δ/c)|Y − E[Y ]|. Also, πs(t) = (δ/c)E[Y ]. Crucially, be-
cause Hi ∈ Ft(εr), Xi = πHi(t) < εr, so Yi ≤ 1. Hence,
we can apply the following two Chernoff bounds (refer to
Theorem 1.1 in [24]):

1. P[|Y − E[Y ]| > E[Y ]/4] < exp(−E[Y ]/48)

2. For any b > 2eE[Y ],P[Y > b] ≤ 2−b

Now, we perform a case analysis. Suppose πs(t) > δ/(4e).
Then E[Y ] > c/(4e), and

P[|πs(t)− π̂s(t)| > πs(t)/4] = P[|Y − E[Y ]| > E[Y ]/4]

< exp(−c/48 · 4e) < 0.01

Suppose πs(t) ≤ δ/(4e). Then, δ/4 > 2eπs(t) implying
c/4 > 2eE[Y ]. By the upper tail:

P[π̂s(t) > δ/4] = P[Y > c/4] ≤ 2−c/4 < 0.01

The proof is completed by trivially combining both cases.

4. LOWER BOUND FOR PPR ESTIMATION
In this section, we prove that any algorithm that accu-

rately estimates PPR queries up to a threshold δ must look
at Ω(1/

√
δ) edges of the graph. Thus, our algorithms have

the optimal dependence on δ. The numerical constants be-
low are chosen for easier calculations, and are not optimized.

We assume α = 1/100 log(1/δ), and consider random-
ized algorithms for the following variant of Significant-PPR,
which we denote as Detect-High(δ) – for all pairs (s, t):
• If πs(t) > δ, output ACCEPT with probability> 9/10.
• If πs(t) <

δ
2
, output REJECT with probability> 9/10.
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We stress that the probability is over the random choices
of the algorithm, not over s, t. We now have the following
lower bound:

Theorem 4. Any algorithm for Detect-High(δ) must ac-

cess Ω(1/
√
δ) edges of the graph.

Proof Outline. The proof uses a lower bound of Gol-
dreich and Ron for expansion testing [25]. The technical con-
tent of this result is the following – consider two distributions
G1 and G2 of undirected 3-regular graphs on N nodes. A
graph in G1 is generated by choosing three uniform-random
perfect matchings of the nodes. A graph in G2 is generated
by randomly partitioning the nodes into 4 equally sized sets,
Vi, i ∈ {1, 2, 3, 4}, and then, within each Vi, choosing three
uniform-random matchings.

Consider the problem of distinguishing G1 from G2. An
adversary arbitrarily picks one of these distributions, and
generates a graph G from it. A distinguisher must report
whether G came from G1 or G2, and it must be correct with
probability > 2/3 regardless of the distribution chosen. The-
orem 7.5 of Goldreich and Ron [25] asserts the following:

Theorem 5 (Theorem 7.5 of [25]). Any distinguisher

must look at
√
N/5 edges of the graph.

We perform a direct reduction, relating the Detect-High(δ)
problem to the Goldreich and Ron setting – in particular, we
show that an algorithm for Detect-High(δ) which requires

less than 1/
√
δ queries can be used to construct a distin-

guisher which violates Theorem 5. The complete proof is
provided in our technical report [18].

5. FURTHER VARIANTS OF FAST-PPR
The previous section describes vanilla FAST-PPR, with

a proof of correctness assuming a perfect FRONTIER. We
now present some variants of FAST-PPR. We give a theo-
retical variant that is a truly provable algorithm, with no as-
sumptions required – however, vanilla FAST-PPR is a much
better practical candidate and it is what we implement. We
also discuss how we can use pre-computation and storage to
obtain worst-case guarantees for FAST-PPR. Finally, from
the practical side, we discuss a workload-balancing heuristic
that provides significant improvements in running-time by
dynamically adjusting εr.

5.1 Using Approximate Frontier-Estimates
The assumption that FRONTIER returns perfect esti-

mates is theoretically untenable – Theorem 1 only ensures
that each inverse-PPR estimate is correct up to an additive
factor of εinv = βεr. It is plausible that for every w in the

frontier F̂t(εr), π
−1
t (w) < εinv, and FRONTIER may return

a zero estimate for these PPR values. It is not clear how
to use these noisy inverse-PPR estimates to get the desired
accuracy guarantees.

To circumvent this problem, we observe that estimates

π−1
t (w) for any node w ∈ T̂t(εr) are in fact accurate up to

a multiplicative factor. We design a procedure to bootstrap
these ‘good’ estimates, by using a special ‘target-avoiding’
random walk – this modified algorithm gives the desired
accuracy guarantee with only an additional log(1/δ) factor
in running-time. The final algorithm and proof are quite
intricate – due to lack of space, the details are deferred to
our technical report [18].

5.2 Balanced FAST-PPR
In FAST-PPR, the parameter εr can be chosen freely while

preserving accuracy. Choosing a larger value leads to a
smaller frontier and less forward work at the cost of more
reverse work; a smaller value requires more reverse work and
fewer random walks. To improve performance in practice,
we can optimize the choice of εr based on the target t, to bal-
ance the reverse and forward time. Note that for any value of
εr, the forward time is proportional to k = cεr/δ (the num-
ber of random walks performed) – for any choice of εr, it is
easy to estimate the forward time required. Thus, instead
of committing to a single value of εr, we propose a heuristic
wherein we dynamically decrease εr until the estimated re-
maining forward time equals the reverse time already spent.

We now describe this Balanced FAST-PPR algorithm in
brief. Instead of pushing from any node w with residual
rt(w) above a fixed threshold αεinv, we now push from the
node w with the largest residual value – this follows a sim-
ilar algorithm proposed in [21]. From [14, 21], we know
that a current maximum residual value of rmax implies an
additive error guarantee of rmax

α
– this corresponds to a dy-

namic εr value of rmax
αβ

. At this value of εr, the number of

forward walks required is k = cεr/δ. By multiplying k by
the average time needed to generate a walk, we get a good
prediction the amount of forward work still needed – we can
then compare it to the time spent on revere-work and adjust
εr till they are equal. Thus Balanced Fast-PPR is able to
dynamically choose εr to balance the forward and reverse
running-time. In Section 6.5, we experimentally show how
this change balances forward and reverse running-time, and
significantly reduces the average running-time.

5.3 FAST-PPR using Stored Oracles
All our results for FAST-PPR have involved average-case

running-time bounds. To convert these to worst-case running-
time bounds, we can precompute and store the frontier for
all nodes, and only perform random walks at query time. To
obtain the corresponding storage requirement for these Fron-
tier oracles, observe that for any node w ∈ V , it can belong
to the target set of at most 1

εr
nodes, as

∑
t∈V π

−1
t (w) = 1.

Summing over all nodes, we have:

Total Storage ≤
∑
t∈V

∑
w∈Tt

∑
u∈N in(w)

1{u∈Ft}

≤
∑
w∈V

∑
t∈V :w∈Tt

din(w) ≤ m

εr

To further cut down on running-time, we can also pre-
compute and store the random-walks from all nodes, and
perform appropriate joins at query time to get the FAST-
PPR estimate. This allows us to implement FAST-PPR on
any distributed system that can do fast intersections/joins.
More generally, it demonstrates how the modularity of FAST-
PPR can be used to get variants that tradeoff between dif-
ferent resources in practical implementations.

6. EXPERIMENTS
We conduct experiments to explore three main questions:

1. How fast is FAST-PPR relative to previous algorithms?
2. How accurate are FAST-PPR’s estimates?
3. How is FAST-PPR’s performance affected by our de-

sign choices: use of frontier and balancing forward/reverse
running-time?
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Table 1: Datasets used in experiments
Dataset Type # Nodes # Edges

DBLP-2011 undirected 1.0M 6.7M
Pokec directed 1.6M 30.6M

LiveJournal undirected 4.8M 69M
Orkut undirected 3.1M 117M

Twitter-2010 directed 42M 1.5B
UK-2007-05 directed 106M 3.7B

6.1 Experimental Setup
• Data-Sets: To measure the robustness of FAST-PPR,
we run our experiments on several types and sizes of graph,
as described in Table 1. Pokec and Twitter are both so-
cial networks in which edges are directed. The LiveJournal,
Orkut (social networks) and DBLP (collaborations on pa-
pers) networks are all undirected – for each, we have the
largest connected component of the overall graph. Finally,
our largest dataset with 3.7 billion edges is from a 2007 crawl
of the UK domain [26, 27]. Each vertex is a web page and
each edge is a hyperlink between pages.

For detailed studies of FAST-PPR, we use the Twitter-
2010 graph, with 41 million users and 1.5 billion edges. This
presents a further algorithmic challenge because of the skew
of its degree distribution: the average degree is 35, but one
node has more than 700, 000 in-neighbors.

The Pokec [28], Live Journal [29], and Orkut [29] datasets
were downloaded from the Stanford SNAP project [30]. The
DBLP-2011 [26], Twitter-2010 [26] and UK 2007-05 Web
Graph [26, 27] were downloaded from the Laboratory for
Web Algorithmics [19].
• Implementation Details: We ran our experiments on
a machine with a 3.33 GHz 12-core Intel Xeon X5680 pro-
cessor, 12MB cache, and 192 GB of 1066 MHz Registered
ECC DDR3 RAM. Each experiment ran on a single core
and loaded the graph used into memory before beginning
any timings. The RAM used by the experiments was domi-
nated by the RAM needed to store the largest graph using
the SNAP library format [30], which was about 21GB.

For reproducibility, our C++ source code is available at:
http://cs.stanford.edu/~plofgren/fast_ppr/

• Benchmarks: We compare FAST-PPR to two bench-
mark algorithms: Monte-Carlo and Local-Update.

Monte-Carlo refers to the standard random-walk algo-
rithm [13, 15, 16, 17] – we perform cMC

δ
walks and estimate

πu(v) by the fraction of walks terminating at v. For our ex-
periments, we choose cMC = 35, to ensure that the relative
errors for Monte-Carlo are the same as the relative error
bounds chosen for Local-Update and FAST-PPR (see be-
low). However, even in experiments with cMC = 1, we find
that FAST-PPR is still 3 times faster on all graphs and 25
times faster on the largest two graphs (refer to our technical
report [18] for additional plots).

Our other benchmark, Local-Update, is the state-of-the-
art local power iteration algorithm [14, 21]. It follows the
same procedure as the FRONTIER algorithm (Algorithm 2),
but with the additive accuracy εinv set to δ/2. Note that
a backward local-update is more suited to computing PPR
forward schemes [9, 2] as the latter lack natural performance
guarantees on graphs with high-degree nodes.
• Parameters: For FAST-PPR, we set the constants c =
350 and β = 1/6 – these are guided by the Chernoff bounds

Figure 3: Complementary cumulative distribution
for 10,000 (s,t) pairs sampled uniformly at random
on the Twitter graph.

we use in the proof of Theorem 3. For vanilla FAST-PPR,
we simply choose εr =

√
δ.

6.2 Distribution of PPR values
For all our experiments, we use δ = 4

n
. To understand

the importance of this threshold, we study the distribution
of PPR values in real networks. Using the Twitter graph
as an example, we choose 10,000 random (s, t) pairs and
compute πs(t) using FAST-PPR to accuracy δ = n

10
. The

complementary cumulative distribution function is shown on
a log-log plot in Figure 3. Notice that the plot is roughly
linear, suggesting a power-law. Because of this skewed dis-
tribution, only 2.8% of pairs have PPR above 1

n
= 2.4e-8,

and less than 1% have PPR over 4
n

= 9.6e-8.

6.3 Running Time Comparisons
After loading the graph into memory, we sample 1000

source/target pairs (s, t) uniformly at random. For each,
we measure the time required for answering PPR-estimation
queries with threshold δ = 4/n, which, as we discuss above,
is fairly significant because of the skew of the PPR distribu-
tion. To keep the experiment length less than 24 hours, for
the Local-Update algorithm and Monte-Carlo algorithms we
only use 20 and 5 pairs respectively.

The running-time comparisons are shown in Figure 4 – we
compare Monte-Carlo, Local-Update, vanilla FAST-PPR,
and Balanced FAST-PPR. We perform an analogous exper-
iment where target nodes are sampled according to their
global PageRank value. This is a more realistic model for
queries in personalized search applications, with searches bi-
ased towards more popular targets. The results, plotted in
Figure 4(b), show even better speedups for FAST-PPR. All
in all, FAST-PPR is many orders of magnitude faster than
the state of the art.

The effect of target global PageRank: To quantify
the speedup further, we sort the targets in the Twitter-2010
graph by their global PageRank, and choose the first tar-
get in each percentile. We measure the running-time of the
four algorithms (averaging over random source nodes), as
shown in Figure 5. Note that FAST-PPR is much faster
than previous methods for the targets with high PageRank.
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(a) Sampling targets uniformly (b) Sampling targets from PageRank distribution

Figure 4: Average running-time (on log-scale) for different networks. We measure the time required for
Significant-PPR queries (s, t, δ) with threshold δ = 4

n
for 1000 (s, t) pairs. For each pair, the start node is

sampled uniformly, while the target node is sampled uniformly in Figure 4(a), or from the global PageRank
distribution in Figure 4(b). In this plot we use teleport probability α = 0.2.

Figure 5: Execution time vs. global PageRank of the
target. Target nodes were sorted by global PageR-
ank, then one was chosen from each percentile. We
use α = 0.2, and 5-point median smoothing.

Note also that large PageRank targets account for most of
the average running-time – thus improving performance in
these cases causes significant speedups in the average run-
ning time. We also see that Balanced FAST-PPR has signif-
icant improvements over vanilla FAST-PPR, especially for
lower PageRank targets.

To give a sense of the speedup achieved by FAST-PPR,
consider the Twitter-2010 graph. Balanced FAST-PPR takes
less than 3 seconds for Significant-PPR queries with targets
sampled from global PageRank – in contrast, Monte Carlo
takes more than 6 minutes and Local Update takes more
than an hour. In the worst-case, Monte Carlo takes 6 min-
utes and Local Update takes 6 hours, while Balanced FAST-
PPR takes 40 seconds. Finally, the estimates from FAST-
PPR are twice as accurate as those from Local Update, and
6 times more accurate than those from Monte Carlo.

6.4 Measuring the Accuracy of FAST-PPR
We measure the empirical accuracy of FAST-PPR. For

each graph, we sample 25 targets uniformly at random, and
compute their ground truth inverse-PPR vectors by running
a power iteration up to an additive error of δ/100 (as before,
we use δ = 4/n). Since larger PPR values are easier to com-
pute than smaller PPR values, we sample start nodes such
that πs(t) is near the significance threshold δ. In particular,
for each of the 25 targets t, we sample 50 random nodes from
the set {s : δ/4 ≤ πs(t) ≤ δ} and 50 random nodes from the
set {s : δ ≤ πs(t) ≤ 4δ}.

We execute FAST-PPR for each of the 2500 (s, t) pairs,
and measure the empirical error – the results are compiled
in Table 2. Notice that FAST-PPR has mean relative error
less than 15% and max relative error less than 65% on all
graphs – this is sufficiently accurate to make it useful for
personalized search.

To make sure that FAST-PPR is not sacrificing accuracy
for improved running-time, we also compute the relative er-
ror of Local-Update and Monte-Carlo, using the same pa-
rameters as for our running-time experiments. For each
of the 2500 (s, t) pairs, we run Local-Update, and mea-
sure its relative error. For testing Monte-Carlo, we use
our knowledge of the ground truth PPR, and the fact that
each random-walk from s terminates at t with probability
ps = πs(t). This allows us to simulate Monte-Carlo by di-
rectly sampling from a Bernoulli variable with mean πs(t) –
this statistically identical to generating random-walks and
testing over all pairs. Note that actually simulating the
walks would take more than 50 days of computation for 2500
pairs. The relative errors are shown in Figure 1(b). Notice
that FAST-PPR is more accurate than the state-of-the-art
competition on all graphs. This shows that our running time
comparisons are using parameters settings that are fair.

6.5 Some Other Empirical Observations
• Necessity of the Frontier: Another question we study
experimentally is whether we can modify FAST-PPR to
compute the target set Tt(εr) and then run Monte-Carlo
walks until they hit the target set (rather than the fron-
tier set Ft(εr)). This may appear natural, as the target set
is also a blanket set, and we have good approximations for
inverse-PPR values in the target set. Further, using only the
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Table 2: Accuracy of FAST-PPR (with parameters as specified in Section 6.1)
Dblp Pokec LJ Orkut Twitter UK-Web

Threshold δ 4.06e-06 2.45e-06 8.25e-07 1.30e-06 9.60e-08 3.78e-08
Average Additive Error 5.8e-07 1.1e-07 7.8e-08 1.9e-07 2.7e-09 2.2e-09

Max Additive Error 4.5e-06 1.3e-06 6.9e-07 1.9e-06 2.1e-08 1.8e-08
Average Relative Error: 0.11 0.039 0.08 0.12 0.028 0.062

Max Relative Error 0.41 0.22 0.47 0.65 0.23 0.26

(a) FAST-PPR (b) FAST-PPR using target set instead of frontier

Figure 6: The importance of using the frontier. In each of these plots, a perfect algorithm would place all
data points on the line y = x. Notice how using inverse-PPR estimates from the target set rather than the
frontier results in significantly worse accuracy.

Figure 7: Forward and reverse running-times (on
log-scale) for FAST-PPR (in red) and Balanced
FAST-PPR (in blue) as we vary the global PageR-
ank of the target node on the x-axis. Data is for the
Twitter-2010 graph and is smoothed using median-
of-five smoothing. Notice how there is a significant
gap between the forward and backward work in Fast-
PPR, and that this gap is corrected by Balanced
Fast-PPR.

target set would reduce the dependence of the running-time
on d, and also reduce storage requirements for an oracle-
based implementation.

It turns out however that using the frontier is critical to
get good accuracy. Intuitively, this is because nodes in the
target set may have high inverse-PPR, which then increases
the variance of our estimate. This increase in variance can be
visually seen in a scatterplot of the true vs estimated value,
as shown in Figure 6(b) – note that the estimates generated
using the frontier set are much more tightly clustered around
the true PPR values, as compared to the estimates generated
using the target set.
• Balancing Forward and Reverse Work: Balanced
FAST-PPR, as described in Section 5.2, chooses reverse thresh-
old εr dynamically for each target node. Figure 4 shows
that Balanced FAST-PPR improves the average running-
time across all graphs.

In Figure 7, we plot the forward and reverse running-times
for FAST-PPR and Balanced FAST-PPR as a function of
the target PageRank. Note that for high global-PageRank
targets, FAST-PPR does too much reverse work, while for
low global-PageRank targets, FAST-PPR does too much for-
ward work – this is corrected by Balanced FAST-PPR.
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