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ABSTRACT

SimRank, proposed by Jeh and Widom, provides a good
similarity measure that has been successfully used in numer-
ous applications. While there are many algorithms proposed
for computing SimRank, their computational costs are very
high.
In this paper, we propose a framework for computing

SimRank accurately. Our framework is based on the novel
technique, linearized SimRank, which provides efficient algo-
rithms for the single-pair, single-source, and all-pairs Sim-
Rank problems, respectively. More specifically, our frame-
work consists of two phases, a preprocessing phase and a
query phase. In the preprocessing phase, we estimate a pa-
rameter for a given graph and a desired accuracy by Monte
Carlo simulation, and then in the query phase, we efficiently
solve SimRank problems using this preprocessed parameter.
Our algorithms are efficient in both time and space. The
preprocessing phase is performed in nearly linear time and
the query phase requires only linear time for single-pair and
single-source problems; furthermore, the space complexity
is linear for both preprocessing and query phase.
We conducted experiments to evaluate our algorithms.

For small networks (n ≤ 1, 000, 000), our algorithm required
only a few minutes for preprocessing, and then answered
single-pair and single-source queries in 100 and 300 millisec-
onds, respectively. All-pairs computation was performed in
a few days. For large networks (n ≥ 40, 000, 000), our algo-
rithm required a few hours for preprocessing, and then an-
swered single-pair and single-source queries approximately
in 10 seconds and in a half minutes, respectively.
In comparison to previous studies, for the all-pairs prob-

lem, our algorithm uses significantly less memory than any
existing algorithm; thus it scales for much larger networks.
For the single-pair and the single-source problems, our al-
gorithm requires much fewer random samples than any ex-
isting Monte Carlo based algorithm for the same accuracy
solution.
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1. INTRODUCTION

1.1 SimRank
In recent years, much effort has been devoted to extract-

ing useful information from large graphs. With the rapidly
increasing amount of graph data, the similarity search prob-
lem, which identifies similar vertices in a graph, has become
an important problem with many applications, including
web analysis [16, 27], graph clustering [38, 45], spam de-
tection [14], computational advertisement [4], recommender
systems [2, 39], and natural language processing [34].

Several similarity measures have been proposed [20,28,29,
30, 35]. In this paper, we focus on SimRank [16]. SimRank
is a link-based similarity measure proposed for similarity
searches on the World Wide Web. The fundamental idea
behind SimRank is that

two pages are similar if they are referenced by
similar pages.

This intuition is formulated as follows. Let G = (V,E) be
a directed graph with vertex set V = {1, . . . , n}. SimRank
s(i, j) of vertex i and j is recursively defined by

s(i, j) =











1, (i = j),
c

|In(i)||In(j)|

∑

i′∈In(i),j′∈In(j)

s(i′, j′), (i 6= j),

(1)

where In(i) = {j ∈ V : (j, i) ∈ E} is the set of in-neighbors
of i, and c ∈ (0, 1) is a decay factor usually set to c = 0.8 [16]
or c = 0.6 [31]. SimRank and its related measures [4,9,41,43]
give high-quality scores in many application areas, because it
takes multi-step neighborhoods into account, whereas other
similarity measures, such as the Jaccard coefficient, utilize
only one-step neighborhoods.

While there are several algorithms proposed to compute
SimRank scores, its computation cost is very high. More
precisely, there are three fundamental SimRank problems:

Single-pair SimRank. Given two vertices i, j ∈ V , com-
pute SimRank score s(i, j).

Single-source SimRank. Given a vertex i ∈ V , compute
SimRank scores s(i, j) for all j ∈ V .

All-pairs SimRank. Compute SimRank scores s(i, j) for
all i, j ∈ V .
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Table 1: Summary of SimRank algorithms on sparse graphs, where n is the number of vertices, m is the
number of edges, T is the number of SimRank iterations, R and L are parameters that depend on the desired
accuracy for our algorithm, and R′ is the parameter for the algorithm [11].

Algorithm Preprocessing Query Type Time Memory Technique
Single-pair O(Tm)

Proposed O(TRLn) Single-source O(T 2m) O(m) Linearization
All-pairs O(T 2nm)

Fogaras and Rácz [11] O(TR′n)
Single-pair O(TR′)

O(m+ nR′) Random surfer pair (Monte Carlo)
Single-source O(TR′n)

Li et al. [26] — Single-pair O(Tm2) O(n2) Random surfer pair (Iterative)
Jeh and Widom [16] — All-pairs O(Tm2) O(n2) Naive
Lizorkin et al. [31] — All-pairs O(Tnm) O(n2) Partial sum
Yu et al. [42] — All-pairs O(Tnm) O(n2) Fast matrix multiplication

Most existing algorithms solve the all-pairs SimRank prob-
lem using O(n2) space, where n is the number of vertices;
thus they are impractical for large graphs. A few algorithms
solve the single-pair and single-source problems, but they
also have accuracy and complexity issues, which we describe
in Section 5.3.
Therefore, the purpose of this paper is to propose effi-

cient algorithms, in both time and space, for these SimRank
problems.

1.2 Related work
In this subsection, we review existing algorithms for Sim-

Rank computation.

All-pairs SimRank.
In the original paper by Jeh and Widom [16], SimRank

is computed by recursively evaluating equation (1) for all
i, j ∈ V . This naive computation yields an O(Tm2) time
algorithm, where m denotes the number of edges, and T de-
notes the number of iterations. Lizorkin et al. [31] proposed
a partial sum technique to reduce the time complexity to
O(T min{nm, n3/ log n}). Jia et al. [19] removed dangling
vertices, which are vertices with no in-links, since the Sim-
Rank scores of these vertices are always zero. Yu et al. [42]
introduced a matrix-based iteration approach and applied a
fast matrix multiplication algorithm [36, 37] that yields an
O(T min{nm, nω}) time algorithm, where ω < 2.373 is the
exponent of matrix multiplication. Cai et al. [8] proposed
an algorithm that discards SimRank scores less than a pre-
defined threshold, a technique already employed in previous
algorithms [31, 42]. They showed that this technique works
effectively on scale-free networks. Jia et al. [18] proposed an
algorithm to maintain only vertex pairs of small distances
and showed that this technique works effectively on small-
world networks.
We emphasize that for all existing algorithms for the all-

pairs problem, the space complexity of these algorithms is
O(n2), since they must maintain all SimRank scores for each
pair of nodes to evaluate equation (1).

Single-pair SimRank.
Jeh and Widom [16] provided a random-walk interpreta-

tion of SimRank, called a random surfer pair model. Con-
sider two random walks that start from vertices i and j
respectively, and follow their in-links. Let τ(i, j) be the ran-
dom variable that denotes the first meeting time of i and j.

Then the SimRank score is obtained by

s(i, j) = E[cτ(i,j)], (2)

where E denotes the expectation. Fogaras and Rácz [11]
evaluated the right hand side via Monte Carlo simulation
with a fingerprint tree data structure. This requires O(nR′)
space to maintain R′ random walks for each vertex, and
computes a SimRank score s(i, j) in O(TR′) time. Further-
more, they extended their method for single-source query
that simultaneously computes single-pair queries for (possi-
bly) similar vertices by traversing the fingerprint tree; this
yields an O(TR′n) time algorithm. Li et al. [26] also used
the random surfer pair model, but their algorithm is deter-
ministic; more specifically, their algorithm is an iterative al-
gorithm for the first meeting time, and requires O(n2) space.

Note that some papers [12,25,40,41] proposed spectral de-
composition (or low-rank decomposition) based algorithms;
however, unfortunately, their algorithms do not actually com-
pute SimRank, because their algorithms are based on an
incorrect formula; see Remark 1 in Section 2 below.

1.3 Contribution
In this paper, we propose a framework for efficiently com-

puting SimRank with an arbitrary accuracy ǫ (i.e., the error
is less than ǫ). Our framework consists of two phases, a pre-
processing phase and a query phase. In the preprocessing
phase, we estimate a diagonal matrix D, which is defined
in Section 2 and which plays a crucial role in our frame-
work, for a given graph and an accuracy ǫ, and in the query
phase, by using this estimated matrix D, we solve single-
pair, single-source, and all-pairs SimRank problems. The
obtained algorithms are efficient in both time and space, as
described below.

Efficient in time. The preprocessing phase to estimate
a matrix D is an iterative algorithm with Monte Carlo sim-
ulation (Subsections 4.1 and 4.2). The time complexity of
this phase is O(TLRn), where T is the number of iterations
to compute SimRank scores, R is the number of Monte Carlo
samples, and L is the number of iterations for the estima-
tion algorithm. It can be shown that R = O((log n)/ǫ2) and
L = O(log(n/ǫ)) (Subsection 4.3). Thus, the time complex-
ity is expected to be nearly linear. Note that the prepro-
cessing phase is the most computationally intensive part of
our framework.

Once this matrix D is estimated, SimRank scores can
be computed by deterministic algorithms (Section 3). The
single-pair problem can be solved in O(Tm) time, the single-

1427



source problem can be solved in O(T 2m) time, and the all-
pairs problem can be solved in O(T 2nm) time by solving
single-source problems for all vertices. Note that our all-
pairs algorithm can easily be parallelized to multiple ma-
chines, i.e., if we haveM machines, it can run inO(T 2nm/M)
time.

Efficient in space. In both the preprocessing and query
phases, the algorithms only require O(n) extra space to store
a diagonal matrix D and vectors of length n. thus the total
space complexity is O(m). Note that for the all-pairs case,
we do not have to store the similarity of all pairs of vertices.
We emphasize that this is the first linear space algorithm to
compute all-pairs SimRank scores.

We evaluated our algorithms using real networks in Sec-
tion 5. For small networks (n ≤ 1, 000, 000), our algorithm
took only a few minutes for preprocessing, and then an-
swered single-pair and single-source queries in 100 and 300
milliseconds (on average), respectively. All-pairs computa-
tion was performed in a few days. For large networks (n ≥
40, 000, 000), our algorithm required a few hours for pre-
processing, and then answered single-pair and single-source
queries approximately in 10 seconds and in a half minutes
(on average), respectively. To the best of our knowledge,
our experiment is performed on the largest datasets in the
literature.

Comparison with other existing algorithms. We
compare our algorithm with the existing ones in Subsec-
tion 5.3. Our algorithms have the following advantages:

1. The state-of-the-art all-pairs algorithm, proposed by
Yu et al. [42], requires much more memory, and hence
works only for small networks which has n ≤ 1,000,000
vertices. On the other hand, our algorithm requires
much less memory, therefore it works for a very large
networks.

2. The state-of-the-art Monte Carlo based single-pair and
single-source algorithm by Fogaras and Racz [11] also
requires much more space.

Our framework is based on a novel technique, named lin-
earized SimRank. In Section 2, we observe that the compu-
tational difficulty of SimRank comes from its non-linearity.
We introduced linearized SimRank to overcome this diffi-
culty, which enabled us to compute SimRank scores via a
linear recurrence equation.

1.4 Organization
In Section 2, we introduce the linearized SimRank, which

is the main idea of our paper. In Section 3, we propose algo-
rithms for three fundamental problems for SimRank, which
are based on the linearized SimRank. In Section 4, we pro-
pose a parameter estimation algorithm, which is required for
preprocessing. In Section 5, we evaluate our algorithm on
several real networks in terms of accuracy and efficiency. We
also give comparisons with existing algorithms. Finally in
Section 6, we conclude our paper and describe future work.

2. LINEARIZED SIMRANK
Let us first observe the difficulty in computing SimRank.

Let G = (V,E) be a directed graph, and let P = (Pij) be a

transition matrix of transpose graph G⊤ defined by

Pij :=

{

1/|In(j)|, (i, j) ∈ E,

0, (i, j) 6∈ E,

where In(i) = {j ∈ V : (j, i) ∈ E} denotes the in-neighbors
of i ∈ V . Let S = (s(i, j)) be the SimRank matrix, whose
(i, j) entry is the SimRank score of i and j. Then the Sim-
Rank equation (1) is represented [42] by:

S = (cP⊤SP ) ∨ I, (3)

where I is the identity matrix, and ∨ denotes the element-
wise maximum, i.e., (i, j) entry of the matrix A∨B is given
by max{Aij , Bij}.

In our view, the difficulty in computing SimRank via equa-
tion (3) comes from the element-wise maximum, which is a
non-linear operation. To avoid the element-wise maximum,
we introduce a new formulation of SimRank as follows. By
observing (3), since S and cP⊤SP only differ in their diag-
onal elements, there exists a diagonal matrix D such that

S = cP⊤SP +D. (4)

We call such a matrix D the diagonal correction matrix.
The main idea of our approach here is to split the SimRank
computation problem into the following two subproblems:

1. Estimate diagonal correction matrix D, and

2. compute SimRank using D and the linear recurrence
equation (4).

The second step is straightforward and can be efficiently per-
formed (Section 3). The first step is the difficult portion of
our framework. For efficient computation, we must estimate
D without computing the whole part of S.

For the remainder of this paper, to simplify the discussion,
we introduce the notion of linearized SimRank. Let Θ be an
n×n matrix. A linearized SimRank SL(Θ) is a matrix that
satisfies the following linear recurrence equation:

SL(Θ) = cP⊤SL(Θ)P +Θ. (5)

Below, we provide an example that illustrates what lin-
earized SimRank is.

Example 1 (Star graph of order 4). Let G be a star
graph of order 4 (i.e., G has one vertex of degree three and
three vertices of degree one). The transition matrix (of the
transposed graph) is

P =









0 1 1 1
1/3 0 0 0
1/3 0 0 0
1/3 0 0 0









,

and SimRank for c = 0.8 is

S =









1 0 0 0
0 1 4/5 4/5
0 4/5 1 4/5
0 4/5 4/5 1









.

Thus, the diagonal correction matrix D is obtained by

D = S − cP⊤SP = diag(23/75, 1/5, 1/5, 1/5),
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Algorithm 1 Single-pair SimRank

1: procedure SinglePairSimRank(i,j)
2: α← 0, x← ei, y ← ej
3: for t = 0, 1, . . . , T − 1 do
4: α← α+ ctx⊤Dy, x← Px, y ← Py
5: end for
6: Report Sij = α
7: end procedure

Remark 1. Some papers have used the following formula
for SimRank (e.g., equation (2) in [12], equation (2) in [15],
equation (2) in [25], and equation (3) in [41]):

S = cP⊤SP + (1− c)I. (6)

However, this formula does not hold; (6) requires diagonal
correction matrix D to have the same diagonal entries, but
Example 1 is a counterexample. In fact, matrix S defined by
(6) is a linearized SimRank SL(Θ) for a matrix Θ = (1−c)I.

We provide some basic properties of linearized SimRank in
Appendix.

3. LINEARIZED SIMRANK COMPUTATION
In this section, we present our proposed algorithms for

SimRank by assuming that the diagonal correction matrix
D has already been obtained. All algorithms are based on
the same fundamental idea; i.e., in (4), by recursively substi-
tuting the left hand side into the right hand side, we obtain
the following series expansion:

S = D + cP⊤DP + c2P⊤2DP 2 + · · · . (7)

Our algorithms compute SimRank by evaluating the first
T terms of the above series. The time complexity of the
algorithms are O(Tm) for the single-pair problem, O(T 2m)
for the single-source problem, and O(T 2nm) for the all-pairs
problem. For all problems, the space complexity is O(m).

3.1 Single-pair SimRank
Let ei be the i-th unit vector (i = 1, . . . , n); then SimRank

score s(i, j) is obtained via the (i, j) component of SimRank
matrix S, i.e., s(i, j) = e⊤i Sej . Thus, by applying e⊤i and ej
to both sides of (7), we obtain

e⊤i Sej = e⊤i Dej + c(Pei)
⊤DPej

+ c2(P 2ei)
⊤DP 2ej + · · · . (8)

Our single-pair algorithm (Algorithm 1) evaluates the right-
hand side of (8) by maintaining P tei and P tej . The time
complexity is O(Tm) since the algorithm performsO(T ) ma-
trix vector products for P tei and P tej (t = 1, . . . , T − 1).

3.2 Single-source SimRank
For the single-source problem, to obtain s(i, j) for all

j ∈ V , we need only compute vector Sei, because its j-th
component is s(i, j). By applying ei to (7), we obtain

Sei = Dei + cP⊤DPei + c2P⊤2DP 2ei + · · · . (9)

Our single-source algorithm (Algorithm 2) evaluates the right
hand side of (9) by maintaining P tei and P tej . The time
complexity is O(T 2m) since it performs O(T 2) matrix vector
products for P⊤tDP tei (t = 1, . . . , T − 1).

Algorithm 2 Single-source SimRank

1: procedure SingleSourceSimRank(i)

2: γ ← ~0, x← ei
3: for t = 0, 1, . . . , T − 1 do
4: γ ← γ + ctP⊤tDx, x← Px
5: end for
6: Report Sij = γj for j = 1, . . . , n
7: end procedure

Algorithm 3 All-pairs SimRank

1: procedure AllPairsSimRank
2: for i = 1, . . . , n do
3: Compute SingleSourceSimRank(i)
4: end for
5: end procedure

3.3 All-pairs SimRank
Computing all-pairs SimRank is an expensive task for a

large network, because it requires O(n2) time since the num-
ber of pairs is n2. To compute all-pairs SimRank, it is best
to avoid using O(n2) space.

Our all-pairs SimRank algorithm applies the single-source
SimRank algorithm (Algorithm 2) for all initial vertices, as
shown in Algorithm 3. The complexity is O(T 2nm) time
and requires only O(m) space. Since the best-known all-
pairs SimRank algorithm [31] requires O(Tnm) time and
O(n2) space, our algorithm significantly improves the space
complexity and has almost the same time complexity (since
the cost of factor T is much smaller than n or m).

It is worth noting that this algorithm is distributed com-
puting friendly. If we have M machines, we assign initial
vertices to each machine and independently compute the
single-source SimRank. Then the computational time is re-
duced to O(T 2nm/M). This shows the scalability of our
all-pairs algorithm.

4. DIAGONAL CORRECTION MATRIX

ES-TIMATION
As seen in the previous section, once diagonal correction

matrixD is obtained, SimRank computation is a straightfor-
ward task. In this section, we show how to estimate diagonal
correction matrix D.

We first observe that the diagonal correction matrix is
uniquely determined from the diagonal condition.

Proposition 1. A diagonal matrix D is the diagonal cor-
rection matrix, i.e., SL(D) = S if and only if D satisfies

SL(D)kk = 1, (k = 1, . . . , n), (10)

where SL(D)kk denotes (k, k) entry of the linearized Sim-
Rank matrix SL(D).

Proof. See Appendix.

This proposition shows that the diagonal correction matrix
can be estimated by solving equation (10). Furthermore,
we observe that, since SL is a linear operator, (10) is a
linear equation with n real variables D11, . . . , Dnn where
D = diag(D11, . . . , Dnn). Therefore, we can apply a numer-
ical linear algebraic method to estimate matrix D.
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Algorithm 4 Diagonal estimation algorithm.

1: procedure DiagonalEstimation
2: Set initial guess of D.
3: for ℓ = 1, . . . , L do
4: for k = 1, . . . , n do
5: δ ← (1− SL(D)kk)/S

L(E(k,k))kk
6: Dkk ← Dkk + δ
7: end for
8: end for
9: return D
10: end procedure

The problem for solving (10) lies in the complexity; a
naive method (Algorithm 1) requires O(Tm) time to eval-
uate SL(D)kk for each k, but this is very expensive. To
reduce the complexity, we combine an alternating method
(a.k.a. the Gauss-Seidel method) with Monte Carlo simula-
tion. The complexity of the obtained algorithm is O(TLRn)
time, where L is the number of iterations for the alternat-
ing method, and R is the number of Monte Carlo samples.
We analyze the upper bound of parameters L and R for
sufficient accuracy in Subsection 4.3 below.

4.1 Alternating method for diagonal estima-
tion

Our algorithm is motivated by the following intuition:

A (k, k) diagonal entry SL(D)kk is the most
affected by the (k, k) diagonal entry Dkk of D.

(11)

This intuition leads to the following iterative algorithm. Let
D be an initial guess1; for each k = 1, . . . , n, the algorithm
iteratively updates Dkk to satisfy SL(D)kk = 1. The update

is performed as follows. Let E(k,k) be the matrix whose
(k, k) entry is one, with the other entries being zero. To
update Dkk, we must find δ ∈ R such that

SL(D + δE(k,k))kk = 1.

Since SL is linear, the above equation is solved as follows:

δ =
1− SL(D)kk
SL(E(k,k))kk

. (12)

This algorithm is shown in Algorithm 4.
Mathematically, the intuition (11) shows the diagonally

dominant property of operator SL. Furthermore, the ob-
tained algorithm (i.e., Algorithm 4) is theGauss-Seidel method
for a linear equation. Since the Gauss-Seidel method con-
verges for a diagonally dominant operator [13], Algorithm 4
converges to the diagonal correction matrix2 .

4.2 Monte Carlo based evaluation
For an efficient implementation of our diagonal estima-

tion algorithm (Algorithm 4), we must establish an efficient

method to estimate SL(D)kk and SL(E(k,k))kk.
Consider a random walk that starts at vertex k and follows

its in-links. Let k(t) denote the location of the random walk

1We discuss an initial solution in Remark 2 in Appendix.
2Strictly speaking, we need some conditions for the diago-
nally dominant property of operator SL. In practice, we can
expect the estimation algorithm converges; see Lemma 1 in
Appendix.

Algorithm 5 Estimate SL(D)kk and SL(E(k,k))kk.

1: α← 0, β ← 0, k1 ← k, k2 ← k, . . . , kR ← k
2: for t = 0, 1, . . . , T − 1 do
3: for i ∈ {k1, k2, . . . , kR} do

4: p
(t)
ki ← #{r = 1, . . . , R : kr = i}/R

5: if i = k then
6: α← α+ ctp

(t)2
ki

7: end if
8: β ← β + ctp

(t)2
ki Dii

9: end for
10: for r = 1, . . . , R do
11: kr ← δ−(kr) randomly
12: end for
13: end for
14: return SL(D)kk ≈ α, SL(E(k,k))kk ≈ β.

after t steps. Then we have

E[ek(t) ] = P tek.

We substitute this representation into (8) and evaluate the

expectation via Monte Carlo simulation. Let k
(t)
1 , . . . , k

(t)
R

be R independent random walks. Then for each step t, we
have estimation

(P tek)i ≈ #{r = 1, . . . , R : k(t)
r = i}/R =: p

(t)
ki . (13)

Thus the t-th term of (8) for i = j = k is estimated as

(P tek)
⊤DP tek ≈

n
∑

i=1

p
(t)2
ki Dii. (14)

We therefore obtain Algorithm 5 for estimating SL(D)kk
and SL(E(k,k))kk.

Using a hash table, we can implement Algorithm 5 in
O(TR) time, where R denotes the number of samples and
T denotes the maximum steps of random walks that are
exactly the number of SimRank iterations. Therefore Algo-
rithm 4 is performed in O(TLRn) time, where L denotes
the number of iterations required for Algorithm 4.

4.3 Correctness: Accuracy of the algorithm
To complete the algorithm, we provide a theoretical esti-

mation of parameters L and R that are determined in rela-
tion to the desired accuracy. In Section 5, we experimentally
evaluate the accuracy.

Estimation of the number of iterations L. The
convergence rate of the Gauss-Seidel method is linear; i.e.,
the squared error

√
∑n

k=1(S
L(D)kk − 1)2 at l-th iteration

of Algorithm 4 is estimated as O(ρl), where 0 ≤ ρ < 1
is a constant (i.e., the spectral radius of the iteration ma-
trix). Therefore, since the error of an initial solution is O(n),
the number of iterations L of Algorithm 4 is estimated as
O(log(n/ǫ)) for desired accuracy ǫ.

Estimation of the number of samples R. Since the
algorithm is a Monte Carlo simulation, there is a trade-off
between accuracy and the number of samples R. The de-
pendency is estimated by the Hoeffding inequality, which is
described below.
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Proposition 2. Let p
(t)
ki (i = 1, . . . , n) be defined by (13),

and let p
(t)
k := (p

(t)
k1 , . . . , p

(t)
kn). Then

P
{

‖P tek − p
(t)
k ‖ > ǫ

}

≤ 2n exp

(

−
(1− c)Rǫ2

2

)

.

where P denotes the probability.

Proof. See Appendix.

This shows that we need R = O((log n)/ǫ2) samples to ac-
curately estimate P tek via Monte Carlo simulation.

By combining all estimations, we conclude that diagonal
correction matrixD is estimated inO(Tn log(n/ǫ)(log n)/ǫ2)
time. Since this is nearly linear time, the algorithm scales
well.
Note that the accuracy of our framework only depends

on the accuracy of the diagonal estimation, i.e., if D is ac-
curately estimated, the SimRank matrix S are accurately
estimated by SL(D); see Proposition 4 in Appendix. There-
fore, if we want accurate SimRank scores, we only need to
spend more time in the preprocessing phase and fortunately
do not need to increase the time required in the query phase.

5. EXPERIMENTS
In this section, we evaluate our algorithm via experiments

using real networks. The datasets we used are shown in Ta-
ble 23. We first evaluate the accuracy in Subsection 5.1,
then evaluate the efficiency in Subsection 5.2; and finally,
we compare our algorithm with some existing ones in Sub-
section 5.3.
For all experiments, we used decay factor c = 0.6, as sug-

gested by Lizorkin et al. [31], and the number of SimRank it-
erations T = 11, which is the same as Fogaras and Rácz [11].
All experiments were conducted on an Intel Xeon E5-2690

2.90GHz CPU with 256GB memory running Ubuntu 12.04.
Our algorithm was implemented in C++ and was compiled
using g++v4.6 with the -O3 option.

5.1 Accuracy
The accuracy of our framework depends on the accuracy

of the estimated diagonal correction matrix, computed via
Algorithm 4. As discussed in Subsection 4.3, our algorithm
has two parameters, L and R, the number of iterations for
the Gauss-Seidel method, and the number of samples for
Monte Carlo simulation, respectively. We evaluate the ac-
curacy by changing these parameters.
To evaluate the accuracy, we first compute the exact Sim-

Rank matrix S by Jeh and Widom’s original algorithm [16],
and then compute the mean error [42] defined as follows:

ME =
1

n2

∑

i,j

∣

∣

∣
SL(D)ij − s(i, j)

∣

∣

∣
. (15)

3ca-GrQc, as20000102, Wiki-Vote, ca-HepTh, email-Enron,
soc-Slashdot0811, soc-Slashdot0902, soc-Epinions1, email-
EuAll, web-BerkStan web-Google, web-NotreDame, web-
Stanford, and soc-LiveJournal datasets are available at
http://snap.stanford.edu/data/index.html [3,21,22,23,
24]. dblp-2011, in-2004, indochina-2004, it-2004, twitter-
2010, and uk-2007-05 datasets are available at http://law.
di.unimi.it/datasets.php [5, 6]. flickr dataset is avail-
able at http://socialnetworks.mpi-sws.org/datasets.
html [33]. See the corresponding web pages noted above
for detailed information about each of these datasets.

Table 2: Dataset information.
Dataset n m

ca-GrQc 5,242 14,496
as20000102 6,474 13,895
Wiki-Vote 7,155 103,689
ca-HepTh 9,877 25,998
email-Enron 36,692 183,831
soc-Epinions1 75,879 508,837
soc-Slashdot0811 77,360 905,468
soc-Slashdot0902 82,168 948,464
email-EuAll 265,214 400,045
web-Stanford 281,903 2,312,497
web-NotreDame 325,728 1,497,134
web-BerkStan 685,230 7,600,505
web-Google 875,713 5,105,049
dblp-2011 933,258 6,707,236
in-2004 1,382,908 17,917,053
flickr 1,715,255 22,613,981
soc-LiveJournal 4,847,571 68,993,773
indochina-2004 7,414,866 194,109,311
it-2004 41,291,549 1,150,725,436
twitter-2010 41,652,230 1,468,365,182
uk-2007-05 105,896,555 3,738,733,648

Since this evaluation is expensive (i.e., it requires SimRank
scores forO(n2) pairs), we used the following smaller datasets:
ca-GrQc, as20000102, wiki-Vote, and ca-HepTh. Results are
shown in Figure 1, and we summarize our results below.

• For mean error ME ≤ 10−5 ∼ 10−6, we need only
R = 100 samples with L = 3 iterations. Note that this
is the same accuracy level as [42].

• If we want more accurate SimRank scores, we need
much more samples R and little more iterations L.
This coincides with the analysis shown in Subsection 4.3
in which we estimated that L = O(log(n/ǫ)) and R =
O((log n)/ǫ2).
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Figure 1: Number of iterations L vs. mean error of
computed SimRank.
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5.2 Efficiency
We next evaluate the efficiency of our algorithm. We first

performed preprocessing with parameters R = 100 and L =
3, respectively. We then performed single-pair, single-source
and all-pairs queries for real networks. Results are shown in
Table 3; we omitted results of the all-pairs computation for
a network larger than in-2004 since runtimes exceeded three
days. We summarize our results below.

• For small networks (n ≤ 1, 000, 000), only a few min-
utes of preprocessing time were required; furthermore,
answers to single-pair queries were obtained in 100 mil-
liseconds, while answers to single-source queries were
obtained in 300 milliseconds. This efficiency is cer-
tainly acceptable for online services. We were also able
to solve all-pairs query in a few days.

• For large networks, n ≥ 40, 000, 000, a few hours of
preprocessing time were required; furthermore, answers
to single-pair queries were obtained approximately in
10 seconds, while answers to single-source queries were
obtained in a half minutes. To the best of our knowl-
edge, this is the first time that such an algorithm is
successfully scaled up to such large networks.

• The space complexity is proportional to the number of
edges, which enables us to compute SimRank values
for large networks.

5.3 Comparisons with existing algorithms
In this subsection, we compare our algorithm with two

state-of-the-art algorithms for computing SimRank. We used
the same parameters (R = 100, L = 3) as the above.

Comparison with the state-of-the-art all-pairs algorithm.

Yu et al. [42] proposed an efficient all-pairs algorithm;
the time complexity of their algorithm is O(Tnm), and the
space complexity is O(n2). They computed SimRank via
matrix-based iteration (3) and reduced the space complexity
by discarding entries in SimRank matrix that are smaller
than a given threshold. We implemented their algorithm
and evaluated it in comparison with ours. We used the same
parameters presented in [42] that attain the same accuracy
level as our algorithm.
Results are shown in Table 3; the omitted results (—)

mean that their algorithm failed to allocate memory. From
the results, we observe that their algorithm performs a lit-
tle faster than ours, because the time complexity of their
algorithm is O(Tnm), whereas the time complexity of our
algorithm is O(T 2nm); however, our algorithm uses much
less space. In fact, their algorithm failed for a network with
n ≥ 300,000 vertices because of memory allocation. More
importantly, their algorithm cannot estimate the memory
usage before running the algorithm. Thus, our algorithm
significantly outperforms their algorithm in terms of scala-
bility.

Comparison with the state-of-the-art single-pair and
single-source algorithm.
Fogaras and Rácz [11] proposed an efficient single-pair al-

gorithm that estimates SimRank scores by using first meet-
ing time formula (2) with Monte Carlo simulation. Like
our approach, their algorithm also consists of two phases, a

Table 4: Accuracy of the single-pair algorithm pro-
posed by Fogaras and Rácz [11]; accuracy is shown
as mean error.

Dataset Samples Accuracy
ca-GrQc 100 1.59 ×10−4

1,000 5.87 ×10−5

10,000 1.32 ×10−5

100,000 6.43 ×10−6

(Proposed 4.77 ×10−6)
as20000102 100 2.51 ×10−3

1,000 7.87 ×10−4

10,000 2.54 ×10−4

100,000 8.69 ×10−5

(Proposed 1.19 ×10−7)
wiki-Vote 100 1.03 ×10−3

1,000 3.57 ×10−4

10,000 1.13 ×10−4

100,000 3.63 ×10−5

(Proposed 2.81 ×10−6)
ca-HepTh 100 1.36 ×10−4

1,000 5.58 ×10−5

10,000 1.18 ×10−5

100,000 6.04 ×10−6

(Proposed 4.56 ×10−6)

preprocessing phase and a query phase. In the preprocess-
ing phase, their algorithm generates R′ random walks and
stores the walks efficiently; this phase requires O(nR′) time
and O(nR′) space. In the query phase, their algorithm com-
putes scores via formula (2); this phase requires O(TnR′)
time. We implemented their algorithm and evaluated it in
comparison with ours.

We first checked the accuracy of their algorithm by com-
puting all-pairs SimRank for the smaller datasets used in
Subsection 5.1; results are shown in Table 4. From the table,
we observe that in order to obtain the same accuracy as our
algorithm, their algorithm requires R′ ≥ 100,000 samples,
which are much larger than our random samples R = 100.
This is because their algorithm estimates all O(n2) entries
by Monte Carlo simulation, but our algorithm only estimates
O(n) diagonal entries by Monte Carlo simulation.

We then evaluated the efficiency of their algorithm with
R′ = 100,000 samples. These results are shown in Table 3.
This shows that their algorithm needs much more memory,
thus it only works for small networks. This concludes that
in order to obtain accurate scores, our algorithm is much
more efficient than their algorithm.

6. CONCLUSION
In this paper, we propose a framework for computing Sim-

Rank that is based on a linearized SimRank. Our framework
consists of two phases, a preprocessing phase and a query
phase. Once the preprocessing completes, we can efficiently
solve single-pair, single-source, and all-pairs SimRank prob-
lems.

Our experiments show that our algorithm is fast and uses
relatively low memory; thus it can scale up to very large
networks.

For future work, it would be interesting to extend our
method to dynamic networks [25]. When a network is mod-
ified by adding or removing vertices or edges, we must effi-
ciently update matrix D. Establishing such a method will
be noteworthy both in theory and practice.
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Table 3: Computational results of our proposed algorithm and existing algorithms; single-pair and single-
source results are the average of 10 trials; we omitted results of the all-pairs computation of our proposed
algorithm for a network larger than in-2004 since runtimes exceeded three days; other omitted results (—)
mean that the algorithms failed to allocate memory.
Dataset Proposed Yu et al. [42] Fogaras and Rácz [11]

Preproc. SinglePair SingleSrc. AllPairs Memory AllPairs Memory Preproc. SinglePair SingleSrc. Memory
ca-GrQc 842 ms 0.236 ms 2.080 ms 10.90 s 3 MB 2.97 s 69 MB 64.7 s 87.0 ms 288 ms 23.3 GB
as20000102 96 ms 0.518 ms 0.812 ms 5.26 s 2 MB 0.13 s 8 MB 106 s 112 ms 262 ms 28.1 GB
Wiki-Vote 187 ms 0.613 ms 5.26 ms 37.4 s 6 MB 8.74 s 143 MB 43.4 s 30.4 ms 42.5 ms 24.5 GB
ca-HepTh 698 ms 0.493 ms 3.24 ms 39.0 s 4 MB 23.3 s 316 MB 205 s 61.2 ms 262 ms 44.2 GB
email-Enron 2.75 s 2.56 ms 24.13 ms 885 s 20 MB 302 s 3.47 GB 8055 s 86.9 ms 1.19 ms 162 GB
soc-Epinions1 4.12 s 5.90 ms 74.4 ms 5647 s 31 MB 777 s 6.94 GB — — — —
soc-Slashdot0811 6.14 s 4.16 ms 20.4 ms 1581 s 47 MB 747 s 7,37 GB — — — —
soc-Slashdot0902 5.87 s 4.63 ms 21.0 ms 1725 s 49 MB 694 s 7.24 GB — — — —
email-EuAll 11.3 s 14.5 ms 61.7 ms 4.54 h 57 MB 2.00 h 59.1 GB — — — —
web-Stanford 21.0 s 9.76 ms 288 ms 22.5 h 132 MB — — — — — —
web-NotreDame 8.07 s 14.7 ms 47.3 ms 4.28 h 107 MB 1.50 h 45.5 GB — — — —
web-BerkStan 49.6 s 35.7 ms 272 ms 51.7 h 392 MB — — — — — —
web-Google 52.2 s 64.2 ms 234 ms 57.0 h 325 MB 11.1 h 203 GB — — — —
dblp-2011 104 s 53.6 ms 207 ms 53.7 h 395 MB 3140 s 24.1 GB — — — —
in-2004 71.7 s 91.1 ms 335 ms — 843 MB — — — — — —
flickr 160 s 137 ms 424 ms — 1.11 GB — — — — — —
soc-LiveJournal 819 s 394 ms 1.19 s — 3.74 GB — — — — — —
indochina-2004 391 s 487 ms 1.73 s — 8.15 GB — — — — — —
it-2004 2822 s 3.51 s 12.0 s — 49.2 GB — — — — — —
twitter-2010 14376 s 3.17 s 11.9 s — 59.4 GB — — — — — —
uk-2007-05 8291 s 9.42 s 32.7 s — 153 GB — — — — — —

In general, our linearization technique can be applied to
recursively defined values with a maximum. For example,
consider P-Rank [7, 43], which generalizes SimRank as fol-
lows. Let P be a transition matrix of G⊤ and let Q be a
transition matrix of G. Then P-Rank is defined by

S =
(

(1− λ)cP⊤SP + λcQ⊤SQ
)

∨ I.

SimRank is the case in which λ = 0, and rvs-SimRank [43]
is the case in which λ = 1; i.e., SimRank only uses the in-
link information, whereas rvs-SimRank only uses out-link
information, but P-Rank uses both types of links. We can
establish a linear formulation of P-Rank as

S =
(

(1− λ)cP⊤SP + λcQ⊤SQ
)

+D

with a suitable diagonal matrix D. Therefore we can possi-
bly extend our algorithm to P-Rank by the above formula.
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APPENDIX

In this appendix, we provide details of propositions and
proofs mentioned in the main body of our paper.

We first introduce a vectorized form of SimRank, which is
convenient for analysis. Let ⊗ be the Kronecker product of
matrices, i.e., for n× n matrices A = (Aij) and B,

A⊗B =







A11B · · · A1nB
...

. . .
...

An1B · · · AnnB






.

Let “vec” be the vectorization operator, which reshapes an
n× n matrix to an n2 vector, i.e., vec(A)n×i+j = aij . Then
we have the following relation, which is well known in linear
algebra [1]:

vec(ABC) = (C⊤ ⊗A)vec(B). (16)

Proposition 3. Linearized SimRank operator SL is a non-
singular linear operator.

Proof. A linearized SimRank SL(Θ) for a matrix Θ is a
matrix satisfies relation

SL(Θ) = cP⊤SL(Θ)P +Θ.

By applying the vectorization operator and using (16), we
obtain

(

I − cP⊤ ⊗ P⊤
)

vec(SL(Θ)) = vec(Θ). (17)

Thus, to prove Proposition 3, we only have to prove that the
coefficient matrix I − cP⊤ ⊗ P⊤ is non-singular.

Since P⊤ ⊗ P⊤ is a (left) stochastic matrix, its spectral
radius is equal to one. Hence all eigenvalues of I−cP⊤⊗P⊤
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are contained in the disk with center 1 and radius c in the
complex plane. Therefore I − cP⊤ ⊗ P⊤ does not have a
zero eigenvalue, and hence I− cP⊤⊗P⊤ is nonsingular.

We now prove Proposition 1, which is the basis of our
diagonal estimation algorithm.

Proof of Proposition 1. Let us consider linear system
(17) and let Q := P⊤⊗P⊤. We partite the system (17) into
2× 2 blocks that correspond to the diagonal entries and the
others:

[

I − cQDD −cQDO

−cQOD I − cQOO

] [

~1
X

]

=

[

diag(D)
0

]

, (18)

where QDD, QDO, QOD, and QOO are submatrices of Q that
denote contributions of diagonals to diagonals, diagonals to
off-diagonals, off-diagonals to diagonals, and off-diagonals to
off-diagonals, respectively. X is the off-diagonal entries of
SL(D). To prove Proposition 1, we only have to prove that
there is a unique diagonal matrix D that satisfies (18).
We observe that the block-diagonal component I − cQOO

of (18) is non-singular, which can be proved similarly as in
Proposition 3. Thus, the equation (18) is uniquely solved as

(I − cQDD − c2QDO(I − cQOO)
−1QOD)~1 = diag(D),

(19)

which is a closed form solution of diagonal correction matrix
D.

Remark 2. It is hard to compute D via the closed form
formula (19) because the evaluation of the third term of the
left hand side of (19) is too expensive.
On the other hand, we can use (19) to obtain a reasonable

initial solution for Algorithm 4. By using first two terms of
(19), we have

diag(D) ≈ ~1− cQDD
~1, (20)

which can be computed in O(m) time.
Our additional experiment shows that the initial solution

(20) gives a slightly better (at most twice) results than the
trivial guesses D = I and D = 1− c.

We give a convergence proof of our diagonal estimation
algorithm (Algorithm 4). As mentioned in Subsection 4.1,
Algorithm 4 is the Gauss-Seidel method [13] for the linear
system






SL(E(1,1))11 · · · SL(E(n,n))11
...

. . .
...

SL(E(1,1))nn · · · SL(E(n,n))nn













D11

...
Dnn






=







1
...
1






. (21)

Lemma 1. Consider two independent random walks start
from the same vertex i and follow their in-links. Let pi(t)
be the probability that two random walks meet t-th step (at
some vertex). Let ∆ := maxi{

∑∞

t=1 c
tpi(t)}. If ∆ < 1 then

the coefficient matrix of (21) is diagonally dominant.

Proof. By definition, each diagonal entry SL(E(j,j))jj is
greater than or equal to one. For the off diagonals, we have

∑

i:i 6=j

SL(E(i,i))jj =
∑

i:i 6=j

∞
∑

t=1

ct(P tej)
⊤E(i,i)(P tej)

≤

∞
∑

t=1

ct(P tej)
⊤(P tej) =

∞
∑

t=1

ctpj(t) ≤ ∆.

This shows that if ∆ < 1 then the matrix is diagonally
dominant.

Corollary 1. If a graph G satisfies the condition of Lemma 1,
Algorithm 4 converges with convergence rate O(∆l).

Proof. This follows the standard theory of the Gauss-
Seidel method [13].

Remark 3. Let us observe that, in practice, the assump-
tion ∆ < 1 is not an issue. For a network of average de-
gree d, the probability pi(t) is expected to 1/dt. Therefore
∆ =

∑

t
ctpi(t) ≃ (c/d)/(1 − (c/d)) ≤ 1/(d − 1) < 1. This

implies that Algorithm 4 converges quickly when the average
degree is large.

We now prove Proposition 2. We use the following lemma.

Lemma 2. Let k
(t)
1 , . . . , k

(t)
R be positions of t-th step of in-

dependent random walks that start from a vertex k and fol-

low ln-links. Let X
(t)
k := (1/R)

∑R

r=1 ek(t)
r

. Then for all

l = 1, . . . , n,

P
{∣

∣

∣
e⊤l

(

X
(t)
k − P tek

)∣

∣

∣
≥ ǫ

}

≤ 2 exp
(

−2Rǫ2
)

.

Proof. Since E[e
k
(t)
r

] = P tek, this is a direct application

of the Hoeffding’s inequality.

Proof of Proposition 2. Since p
(t)
ki defined by (13) is

represented by p
(t)
ki = e⊤i X

(t)
k . Thus we have

P
{

‖P tek − p
(t)
k ‖ > ǫ

}

≤ nP
{∣

∣

∣
e⊤i P

tek − p
(t)
ki

∣

∣

∣
> ǫ

}

≤ 2n exp
(

−2Rǫ2
)

.

Proposition 4. Let D = diag(D11, . . . , Dnn) and D̃ =

diag(D̃11, . . . , D̃nn) be diagonal matrices. If they satisfy

sup
k

|Dkk − D̃kk| ≤ ǫ

then

sup
i,j

|SL(D)ij − SL(D̃)ij | ≤
ǫ

1− c
.

Proof. Let ∆ := D − D̃. Since SL is linear, we have
SL(∆) = SL(D)− SL(D̃). Consider

SL(∆) = cP⊤SL(∆)P +∆.

By applying ei and ej , we have

SL(∆)ij = c(Pei)
⊤SL(∆)(Pej) +∆ij

≤ c sup
i′,j′

SL(∆)i′j′ + ǫ.

Here, we used p⊤Aq ≤ supij Aij for any stochastic vectors
p and q. Therefore

(1− c) sup
i,j

SL(∆)ij ≤ ǫ.

By the same argument, we have

(1− c) inf
i,j

SL(∆)ij ≥ −ǫ.

By combining them, we obtain the proposition.

The above proposition shows that if diagonal correction ma-
trix D is accurately estimated, all entries of SimRank matrix
S is accurately computed.
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