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ABSTRACT
Betweenness centrality measures the importance of a vertex
by quantifying the number of times it acts as a midpoint of
the shortest paths between other vertices. This measure is
widely used in network analysis. In many applications, we
wish to choose the k vertices with the maximum adaptive
betweenness centrality, which is the betweenness centrality
without considering the shortest paths that have been taken
into account by already-chosen vertices.

All previous methods are designed to compute the be-
tweenness centrality in a fixed graph. Thus, to solve the
above task, we have to run these methods k times. In this
paper, we present a method that directly solves the task,
with an almost linear runtime no matter how large the value
of k. Our method first constructs a hypergraph that encodes
the betweenness centrality, and then computes the adaptive
betweenness centrality by examining this graph. Our tech-
nique can be utilized to handle other centrality measures.

We theoretically prove that our method is very accurate,
and experimentally confirm that it is three orders of mag-
nitude faster than previous methods. Relying on the scal-
ability of our method, we experimentally demonstrate that
strategies based on adaptive betweenness centrality are effec-
tive in important applications studied in the network science
and database communities.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks

Keywords
Adaptive betweenness centrality; Adaptive coverage central-
ity; Randomized algorithm

1. INTRODUCTION
The centrality of a vertex measures its relative importance

within a graph. There is no unique way of measuring the
importance of vertices. In fact, many criteria of a vertex

http://dx.doi.org/10.1145/2623330.2623626.

have been used to define its centrality, such as its degree,
distance to other vertices, and its eigenvalue [4].

In this paper, we consider centralities based on shortest
paths. The most famous such centrality is the (shortest-
path) betweenness centrality, which quantifies the number of
times a vertex acts as a midpoint of the shortest paths be-
tween other vertices [12]. Betweenness centrality has been
extensively used in network analysis, such as for measuring
lethality in biological networks [17, 10], studying sexual net-
works and AIDS [20], and identifying key actors in terrorist
networks [18, 9]. Betweenness centrality is also used as a
primary routine for clustering and community identification
in real-world networks [23, 15].

We also study the (shortest-path) coverage centrality, which
measures the importance of a vertex by counting the number
of pairs of vertices with a shortest path passing through it.
Coverage centrality naturally arises in the study of indexing
methods for determining shortest-path distances [2, 25, 1].

Although computing the betweenness centrality and cov-
erage centrality is already quite costly, in many applications,
we want to compute these centralities in an iterative way.
Consider the problem of suppressing epidemics with immu-
nization [16]. In this problem, a vertex is infected by a dis-
ease, and the disease spreads to other vertices under some
stochastic process. We have a limited number k of vaccines,
and the task is to find an effective strategy to vaccinate ver-
tices to suppress the epidemic. For this task, it is known that
greedily choosing k vertices with the maximum adaptive be-
tweenness centrality often shows a good performance [16].
Here, the adaptive betweenness centrality denotes the be-
tweenness centrality without considering the shortest paths
that have been taken into account by already-chosen ver-
tices.

In the indexing method for determining shortest-path dis-
tances proposed by [2], it is desirable to compute the vertex
ordering obtained by greedily taking vertices with the max-
imum adaptive coverage centrality, where adaptive coverage
centrality is defined analogously.

An obvious drawback of using the top-k vertices, or the
vertex ordering with respect to adaptive centrality, is that
obtaining these is computationally expensive. Indeed, the
fastest exact methods for computing the top-k vertices with
respect to adaptive betweenness and coverage centrality take
O(knm) time and O(kn2m) time, respectively, where n is
the number of vertices and m is the number of edges. To
ameliorate this issue, faster randomized approximation al-
gorithms have been proposed for the betweenness central-
ity [8, 7, 14, 24]. However, because we must run the al-
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Algorithm 1 Build-Coverage-Hypergraph(G,M)

Input: A graph G = (V,E) and an integer M ≥ 1.
1: Initialize H = (V, ∅).
2: for i = 1 to M do
3: Pick a pair of vertices (s, t) at random.
4: Add a hyperedge with the vertex set Pst to H.
5: return H.

Algorithm 2 Top-k-ACC(G, k)

Input: A graph G = (V,E) and an integer k ≥ 1.
1: M ← O(logn/ε2).
2: H ← Build-Coverage-Hypergraph(G,M).
3: for i = 1 to k do
4: vi ← arg maxv{dH(v)}.
5: Remove vi and all hyperedges incident to vi.
6: return the set {v1, . . . , vk}.

to C(S). Then, we examine the quality of the output of Top-
k-ACC. We say that an algorithm is an (α, β)-approximation
algorithm to a maximization problem if, for any instance of
the problem, it outputs a solution whose value is at least
α · opt − β, where opt is the optimal value of the instance.
When β = 0, this is simply called an α-approximation al-
gorithm. We will show that Top-k-ACC is a (1 − 1/e, εn2)-
approximation algorithm to MCCk.

To show that C̃(S) is a good approximation to C(S), we
recall Hoeffding’s inequality:

Lemma 2.3 (Hoeffding’s inequality). Let X1, . . . , Xn
be independent random variables in [0, 1] and X = 1

n

∑n
i=1Xi.

Then,

Pr[|X −E[X]| ≥ t] ≤ 2 exp(−2t2n).

It is not hard to show that, with high probability over the
construction of H, we can estimate the coverage centrality
to within a small error:

Lemma 2.4. For any set of vertices S ⊆ V , we have

Pr
H

[
|C̃(S)− C(S)| ≥ εn2

2

]
<

1

n3

over the construction of the hypergraph H.

Proof. From Lemma 2.2, we have E[C̃(S)] = C(S). Be-

cause C̃(S) is the sum of M random variables whose values
are in [0, 1], Hoeffding’s inequality implies that

Pr

[∣∣∣C̃(S)− C(S)
∣∣∣ ≥ εn2

2

]
= Pr

[∣∣∣∣n2

M
dH(S)− n2

M
E[dH(S)]

∣∣∣∣ ≥ εn2

2

]
= Pr

[∣∣∣∣ 1

M
dH(S)−E[

1

M
dH(S)]

∣∣∣∣ ≥ ε

2

]
≤ 2 exp

(
− ε

2M

2

)
By choosing M = 2 log(2n3)/ε2 = O(logn/ε2), we have the
desired result.

Now we show that our method is a (1−1/e, εn2)-approximation
algorithm to MCCk. We note that the problem can be seen
as a monotone submodular function maximization problem.
A function f : 2V → R is called monotone if

f(S) ≤ f(T ) for any S ⊆ T ⊆ V,

and is submodular if

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T )

for any S ⊆ T ⊆ V and e ∈ V \ T.

In the monotone submodular function maximization prob-
lem (MSFM for short), we are given a non-negative mono-
tone submodular function f : 2V → R and a parameter
k, and the objective is to find a set S ⊆ V of k elements
that maximizes f(S). A standard heuristic for this problem
is a greedy algorithm, that is, we keep choosing elements v
that produce the maximum marginal gain f(S∪{v})−f(S),
where S is the set of already-chosen vertices. The following
fact is well known.

Lemma 2.5 ([21, 22]). The greedy algorithm is a (1 −
1/e)-approximation algorithm to MSFM, and obtaining a
better approximation ratio requires an exponential number
of queries in |V |.

We can exploit this result to solve MCCk. We need the
following properties of coverage centrality.

Lemma 2.6. The function C : 2V → Z is non-negative,
monotone, and submodular.

Proof. As non-negativity and monotonicity are clear, we
consider the submodularity. Let S ⊆ T ⊆ V and v ∈ V .
Then, C(S∪{v})−C(S) = C(v | S) and C(T∪{v})−C(T ) =
C(v | T ). Hence, it suffices to show C(v | S) ≥ C(v | T ),
but this should be true because the number of pairs newly
covered by v is larger when having chosen a smaller set of
vertices.

Corollary 2.7. The greedy algorithm is a (1 − 1/e)-
approximation algorithm to MCCk.

Of course, we do not want to run the greedy algorithm
on the function C, as evaluating C would take a very long
time. Instead, we show that Algorithm 2 has almost the
same quality, that is, it is a (1 − 1/e, εn2)-approximation
algorithm. We first show the following.

Lemma 2.8. The function C̃ : 2V → Z is non-negative,
monotone, and submodular for any realization of H.

Proof. As non-negativity and monotonicity are clear, we
consider the submodularity. Let S ⊆ T ⊆ V and v ∈ V .

Then, C̃(S∪{v})−C̃(S) = C̃(v | S) and C̃(T∪{v})−C̃(T ) =

C̃(v | T ). Hence, it suffices to show C̃(v | S) ≥ C̃(v | T ),
but this should be true because the number of hyperedges
newly incident to v is larger when having chosen a smaller
set of vertices.

Theorem 2.9. Let S̃ be the output of Algorithm 2, and
S∗ be the optimal solution to MCCk. Then, with a probability
of at least 1− 1/n,

C(S̃) ≥
(

1− 1

e

)
C(S∗)− εn2.

Proof. Let S̃∗ = arg maxS⊆V :|S|=k C̃(S). By Lemma 2.2,

there is a probability of at least 1− 1
n3 that C̃(S∗) ≥ C(S∗)−

εn2/2. In particular, C̃(S̃∗) ≥ C(S∗)− εn2/2.
Algorithm 2 runs the greedy algorithm on the function

C̃, and outputs the set S̃. Because C̃ is a non-negative
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submodular function by Lemma 2.8, we have C̃(S̃) ≥ (1 −
1/e)C̃(S̃∗) by Lemma 2.5.

Let S̃i be the set of vertices chosen up to and including the

i-th iteration (with S̃0 = ∅). In particular, S̃k = S̃. On the

i-th iteration, we consider each set of the form S̃i−1 ∪ {v},
where v is a vertex. There are at most n of these sets, and

hence the union bound implies that C and C̃ differ by at
most εn2/2 on each of these sets, with probability at least

1 − 1/n2. In particular, |C̃(S̃i) − C(S̃i)| < εn2/2. Taking

the union bound over all iterations, we have that |C̃(S̃k) −
C(S̃k)| < εn2/2 with probability at least 1−1/n. Therefore,
we have

C(S̃k) ≥ C̃(S̃k)− εn2

2
≥
(

1− 1

e

)
C̃(S̃∗)− εn2

2

≥
(

1− 1

e

)
C(S∗)− εn2

conditioned on an event of probability 1− 1/n.

Hence, there is a high probability that Algorithm 2 outputs
a (1−1/e, εn2)-approximation. In Section 4, we will see that
the output is close to that of the exact greedy algorithm.

2.3 Runtime
We finally consider the runtime of Algorithm 2.

Theorem 2.10. Algorithm 2 can be implemented to run
in O((n+m) logn/ε2) time.

Proof. Build-Coverage-Hypergraph clearly runs in O((n+
m) logn/ε2) time. For Top-k-ACC, we will maintain a list of
vertices sorted by their degree in H; this will enable us to
iteratively choose the vertex with the maximum degree in
constant time. We need O(n logn) time for the initial sort.
We must bound the time needed to remove an edge from H
and correspondingly update the sorted list. The sorted list
is implemented as a doubly linked list of groups of vertices,
where each group itself is implemented as a doubly linked
list containing all vertices of a given degree (with only non-
empty groups present). Each edge of H will maintain a list
of pointers to its vertices. When an edge is removed, the
degree of each vertex in the edge decreases by 1. We modify
the list by shifting any decremented vertex to the preceding
group (creating new groups and removing empty groups as
necessary). The time taken to remove an edge from H and
update the sorted list is therefore proportional to the size of
the edge. As each edge in H can be removed at most once
over all iterations of Top-k-ACC, the total runtime is at most
the sum of degrees in H, which is at most O((n+m)M) =
O((n+m) logn/ε2).

3. ADAPTIVE BETWEENNESS
CENTRAL-ITY

In this section, we describe our method for ABC.
We formalize the problem of computing the top-k vertices

with respect to ABC. Let G = (V,E) be a graph. For a
vertex v ∈ V , we define the betweenness centrality of v as

B(v) =
∑

s,t∈V \{v}

σst(v)

σst
,

where σst is the number of shortest paths between s and t,
and σst(v) is the number of shortest paths between s and
t passing through v. For a vertex set S ⊆ V , we similarly
define the betweenness centrality of S as

B(S) =
∑
s,t∈V

σst(S)

σst
,

where σst(S) is the number of shortest paths between s and
t passing through some vertex in S \ {s, t}. The between-
ness centrality of a set is also called the group betweenness
centrality in [11, 13].

Suppose that, given a parameter k > 0, we want to find a
set of k vertices with the maximum betweenness centrality.
We call this problem MBCk, which stands for the maximum
betweenness centrality problem with parameter k. Similar
to the coverage centrality, a natural strategy for MBCk is
to keep choosing vertices v that maximize the resulting be-
tweenness centrality. It is convenient to introduce some def-
initions. For vertices v ∈ V , s, t ∈ V \ {v}, and a vertex set
S ⊆ V , let σst(v | S) denote the number of shortest paths
passing through v but avoiding all vertices in S \ {s, t}. In
particular, σst(v | S) is zero when v ∈ S. For a vertex v and
a vertex set S, the ABC of v conditioned on S is

B(v | S) =
∑

s,t∈V \{v}

σst(v | S)

σst
.

Proposition 3.1. For any vertex v and vertex set S, we
have

B(S ∪ {v}) = B(S) +B(v | S).

Proof.

B(S ∪ {v}) =
∑

s,t∈V \{v}

σst(S ∪ {v})
σst

=
∑

s,t∈V \{v}

σst(S) + σst(v | S)

σst
= B(S) +B(v ∪ S).

By Proposition 3.1, we can say that the greedy strategy
keeps choosing vertices v that maximize the ABC condi-
tioned on the set of already-chosen vertices.

For a vertex set S, we can exactly compute B(v | S) for
all v simultaneously using the following variant of Brandes’

algorithm [6]. For s ∈ V \{v}, let δs(v | S) =
∑
t6=v

σst(v|S)
σst

.

Because B(v | S) =
∑
s∈V \{v} δs(v | S), it suffices to com-

pute δs(v | S) for every s ∈ V \ {v}. Let Ps be the DAG
representing the shortest paths from s, which can be con-
structed by performing a BFS from s. Let succs(v) be the set
of successors of v in the DAG Ps. In particular, dist(s, w) =
dist(s, v) + 1 for all w ∈ succs(v), where dist(u, v) is the
distance between u and v. We process vertices in the DAG
Ps in reverse topological order, that is, by non-increasing
distance from s. We have the following recursion:

δs(v | S) =
∑

w∈succs(v)

(
σsv(v | S)

σsw
+

σsv(v | S)

σsw(w | S)
δs(w | S)

)
.

The first term in the summand deals with the contribution
to δs(v | S) of the pair (s, w). The second term in the
summand deals with the contribution to δs(v | S) of pairs
(s, t), where t ranges over all descendants of w in the DAG

Ps. We need the scaling factor σsv(v|S)
σsw(w|S) , because only a
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Algorithm 3 Build-Betweenness-Hypergraph(G,M)

Input: A graph G = (V,E) and an integer M ≥ 1.
1: Initialize H = (V, ∅).
2: for i = 1 to M do
3: Pick a pair of vertices (s, t) at random.

4: Make a weighted hyperedge e = {(v, σst(v)
σst

) | v ∈
Pst \ {s, t}}, and add it to H.

5: return H.

Algorithm 4 Top-k-ABC(G, k)

Input: A graph G = (V,E) and an integer k ≥ 1.
1: M ← O(logn/ε2).
2: H ← Build-Betweenness-Hypergraph(G,M).
3: for i = 1 to k do
4: vi ← arg maxv{wH(v)}.
5: for Each hyperedge e incident to vi do
6: Replace it with a new weighted hyperedge

{(v, σs(e)t(e)(v|v1,...,vi)
σs(e)t(e)

| v ∈ Ps(e)t(e) \ {s, t}}.
7: return The set {v1, . . . , vk}.

σsv(v|S)
σsw(w|S) -fraction of shortest paths from s to w pass through

the edge (v, w). We do not give a detailed proof of this here,
as the only difference from Brandes’ original algorithm is
that we exclude shortest paths passing through S, and the
proof remains almost the same.

Let us consider the runtime of the algorithm explained
above. First, we must compute Ps for every vertex s, which
takes O(nm) time. For each DAG Ps, we need O(m) time to
calculate the recursion. Hence, in total, we require O(nm)
time. Moreover, if we want to run the greedy algorithm to
obtain a solution for MBCk, we need O(knm) time. Though
this runtime is much better than the case of MCCk, it is still
quite large. On the other hand, our method runs in almost
linear time, even when k = n.

3.1 Proposed method
In this section, we explain our method for ABC. The idea

is similar to the case of ACC, but is technically more in-
volved. Algorithm 3 describes how to construct a hyper-
graph sketch H for the betweenness centrality. We pick a
set of M pairs of vertices (s, t), and for each pair (s, t), we
add a hyperedge with a weight on each vertex. Specifically,

we add to H a set of pairs {(v, σst(v)
σst

) | v ∈ Pst \ {s, t}}.
In what follows, we simply call the set a hyperedge. For a
hyperedge e of H, let V (e) be the set of vertices in e. For
a vertex v, let we(v) be the weight of v imposed by e. If
v 6∈ V (e), we set we(v) = 0. Let s(e) and t(e) denote the
pair (s, t) used to make the hyperedge e.

For a vertex v, we define the weight of v in H as wH(v) =∑
e∈E(H)

σs(e)t(e)(v)

σs(e)t(e)
. Similarly, for a vertex set S ⊆ V , we

define the weight of S in H as wH(S) =
∑
e∈E(H)

σs(e)t(e)(S)

σs(e)t(e)
.

Note that wH({v}) = wH(v).
We often use the following observation.

Lemma 3.2. For any vertex set S ⊆ V ,

E
H

[wH(S)] =
M

n2
B(S).

Proof. If we have sampled a pair (s, t), then the contri-

bution to wH(S) is σst(S)
σst

. Hence, the expected contribution

to wH(S) over a pair chosen at random is exactly B(S)/n2.
The lemma follows from the linearity of expectation.

We define B̃(v) = n2

M
wH(v) and B̃(S) = n2

M
wH(S). Similar

to the case of coverage centrality, we can show that wH(S)
is highly concentrated on its expectation. Hence, we can use

B̃(S) as a good approximation to B(S).

We note that wH(v) =
∑
e∈E(H)

σs(e)t(e)(v)

σs(e)t(e)
=
∑
e∈E(H) we(v).

Hence, we can obtain the vertex with the maximum be-
tweenness centrality by choosing that with the maximum
sum of weights imposed by hyperedges in H. We now show
how to modify the hypergraph H so that we can compute
ABC. Suppose that we have chosen a vertex set S. Because
B(v | S) = B(S ∪ {v}) − B(S), we want to approximate it
by

B̃(v | S) := B̃(S ∪ {v})− B̃(S)

=
∑

e∈E(H)

σs(e)t(e)(S ∪ {v})
σs(e)t(e)

−
∑

e∈E(H)

σs(e)t(e)(S)

σs(e)t(e)

=
∑

e∈E(H)

σs(e)t(e)(v | S)

σs(e)t(e)
.

The last expression suggests how we should modify the hy-
pergraph H. That is, after choosing a vertex set S, for
each hyperedge e and a vertex v ∈ V (e), we need to change

the weight we(v) to
σs(e)t(e)(v|S)
σs(e)t(e)

. We can use the variant of

Brandes’ algorithm mentioned before to compute
σs(e)t(e)(v|S)

σst
.

However, as we only consider shortest paths between s(e)
and t(e), we have σst(v | S) = σsv(v | S) · σtv(v | S) if
v ∈ Pst and v 6∈ S, and we have σst(v | S) = 0 other-

wise. Hence, we can compute σst(v|S)
σst

for all v ∈ V (e) in
linear time with respect to the number of edges in the DAG
Ps(e)t(e).

Algorithm 4 summarizes how to compute the top-k ver-
tices with respect to ABC. We choose M = O(logn/ε2) to
guarantee the quality of its output.

3.2 Accuracy
We can prove the accuracy of Algorithm 4 in a similar

manner to the case of the coverage centrality:

Theorem 3.3. Let S̃ be the output of Algorithm 4 and S∗

be the optimal solution to MBCk. Then, with a probability
of at least 1− 1/n,

B(S̃) ≥
(

1− 1

e

)
B(S∗)− εn2.

Hence, there is a high probability that Algorithm 4 outputs
a (1− 1/e, εn2)-approximation to MBCk.

3.3 Runtime
As opposed to the coverage centrality, we do not have

a linear runtime in the worst case, because we must keep
updating the vertex weights. However, we can bound the
runtime with the following parameter

h = E
s,t∈V

[|Pst| · |E(Pst)|].

Theorem 3.4. Algorithm 4 can be implemented so that
its expected runtime is O((n+m+ h logn) logn/ε2).
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Figure 1: Accuracy of our method against the exact method
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Figure 2: Relative error of our method against the exact method

Proof. Build-Betweenness-Hypergraph clearly runs inO((n+
m)M) time.

For Top-k-ABC, we first examine the total runtime caused
by updating the vertex weights. Let e be a hyperedge in
H, with corresponding DAG Pst. When choosing a vertex
v ∈ V (e), we need O(|E(Pst)|) time to update the weights
of vertices in V (e). In addition, we need to update the
weights of vertices in e at most |Pst| times throughout the
algorithm. As we sample M pairs of vertices at random
when constructing H, the expected total runtime is O(hM).

Because we must find vertices with the maximum weight
at most hM times, using a standard priority queue (note
that we are dealing with real values), the total time re-
quired to find vertices with the maximum weight is at most
O(hM logn).

Hence, the expected total runtime is O((n+m)M+hM+
hM logn) = O((n+m+ h logn) logn/ε2.

Corollary 3.5. With a probability of at least 99/100,
Algorithm 4 outputs a (1−1/e, εn2)-approximation to MBCk
in O((n+m+ h logn) logn/ε2) time.

Proof. By Theorem 3.5 and Markov’s inequality, Algo-
rithm 4 stops in O((n+m+ h) logn/ε2) time with a prob-
ability of at least 199/200. By Theorem 3.3, we have a
probability of at least 199/200 of obtaining the desired ap-
proximation. By the union bound, we have the desired re-
sult.

In Section 4, we empirically show that h is much smaller

Table 1: Datasets
Dataset n m h

ego-Facebook 4,039 88,234 2.27× 102

ca-GrQc 5,242 14,490 1.97× 102

p2p-Gnutella08 6,301 20,777 5.39× 102

email-Enron 36,692 183,831 2.63× 103

soc-Epinions1 75,878 405,740 6.01× 103

ego-Twitter 81,306 1,342,303 9.85× 103

web-Google 875,713 4,322,051 3.58× 103

roadNet-PA 1,088,092 1,541,898 2.57× 105

roadNet-TX 1,393,383 1,921,660 4.20× 105

as-Skitter 1,696,415 11,095,298 4.18× 105

than n+m in real-world graphs, and hence our method runs
in almost linear time.

4. EXPERIMENTS
We conducted experiments on a Linux server with an In-

tel Xeon E5-2690 (2.90 GHz) processor and 256 GB of main
memory. The experiments required, at most, 4 GB of mem-
ory. All algorithms were implemented in C++.

We considered various types of network, including social,
computer, and road networks. All datasets utilized in this
paper are available from the Stanford Network Analysis Project
(http://snap.stanford.edu/index.html). All datasets were
treated as undirected and unweighted graphs. Table 1 shows
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Table 4: Runtime for large graphs

Dataset
MCCn MBCn

M = 1K 16K M = 1K 16K

soc-Epinions1 4.75 s 75.7 s 10.4 s 156 s
email-Enron 1.47 s 24.0 s 3.28 s 53.0 s
ego-Twitter 18.3 s 268 s 31.3 s 526 s
web-Google 148 s 2333 s 316 s 6131 s
as-Skitter 201 s 3541 s 472 s 7501 s

line corresponding to the exact method for MCCk, as the
program did not finish in 12 h.

Table 4 summarizes the runtime of our method for larger
graphs, which demonstrates its scalability.

5. APPLICATIONS
In this section, we consider two applications of adaptive

centralities that we have not previously been able to inves-
tigate.

5.1 Suppressing epidemics with immunization
Suppose a person is infected with a disease, and the dis-

ease spreads out through a social network. We have a lim-
ited number of k vaccines, and can immunize at most k
people. The objective is to determine an effective immu-
nization strategy that prevents an epidemic. This problem
is well-studied in the network science community. It has
been reported that a strategy based on ABC, that is, immu-
nizing the top-k vertices with respect to ABC, is the most
effective natural strategy [16]. However, as it is quite costly
to compute ABC, its effectiveness has only been confirmed
for small graphs.

We demonstrate the effectiveness of ABC for larger graphs
using our method. To measure the effectiveness of immu-
nization, we use the size of the largest connected component
in the graph that results from removing vaccinated vertices,
which is standard in the network science community.

Figure 4 illustrates the performance of the strategy based
on ABC. We compare this with strategies based on between-
ness, degree, and adaptive degree, which means the degree
of the resulting graph after removing selected vertices. As
we can see, the strategy based on ABC is most effective in
these datasets. This improvement could have a huge impact
in the context of suppressing epidemics.

5.2 Indexing methods for answering distances
Computing the distance between two vertices is a funda-

mental graph operation. To quickly compute the distance,
it is natural to construct an index from the input graph, and
use this when answering queries. Among many others, Ak-
iba et al. [2] proposed an efficient method based on pruned
landmark labeling. Given a vertex ordering v1, . . . , vn, this
approach performs a BFS from vi, and records the distances
from vi for each i = 1, . . . , n in this order. A non-trivial
claim of this method is that, when the BFS from vi reaches
a vertex w along the shortest path passing through some of
v1, . . . , vi−1, there is no need to expand vertex w in the BFS.
Hence, the runtime of the i-th BFS is proportional to

#{w | Pviw ∩ {v1, . . . , vi−1} = ∅}.

In other words, after performing (pruned) BFSs from ver-
tices v1, . . . , vi, we do not have to consider pairs (s, t) such
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Figure 4: Size of the largest connected component

that Pst∩{v1, . . . , vi} 6= ∅, and s and t appear after v1, . . . , vi
in the ordering. With this observation, it is natural to utilize
the vertex ordering based on ACC.

In [2], the authors used a vertex ordering based on de-
gree. This strategy works well when the input graph is
a web graph or a social network, as the shortest paths of
many pairs pass through high-degree vertices. However, the
degree-based strategy does not work well for other kinds of
graphs, such as road networks. For such graphs, coverage
centrality might be more plausible.

Table 5 summarizes the performance of each strategy for
road networks. In all datasets, we set the number of bit-
parallel BFSs to be 64 (see [2] for details). The label size
of a vertex means the number of distances recorded to that
vertex. Note that the index size is (roughly) (64 + LN)n,
where LN is the average label size. We also chose M = 4K
in our method.

The best criteria with respect to the indexing time and
the label size are strategies based on adaptive coverage and
betweenness centrality, respectively. Adaptive centralities
are better than their corresponding centralities in terms of
the label size and the indexing time, and are comparable
in terms of the ordering time. Thus, a strategy based on
adaptive centrality may be preferable to one based on the
corresponding centrality, which justifies the importance of
adaptive centrality.

The label size of the degree-based strategy is larger than
that of other strategies. Though its ordering time is much
faster than other strategies, the combined ordering and in-
dexing time is slightly longer than that of the ACC strategy.

To conclude, the strategy based on ACC is the best of
those studied here, as it has the lowest total indexing time,
and the label size is half that of the strategy developed by
Akiba et al. [2].
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Table 5: Comparison of performance of the pruned landmark labeling method using various strategies. OT,
IT, and LN denote the time required to obtain the vertex ordering, the indexing time excluding the vertex
ordering, and the average label size of a vertex, respectively.

Dataset
Degree CC ACC BC ABC

OT IT LN OT IT LN OT IT LN OT IT LN OT IT LN

roadNet-PA 0.116 s 331 s 358 251 s 99.9 s 227 252 s 71.3 s 176 578 s 316 s 411 1865 s 119 s 166
roadNet-TX 0.148 s 446 s 372 303 s 180 s 256 306 s 137 s 208 695 s 374 s 404 2832 s 159 s 192

6. CONCLUSIONS
We have proposed an almost linear-time approximate method

for obtaining the vertex orderings with respect to the adap-
tive coverage and betweenness centralities. Our method is
remarkable, because simply obtaining the vertex with the
maximum coverage or betweenness centrality requires linear
time. The output quality of our method against the exact
method is high in the sense of centralities, and our method
is three orders of magnitude faster than previous methods.

Our method opens the door to use the vertex orderings
with respect to the adaptive coverage and betweenness cen-
tralities for large graphs, say, millions of vertices. As illus-
trating examples, we have empirically shown the effective-
ness of strategies based on these orderings in applications
that arise from the network science and database communi-
ties.
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