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ABSTRACT
We study the interplay between a dynamic process and the
structure of the network on which it is defined. Specifically,
we examine the impact of this interaction on the quality-
measure of network clusters and node centrality. This en-
ables us to effectively identify network communities and im-
portant nodes participating in the dynamics. As the first
step towards this objective, we introduce an umbrella frame-
work for defining and characterizing an ensemble of dynamic
processes on a network. This framework generalizes the
traditional Laplacian framework to continuous-time biased
random walks and also allows us to model some epidemic
processes over a network. For each dynamic process in our
framework, we can define a function that measures the qual-
ity of every subset of nodes as a potential cluster (or commu-
nity) with respect to this process on a given network. This
subset-quality function generalizes the traditional conduc-
tance measure for graph partitioning. We partially justify
our choice of the quality function by showing that the clas-
sic Cheeger’s inequality, which relates the conductance of
the best cluster in a network with a spectral quantity of
its Laplacian matrix, can be extended from the Laplacian-
conductance setting to this more general setting.

1. INTRODUCTION
Two fundamental problems in network analysis involve

identifying central nodes and communities in a network.
The goal of centrality identification is to find central or im-
portant nodes, for example, those that control the flow of
information on the network. The objective of community
detection is to discover subsets of well-interacting nodes in
a given network. Both of these graph mining approaches
have tremendous applications in different areas, such as so-
cial network, biological network, World Wide Web analysis.
For example, the centrality measure Page Rank [20] is one of
the backbones of Google’s search algorithm. Similarly, com-
munity detection or graph clustering is useful in potential
drug-target identification [29].
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The first step towards finding potentially meaningful com-
munities is to define a quality function that measures the
degree to which a subset of network nodes tend to interact
among themselves. To this end, measures such as cluster-
ing coefficients, subgraph density, and conductance, were
introduced to express the quality of a subset as a good clus-
ter. Similarly, many measures of centrality including Page
Rank and eigenvector centrality are used to discover impor-
tant nodes. However, to define a useful quality or centrality
function, one needs to determine how the network structure
models the interaction among nodes. Unfortunately, this
can be quite challenging and is often ignored. Indeed, the
aforementioned measures apply different interpretations. As
a result, current network analysis methods often make im-
plicit assumptions about the dynamic processes (and the re-
sultant interaction) among nodes and use these assumptions
to define the quality of a cluster or centrality of a node.

Explicitly taking the dynamic process into account, a node’s
centrality at any time describes its participation in the flow
taking place on the network [5, 15]. Similarly, communities
are groups of nodes that interact more frequently with each
other (according to the rules of the dynamic process) than
with nodes from other communities [16]. In fact, this view of
modeling is not new. For instance, in choosing conductance
as a measure of cluster quality, one may in fact implicitly
assume that unbiased random walk is taking place on the
network [12, 26, 8, 9]. Under this assumption, a measure of
centrality is the heat kernel page rank [6].

Other dynamic processes such as the spread of informa-
tion, ideas, or epidemics, induce different interactions from
the unbiased random walks. An epidemic [13] is a stochastic
process that, unlike a random walk, attempts to transition
to (i.e., infect) every neighbor of a node. Epidemic dynam-
ics may be specified by the replicator operator [16], whose
stationary distribution defines eigenvector centrality [4, 10].
It is natural to think that the centrality of a node depends
on the specifics of the dynamic process, which together with
the network topology influence its activity level. For exam-
ple, nodes that are visited most frequently by a random walk
(specified by the heat kernel page rank) are different from
nodes that are infected most often during an epidemic (spec-
ified by eigenvector centrality). Moreover, epidemics could
lead to a different community formation of a network [16].

Our Contributions.
We study the interplay between a dynamic process and

the underlying network on which it unfolds. We focus on
the impact of this interaction on the emergence of central
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nodes and the formation of communities in the network, and
on the design of efficient algorithms for their identification.

General framework for dynamic processes: We pre-
sent an umbrella framework for describing dynamic pro-
cesses on a network that generalizes the traditional Lapla-
cian framework for diffusion and random walks. Recall that
a random walk on a network is a stochastic dynamic process
that transitions from a node to a random neighbor of that
node. It defines a Markov chain that can be specified by the
normalized Laplacian of the network. Our framework (Sec-
tion 2) attempts to capture the class of dynamic processes
that evolve in time according to a rule that can be defined
by generalizing the normalized Laplacian.

Formal analysis of interaction dynamics: Our frame-
work defines a class of dynamic processes with relatively
simple characterization parameters, which enables rigorous
analysis of the impact of these parameters on the measures
of the community quality and node centrality. Its inclu-
sion of diffusion and random walks allows us to build on
the insights from previous work on mathematical analysis
of random walks, conductance measures for clustering, and
spectral notions for centrality, in order to derive our gener-
alization that reflects the interaction between the dynamic
process and its underlying network. We are also able to
use it to define new processes whose properties may offer
useful insights into community finding and graph partition-
ing. Although this particular framework cannot express ev-
ery dynamic process of interest, the generalization allows us
to model some epidemic processes over a network. Thus, we
can use these well- established special cases (such as random
walks and epidemics) to clarify the relationship between the
parameters of the dynamic processes and their induced com-
munity qualities and centralities.

Generalized conductance: We extend conductance to
a general quality-measure for clusters that reflects the dy-
namic process on the network. For each dynamic process, we
use its characterization parameters to define this function.
It measures the quality of every subset (of nodes) as a po-
tential cluster (community) with respect to this process on
the given network. This subset-quality measure generalizes
traditional conductance and provides a continuous family of
measures for subsets in a graph. Recall that, for each set
S ⊂ V in a weighted graph G = (V,E), the conductance of
S, φG(S), is equal to the ratio of the degree of the connectiv-
ities between S to V − S to total degree of connectivities of
S (or the total degree of connectivities of V −S, whichever is
smaller). As each subset-quality function measures different
degree to which a subset of nodes in a graph tend to cluster
together and its coherence as a community, a comparative
study of these subset-measures could be useful in the design
and evaluation of community detection algorithms.

Generalized Cheeger’s inequality: In both theory
and practice, a basic problem in community detection is to
justify why one quality function is better than another for
modeling communities in a network. Unfortunately, this is
a highly challenging problem for rigorous reasoning and jus-
tification. The interplay of dynamics and network topology
further adds to its difficulty. In this paper, we will build on
the wisdoms demonstrated in the past decades in spectral
graph theory. To partially justify our choice of the qual-
ity function, we prove that the classical Cheeger’s inequality
can be extended to our generalized settings. Recall (also
see Section 3) that the Cheeger’s inequality relates a spec-

tral quantity of the Laplacian matrix of the network to the
conductance of the best cluster in the network. Particular,
it shows that if λ is the second smallest eigenvalue of the
normalized Laplacian matrix of G and S ⊂ V is a subset in
G with the smallest conductance, then

(φG(S))2 /2 ≤ λ ≤ 2 · φG(S). (1)

Centrality, quality and community: We will show
that the same relation (as in Eq. 1) holds for the general-
ized conductance and the extreme eigenvalue of the linear
operator for each dynamic process in our framework. Each
function that measures community quality can then be used
to decompose the network into potential communities.

In addition, like previous work in random walks, we can
also relate the convergence to stationary distribution with
the quality measure in each of the dynamics in this frame-
work. For example, the time taken by the random walk
to reach its stationary distribution is bounded by conduc-
tance [11]. The Cheeger inequality provides this connec-
tion via the extreme eigenvalue of the normalized Lapla-
cian. Similarly, using generalized Cheeger inequalities, we
also show that the time it takes for each of the dynamic
processes to reach its stationary is bounded by the corre-
sponding quality function.

Efficient spectral and local partitioning algorithms:
Like previous studies in Laplacian-based spectral graph the-
ory, such as Spielman-Teng [26], Andersen-Chung-Lang [2],
and Andersen-Peres [3], our analysis also leads to efficient
spectral and local algorithms for identifying provably good
clusters based on these new quality functions.

We hope this study will help lead to better approaches for
defining and understanding the general interaction between
dynamics and networks. Due to lack of space we are unable
to provide the proofs of many theorems in this paper, which
will be available in the extended version of this paper.

2. DYNAMIC PROCESSES ON NETWORKS
We represent a network as a weighted, undirected graph

G = (V,E,A), where for i, j ∈ V , A[i, j] = ai,j assigns an
(affinity) non-negative weight to each edge. We follow the
tradition that ai,j = 0 if and only if (i, j) 6∈ E; i.e., A is
the weighted adjacency matrix. By convention we assume
it is symmetric and ai,i = 0 for all i ∈ V . In the discussion
below, the (weighted) degree of node i ∈ V is defined as the
total weight of edges incident on it, that is, di =

∑
j ai,j .

2.1 A Family of Dynamic Processes
In a dynamic process, each network node i has a dynamic

variable θi associated with it, which can change its value
based on interactions with its neighbors. The values of the
variables evolve in time according to the rules of the dynamic
process. We consider linear dynamic processes of the kind:

dθ

dt
= −Lθ, (2)

where θ is a column vector containing the θ entries and L
is a symmetric positive semi-definite matrix, the spreading
operator, which defines the details of the dynamic process.

As discussed in the introduction, we focus on dynamic pro-
cesses on a network that generalize the traditional normal-
ized Laplacian for diffusion and random walks. Recall that
the symmetric normalized Laplacian matrix of a weighted
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graph G = (V,E,A) is defined as

D−1/2(D −A)D−1/2,

where D is the diagonal matrix defined by (d1, ..., dn). We
study the properties of a dynamic process whose spreading
operator can be written as:

L = T−1/2D
−1/2
W (DW −W )D

−1/2
W T−1/2. (3)

Here T is the n × n diagonal matrix of node delay factors.
Its ith diagonal element τi represents the average delay of
node i. Another generalization from the traditional Lapla-
cian is the use of the interaction matrix W instead of the
adjacency matrix A. In theory, W can be any n × n sym-
metric positive-definite matrix; however, here we restrict our
attention to scaling transformations of the adjacency matrix
A. We also assume that the spreading operator is properly
scaled: specifically, we assume that τi ≥ 1, for all i ∈ V .
Note that the degree matrix DW is now also defined in
terms of the interaction matrix, that is dW i =

∑
j wi,j . We

name this spreading operator the generalized Laplacian.
We study how the interplay between dynamics and topol-

ogy affects clustering as T and W vary. For a better intu-
ition, it helps to consider the random walk Laplacian matrix:

LRW = (DW −W )D−1
W T−1.

This matrix is similar to our symmetric normalized Lapla-
cian matrix, with identical spectral properties. As its name
indicates, this operator defines a continuous-time unbiased
random walk on the interaction graph W , which according
to [15] is equivalent to biased random walks on the orig-
inal adjacency matrix A. Under this interpretation, τi is
the mean delay time of the random walk on node i before
a transition, assuming a simple Poisson process. This intu-
ition leads to two orthogonal parametrizations of a dynamic
process: namely W controls the distribution of walk tra-
jectories and T controls the delay time of node transitions
along each trajectory. While we use symmetric operators
for mathematical convenience in definitions and proofs, it is
more intuitive to think from the random walk perspective.

While the generalized Laplacian does not cover all dy-
namic processes of interest, this family of spreading opera-
tors includes some well-known ones, such as the Laplacian
or normalized Laplacian, as well as a continuous family of
new operators that are not as well studied. It also contains
certain operators for modeling epidemics. The consideration
of this family of operators is also partially motivated by our
recent experimental work in understanding network central-
ity [10, 16]. We conclude this subsection with some special
cases that can be described in this framework.

Normalized Laplacian.
If the interaction matrix is the original adjacency matrix

W = A, and node delay factor is simply the identity matrix
T = I, then we recover the normalized symmetric Laplacian:

L = I −D−1/2AD−1/2.

(Scaled) Graph Laplacian.
When W = A, T = dmaxD

−1, the spreading operator
corresponds to the (scaled) graph Laplacian

L =
1

dmax
(D −A).

This operator is often used to describe heat diffusion-like
processes.

Replicator.
Let v be the eigenvector of A associated with its largest

eigenvalue λmax: Av = λmaxv. We can then construct a di-
agonal matrix V whose elements are the components of the
eigenvector V . Let us scale the adjacency matrix according
to W = V AV and use it as the interaction matrix. Setting
the node delay factor to identity, the spreading operator is:

L = I −D−1/2
W WD

−1/2
W = I − 1

λmax
A

This operator is known as the replicator matrix R, and it
models epidemic diffusion on a graph [16]. It is simply the
normalized Laplacian of the interaction graph V AV [24].
Using the random walk intuition, an unbiased random walk
on this interaction graph is equivalent to a maximum en-
tropy random walk on the original graph given by the adja-
cency matrix A [15].

Unbiased Adjacency Matrix.
Reweighing each edge by the inverse of square root of

the degrees of the endpoints gives the unbiased adjacency
matrix W = D−1/2AD−1/2. Then, the degree of node i
in the scaled graph is dW i =

∑
j∈V W [i, j]. Letting T =

dWmaxD
−1
W gives a unbiased Laplacian matrix :

L =
1

dWmax

(DW −W ).

Similarly, many other operators can be expressed using
this framework.

2.2 Network Dynamics and Centrality
Before considering the impact of spreading operators on

communities, we first examine the node centralities of each
operator at any time, and their stationary distribution after
convergence. The community quality functions that we use
are partially inspired by the stationary distribution.

Solution of Equation 2 gives the weight distribution of the
dynamic process across nodes at any time based on the ini-
tial weight distribution. In the rest of the paper, for conve-
nience we will refer to this instantaneous distribution θ(t) as
time-dependent centrality. Its stationary distribution is the
conventional stationary centrality, or centrality for short.

θ(t) = e−Lt · θ0 =

∞∑
k=0

(−t)k

k!
Lkθ0 (4)

If the dynamic process converges when starting from θ0,
then limt→∞ θ(t) is proportional to π:

πi =

√
dW iτi∑

j

√
dW jτj

(5)

For example, the stationary distribution of R is v, also
known as the eigenvector centrality. Eigenvector centrality
was introduced by Bonacich [4] to explain the importance
of actors in a social network based on the importance of
the actors to which they were connected, and it gives the
stationary distribution of a simple epidemic at the epidemic
threshold [27, 10].
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2.3 Network Dynamics and Communities
In network clustering and community detection, one would

like to identify subsets of nodes S ⊆ V that are more simi-
lar, or behave more similarly, to each other than to nodes in
other subsets. A standard approach to clustering involves
defining an objective function that measures the quality of
a cluster. For a subset S ⊆ V , let S̄ = V \ S to denote
the complement of S, which consists of nodes that are not
in S. Let cut(S, S̄) =

∑
i∈S,j∈S̄ ai,j denote the total affinity

weights of all edges used by S to connect with the outside
world. Let vol(S) =

∑
i∈ di =

∑
i∈S,j∈V ai,j denote the

volume of all affinity weights involving vertices in S.
One popular heuristic to measure the quality of a subset

S as a potential good cluster (or a community) [12, 26, 8] is
to use the ratio of these two quantities:

φ(S) =
cut(S, S̄)

min(vol(S), vol(S̄))
(6)

For example, a subset that (approximately) minimizes this
quantity — the conductance of S — is a desirable cluster, as
it maximizes the fraction of affinities within the subset. If
interactions among nodes are proportional to their affinity
weights, then a set with small conductance also means that
its members interact significantly more with each other than
with members not in the subset. Other well-known quality
functions are normalized cut [23] and ratio-cut, given by

cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)
and

cut(S, S̄)

min(|S|, |S̄|)
,

respectively. The smallest achievable such ratio is known as
the isoperimetric number.

Algorithmically, once a quality function is selected, one
can then perform a partitioning-based algorithm or mathe-
matical programming-based method to find a cluster or clus-
ters that optimizes the quality function.

For the Normalized Laplacian paradigm (or when the un-
derlying process is a random walk), there exists a relation-
ship between clustering and dynamics: in a good (i.e., low
conductance cut) cluster, a random walk starting within a
cluster seldom transitions outside the cluster [17, 23, 22, 26].
Therefore, the presence of a good cluster implies that it will
take a random walk a long time to reach its stationary dis-
tribution. We generalize this notion with a claim that every
dynamic process has an associated function that measures
the quality of the cluster with respect to that process. Op-
timizing the quality function leads to cohesive communities,
i.e., groups of nodes that the dynamic process seldom leaves.

Generalized Conductance.
Consider a dynamic process defined by a spreading oper-

ator L = T−1/2D
−1/2
W (DW −W )D

−1/2
W T−1/2. For a set

S ⊆ V , let volL(S) =
∑
i∈S dW iτi be the generalized vol-

ume under our framework. We define the quality of a set S
with respect to L as:

hL(S) =
cut(S, S̄)

min
(
volL(S), volL(S̄)

)
=

∑
i∈S,j∈S̄ wi,j

min
(∑

i∈S dW iτi,
∑
i∈S̄ dW iτi

) (7)

We also define,

φL = min
S
hL(S) (8)

Using the random walk perspective, the numerator mea-
sures the random jumps across communities, while the de-
nominator ensures a balanced bisection. The generalized
volume can be interpreted as the total time a random walk
stays within a community after convergence, as it is propor-
tional to both node degrees and node delay factors.

Below, we summarize the induced special cases discussed
in the previous subsection.

Normalized Laplacian.
W = A and T = I, and hence hL(S) is the conductance.

(Scaled) Graph Laplacian.
W = A and T = dmaxD

−1, hence

hL(S) =
cut(S, S̄)

min(dmax|S|, dmax|S̄|)
=

1

dmax
· cut(S, S̄)

min(|S|, |S̄|)
,

This is the ratio cut scaled by 1/dmax.

Replicator.
W = V AV and T = I. Recall v is the eigenvector of W

associated with the largest eigenvalue λmax. The redefined
cut size is

∑
i∈S,j∈S̄ fij =

∑
i∈S,j∈S̄ vivj . Therefore,

hL(S) =

∑
i∈S,j∈S̄ vivj

λmax min
(∑

i∈S v
2
i ,
∑
i∈S̄ v

2
i

)
Since the degree of a node in an interaction graph is dW i =∑
j fij = λmaxv

2
i , the generalized conductance of the Repli-

cator is simply the conductance of the interaction graph [24].

Unbiased Adjacency Matrix.
W = D−1/2AD−1/2. and T = dWmaxD

−1
W . The associ-

ated quality function is

hL(S) =
1

dWmax

·

∑
i∈S,j∈S̄

ai,j√
didj

min(|S|, |S̄|)
.

We call this quality function unbiased cohesion.

3. GENERALIZED CHEEGER’S INEQUAL-
ITY AND SPECTRAL PARTITIONING

Cheeger inequality states that

φ2
G/2 ≤ λ1 ≤ 2φG

where λ1 is the second largest eigenvalue of the normalized
Laplacian, L = I−D−1/2WD−1/2, and φG is conductance.
The relationship between conductance and spectral proper-
ties of the Laplacian enables the use of its eigenvectors for
partitioning graphs, particularly the nearest-neighborhood
graphs and finite-element meshes [25].

In this section, we generalize Cheeger’s inequality to any
spreading operator under our framework and its associated
generalized conductance (given by Eq. 8). Our generaliza-
tion of Cheeger’s inequality comes with algorithmic conse-
quences. It leads to spectral partitioning algorithms that are
efficient in finding low conductance cuts for a given operator.

3.1 Generalized Cheeger Inequality

Theorem 1. (Generalized Cheeger Inequality)
Consider the dynamic process described by a (properly scaled)
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spreading operator L = T−1/2D
−1/2
W (DW−W )D

−1/2
W T−1/2.

Let λ0 ≤ λ1 ≤ ... ≤ λn−1 be the eigenvalues of L. Then
λ0 = 0 and λ1 satisfies the following inequalities:

φL(G)2/2 ≤ λ1 ≤ 2φL(G)

where φL(G) is given by Eq. 8.

Proof. We prove the theorem by following the approach
for proving the classic Cheeger’s inequality (see [8]).

Let (τ1, ..., τn) be the diagonal entries of T . Note that

v0 = T 1/2D
1/2
W · 1, where 1 denotes the vector of all 1’s,

is an eigenvector of L associated with eigenvalue λ0 = 0.
Let volL(S) =

∑
i∈S diτi for S ⊆ V , where for clarity we

abuse the notation di and use it as dW i. Suppose f is the
eigenvector associated with λ1. Then, f ⊥ v0. Consider
vector g such that g[u] = f [u]/

√
duτu. The fact that f ⊥ v0

then implies
∑
v

g[v]dvτv = 0. Then,

φL(G) = min
S

cut(S, S̄)

min(volL(S), volL(S̄))

λ1 =
fTLf
fTf

=

∑
u,v∈V

(
f [u]√
duτu

− f [v]√
dvτv

)2

wu,v∑
v f [v]2

=

∑
u,v∈V (g[u]− g[v])2 wu,v∑

v g[v]2dvτv

Instead of sweeping the vertices of G according to the
eigenvector f itself, we sweep the vertices of the graph G
according to g by ordering the vertices of G so that

g[v1] ≥ g[v2] ≥ · · · ≥ g[vn]

and consider sets Si = {v1, · · · , vi} for all 1 ≤ i ≤ n.
Similar to [8], we will eventually only consider the first

“half” of the sets Si during the sweeping: Let r denote the
largest integer such that volL(Sr) ≤ volL(V )/2. Note that∑

v

(g[v]− g[vr])
2dvτv

=
∑
v

g[v]2dvτv + g[vr]
2dvτv ≥

∑
v

g[v]2dvτv.

where the first equation follows from
∑
v g[v]dvτv = 0. We

denote the positive and negative part of g− g[vr] as g+ and
g− respectively:

g+[v] =

{
g[v]− g[vr], if g[v] ≥ g[vr].

0, otherwise.
(9)

g−[v] =

{
|g[v]− g[vr]|, if g[v] ≤ g[vr].

0, otherwise.
(10)

Now

λ1 =

∑
u,v∈V (g[u]− g[v])2wu,v∑

v g[v]2dvτv

≥
∑
u,v∈V (g+[u]− g+[v])2wu,v + (g−[u]− g−[v])2wu,v∑

v(g+[v]2 + g−[v]2)dvτv

≥ min

[∑
(g+[u]− g+[v])2wu,v∑

v g+[v]2dvτv
,

∑
(g−[u]− g−[v])2wu,v∑

v g−[v]2dvτv

]
Without loss of generality, we assume the first ratio is at
most the second ratio, and will mostly focus on the vertices

{v1, ...., vr} in the first “half” of the graph in the analysis
below. Thus,

λ1 ≥
∑
u,v(g+[u]− g+[v])2wu,v∑

v g+[v]2dvτv

≥

(∑
u,v(g2

+[u]− g2
+[v])wu,v

)2

(∑
v g+[v]2dvτv

) (∑
u,v(g+[u] + g+[v])2wu,v

)
which follows from the Cauchy-Schwartz inequality.

We now separately analyze the numerator and denomina-
tor. To bound the denominator, we will use the following
property of τi: Because L is properly scaled, τi ≥ 1 for all
i ∈ V . Therefore,∑

u,v

(g+[u] + g+[v])2wu,v ≤
∑
u,v

2(g2
+[u] + g2

+[v])wu,v

= 2
∑
u∈V

g2
+[u]du

≤ 2
∑
u∈V

g2
+[u]duτu.

Hence, the denominator is at most

2

(∑
u∈V

g2
+[u]duτu

)2

.

To bound the numerator, we consider subsets of nodes
Si = {v1, · · · , vi} for all 1 ≤ i ≤ r and define S0 = ∅. First
note that

volL(Si)− volL(Si−1) = dviτvi . (11)

By the definition of φL(G), we know φL(G) ≤ mini hL(Si)
for all 1 ≤ i ≤ r, where recall the function hS(L) is defined
by Eq. 7. Since volL(Si) ≤ volL(S̄i) for all 1 ≤ i ≤ r, we
have

cut(Si, S̄i) ≥ φL · volL(Si) (12)

By orienting vertices according to v1, ..., vn, we can ex-
press the numerator

Num =

(∑
u,v

(g2
+[u]− g2

+[v])wu,v

)2

=

(∑
i<j

j−i−1∑
k=0

(
g2

+[vi+k]− g2
+[vi+k+1]

)
wvi,vj

)2

=

(
n−1∑
i=1

(
g2

+[vi]− g2
+[vi+1]

)
· cut(Si, S̄i)

)2

Collecting (vi, vi+1) terms

≥

(
n−1∑
i=1

(
g2

+[vi]− g2
+[vi+1]

)
· φL · volL(Si)

)2

By Eqn: 12

= φ2
L ·

(
n∑
i=1

g2
+[vi] · (volL(Si)− volL(Si+1))

)2

By Eqn. 11 and g+(vn) = 0

= φL(G)2 ·

(
n∑
i=1

g2
+[vi] · dviτi

)2

.
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Combining the bounds for the numerator and the denom-
inator, we obtain λ1 ≤ φ2

L/2 as stated in the theorem. The
right hand side of the theorem follows from the same argu-
ment for the standard Cheeger Inequality.

3.2 Spectral Partitioning for Generalized Con-
ductance

Given a weighted graph G = (V,E,A) and a operator
L, we can use the standard sweeping method in the proof
of Theorem 1 to find a partition (S, S̄). This procedure is
described in Algorithm 1.

Algorithm 1 Spectral Dynamics Clustering (G,L)

Input: weighted network: G = (V,E,A), and spreading
operator L defined by the interaction matrix W and the
node delay factor T .
Output partition: (S, S̄)
Algorithm

• Find the eigenvector f of L = T−1/2D
−1/2
W (DW −

W )D
−1/2
W T−1/2 associated with the second smallest

eigenvalue of L.

• Let vector g be g[u] = f [u] ·
√
dW uτu.

• Order the vertices of G into (v1, ...., vn) such that
g[v1] ≥ g[v2] ≥ ... ≥ g[vn].

• Sweeping: For each Si = {v1, ..., vi}, compute

hL(Si) =
cut(Si, S̄i)

min
(
volL(Si), volL(S̄i)

) .
• Output the Si with the smallest hL(Si).

Before stating the quality guarantee of the above algo-
rithm, we quickly discuss its implementation and running
time. The most expensive step is the computation of the
eigenvalue vector f associated with the second smallest eigen-
value of L. While one can use standard numerical methods
to find an approximation of this eigenvector – the analysis
would depend on the separation of the second and the third
eigenvalue of L. Since L is a diagonally scaled normalized
Laplacian matrix, one can use the nearly-linear-time Lapla-
cian solvers (e.g., by Spielman-Teng [26] or Koutis-Miller-
Peng [14]) to solve linear systems in L.

Following [26], let us consider the following notion of spec-
tral approximation of L: Suppose λ1(L) the second smallest
eigenvalue of L. For ε ≥ 0, f̄ is an ε-approximate second
eigenvector of L if f̄ ⊥D1/2T 1/2 · 1, and

f̄
TLf̄
f̄
T
f̄
≤ (1 + ε) · λ1(L).

The following proposition follows directly from the algo-
rithm and Theorem 7.2 of [26] (using the solver from [14]).

Proposition 1. For any interaction graph G = (V,E,W )
and node scaling factor T , and ε, p > 0, with probability at
least 1−p, one can compute an ε-approximate second eigen-
vector of operator L in time

O (|E| logn log log n log(1/p) log(1/ε)/ε) .

To use this spectral approximation algorithm (and in fact
any numerical approximation to the second eigenvector of
L) in our spectral partitioning algorithm for the dynamics,
we will need a strengthened theorem of Theorem 1.

Theorem 2. (Extended Cheeger Inequality with Respect
to Rayleigh Quotient)
For any interaction graph G = (V,E,W ) and node scaling

factor T , (whose diagonals are (τ1, ..., τn)), for any vector

u such that u ⊥ D1/2T 1/2 · 1, if we order the vertices of
G into (v1, ...., vn) such that g[v1] ≥ ... ≥ g[vn], where g =

(DT )−1/2 · u then

(mini hL(Si))
2

2
≤ u

TLu
uTu

,

where L = T−1/2D
−1/2
W (DW −W )D

−1/2
W T−1/2 and Si =

{v1, ..., vi}.

The next theorem then follows directly from Proposition
1, Theorem 2 and the definition of ε-approximate second
eigenvector of L that provide a guarantee of the quality of
the algorithm of this subsection.

Theorem 3. For any interaction graph G = (V,E,W )
and node scaling factor T , (whose diagonals are (τ1, ..., τn)),
one can compute in time

O(|E| logn log log n log(1/ε)/ε)

a partition (S, S̄) such that

hL(S) =

∑
v∈S,u∈S̄ wu,v

min
(∑

v∈S dW vτv,
∑
v∈S̄ dW vτv

)
≤

√
2(1 + ε)λ1(L)

where T−1/2D
−1/2
W (DW−W )D

−1/2
W T−1/2, wu,v is the (u, v)th

entry of the interaction matrix W , and λ1(L) is the second
smallest eigenvalue of L. Consequently,

hL(S) ≤ 2
√

(1 + ε)φL(G)

= 2(1 + ε)

√
min
S∗∈V

∑
v∈S∗,u∈S̄∗ wu,v

min
(∑

v∈S∗ dW vτv,
∑
v∈S̄∗ dW vτv

) .
4. LOCAL CLUSTERING ALGORITHMS

In the analysis of massive networks, it is essential to iden-
tify subsets of nodes whose induced sub-graphs have “sig-
nificant” structural coherence without examining the entire
network. Using clustering as an example, Spielman and
Teng [26] introduced a framework of local algorithms for net-
work analysis: given an input node, a local algorithm can
only explore the neighbors of the nodes it has already ac-
cessed. It may occasionally access some random nodes in
the network. The complexity of the local algorithm is then
measured by the total number of accesses it makes, as well
as the computations it performs.

In spite of lacking global access, Spielman and Teng showed
that local algorithms can be effective in identifying good
clusters when conductance is used as quality measure. Their
work was subsequently improved by Andersen-Chung-Lang [2],
Andersen-Pere [3], and Chung [6, 7]. Chung [6, 7] applied
the sweeping method to the heat-kernal page rank to identify
a random walk-based local cluster. Similarly, we propose a
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dynamic-dependent sweeping procedure to discover a local
cluster of provably good generalized conductance. Due to
length limit, we only state relevant theorems in this paper.
For details of proofs, please refer to the full version on arXiv.

4.1 Convergence and Local hL-Clustering
For an starting vector µ, let θt,µ[i] denote the value of the

dynamics of vertex i ∈ V at time t when the initial vector is
µ. In other words, θt,µ = (θt,µ[1], ..., θt,µ[n]) is the solution
of Eq. 4 with θ0 = µ.

Let π = (π[1], ..., π[n]) denote

π =
(√

dW 1τ1, ...,
√
dW nτn

)
.

If the dynamic process converges when starting from µ, then
limt→∞ θt,µ is proportional to π, i.e., for a constant z de-
pending only on µ,

lim
t→∞

θt,µ[i] = zµ · π[i] = zµ ·
√
dW iτi. (13)

We will also use πµ to denote limt→∞ θt,µ.
In this spirit, we define the fractional volume of a subset

S ⊆ V be fvolL(S) =
∑
j∈S

√
dW jτj . Following the anal-

ysis of Theorem 1, let τmin = mini τi, τmax = maxi τi and

µS [i] =

√
dW iτi∑

j

√
dW jτj

for i ∈ S and is 0 otherwise. Like in

the traditional Laplacian-conductance framework, we will
establish that the existence of a community S ⊂ V with
small hL(S) underscores why the dynamics may not con-
verge rapidly from the inital distribution.

We examine the evolution of the dynamics defined by a
network G = (V,E,A) and a spreading operator L. Partic-
ularly, we are interested in estimating the rate that the dy-
namic process converges to its stationary distribution from
some initial distribution, and its relation to the generalized
conductance hL that we defined (Eqn. (7)). As each dy-
namic process leads to its own notion of (time-dependent)
centrality, we will study and compare the corresponding
community structures by its generalized conductance.

Our local clustering algorithm (Algorithm 2) explores this
interplay. Here we assume the starting vector µu is seeded
in a single node u, i.e., it has a single one entry for node
u, and other entries are all zeros. Next theorem provides a
performance guarantee for the local algorithm.

Theorem 4 (Local hL-Clustering). For any
0 ≤ φ ≤ 1, suppose S is a subset in a interaction graph
G = (V,E,W ) with volL(S) ≤ 1

12
· τmin
τmax

· volL(V ) and

hL(S) ≤ φ2. Then, there exists a subset SS ⊆ S with
fvolL(SS) ≥ fvolL(S)/4 such that for any u ∈ SS, Algo-
rithm 2 with s ≥ 2fvolL(S) and ε = φ2 · τmin

τmax
· 1

10·s will in

time O
(
sφ−2 · τmax

τmin
· logn

)
return a set SS with the prop-

erties that (1) the conductance of SS is at most

O
(

(1 + ε)φ ·
√

log s+ log τmax
τmin

)
and (2) fvol(SS) ≤ 2s.

Theorem 4 follows from our proofs in the following subsec-
tion 3 together with Andersen-Chung-Lang’s analysis [2] of
the push-based approximation scheme. Similar to its global
counterpart in Theorem 3, Theorem 4 uses Theorem 2 in
place of Theorem 1 to address the approximation of the dy-
namic process. During the approximate dynamic process
with the Andersen-Chung-Lang push scheme, only O(1/ε)
nodes have non-zero entries.

Algorithm 2 Local hL-Clustering(G,L, u, φ, s, ε)
Input: Network: G = (V,E,A), spreading operator L de-
fined by the interaction matrix W and the node delay factor
T . The starting node: u, quality bound: φ, targeted frac-
tional volume: s, and rounding approximation ε
Output: subset SS
Algorithm

1. Set t = φ−2 · τmin · log 2.

2. Apply the push-based approximation scheme of
Andersen-Chung-Lang [2] with rounding parameter ε

to find an approximation θ̃t,u,ε to θ(t, u) = e−Ltµu
and adaptively maintain the set Ṽε = {v : θ̃t,u,ε[v] >
0}.

3. Order the vertices of Ṽε into {v1, v2, · · · } such that
θt,u[v1]√
dW 1τ1

≥ θt,u[v2]√
dW 2τ2

≥ · · · ≥ θt,u[vn]√
dW nτn

4. Sweeping: For each Si = St,u[i] = {v1, ..., vi} such that
fvolSi ≤ 2s, compute

hL(Si) =
cut(Si, S̄i)

min
(
volL(Si), volL(S̄i)

) .
5. Output the Si with the smallest hL(Si).

4.2 Rate of Convergence and Local Sweeping
Define Θt,µ(S) =

∑
i∈S θt,µ[i]

√
dW i
τi

. We first establish

a lemma showing that while the quantity Θt,µ(S) is reduc-
ing during every step of the dynamic process, the derivative
depends on the generalized volume of S, and is bounded by
a factor proportional to the generalized conductance hL(S)
of S given by Eqn. (7).

Lemma 1. For S ⊂ V with fvolL(S) ≤ fvolL(V )/2 we

have
dΘt,µ(S)

dt
≤ 0. Moreover,

∣∣∣ dΘt,µ(S)

dt

∣∣∣ ≤ hL(S)

τmin
.

Lemma 1 then provides a lower bound on the fractional
volume of a subset SS ⊂ S from whom the dynamic process
does not converge rapidly. Let θt,u denote θt,µu , πu denote
πµu , Θt,u(S) = Θt,µu(S).

Corollary 1. For any subset S ⊂ V in a interaction
graph G = (V,E,W ), let

SS =

{
u ∈ S : Θt,u(S) ≥ 1

4
·Θ0,u(S) · e−

1
τmin

·hL(S)
t

}
.

If t ≥ τmin
hL(S)

then fvolL(SS) ≥ fvolL(S)/4.

Following the intuition of the proof of the extended Cheeger
inequality (Theorem 1) and the traditional Laplacian analy-
sis [17, 26, 8, 7], we consider a sweeping process based on the
time-dependent centrality with starting vertex u. At time t,
the sweeping is performed according to

θt,u[v1]√
dW 1τ1

≥ θt,u[v2]√
dW 2τ2

≥ · · · ≥ θt,u[vn]√
dW nτn

by considering St,u[i] = {v1, · · · , vi}. Like in Chung [6], for
a targeted size s, we define the s-local hL-value denoted by
κt,u,s as: κt,u,s = mini:fvolL(St,u[i])≤2s hL(St,u[i]).
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Lemma 2. For any subset S ⊂ V in a interaction graph
G = (V,E,W ) of fractional volume s = fvolL(S) ≤ fvolL(V )/4,
we have

Θt,u(S)−Πu(S) ≤ 1

τmin
fvolL(S) · e−t

κ2t,u,s
4 . (14)

.

The following lemma is a consequence of Lemma 2 and
Corollary 1, which ultimately leads to Theorem 4.

Lemma 3 (Local hL-Sweeping). For any 0 ≤ φ ≤ 1,
suppose S is a subset in a interaction graph G = (V,E,W )
with volL(S) ≤ 1

12
· τmin
τmax

· volL(V ) and hL(S) ≤ φ2. Then,

there exists a subset SS ⊆ S with fvol(SS) ≥ fvol(S)/4 such
that for any u ∈ SS, the sweeping by using the vector θt,u
with t = O(φ−2·τmin) will find a set SS with s-local hL-value

at most O
(
φ ·
√

log s+ log(τmax/τmin)
)

.

5. EXPERIMENTS
Through experiments we demonstrate the difference in the

centralities and communities detected in a graph under dif-
ferent dynamic processes. Interestingly, even this simple
class of processes can lead to divergent views about who
the central nodes are and what are the cohesive clusters for
a collection of widely studied real-world networks.

We study how the dynamic processes defined in this paper
affect centrality and spectral partitioning. Our framework
actually offers more freedom in designing node delay factor
T and the interaction graph W and is thus a much more
powerful tool. We will study these possibilities in greater
detail and use the proposed local clustering algorithm for
real-world applications in future work.

Table 1 lists the networks we study empirically, and their
properties. We treat all networks as undirected. These net-
works come from different domains, and embody a variety of
dynamic processes and interactions, from real world friend-
ships (Zachary karate club [30]), to social network (Face-
book [18]), to electrical power distribution (Power Grid [28]),
to intra-text (Word Adjacency [19]) and inter-text (Political
Blogs [1]) links.

The House of Representatives network is built from the
98th United States House of Representatives voting data [21].
Unlike the previously studied variants, here we use a special
version taking account of all 908 votes. The resulting net-
work is dense and has an unusually flat degree distribution.
Originally analyzed by Smith et al. [24], this network better
differentiates between the dynamics under our framework.

5.1 Centrality Profiles
We first study node (stationary) centrality rankings re-

sulting from different dynamic processes. By construction,
centrality of a node converges to Eq. 5. Given a graph, the
degree sequence is fixed, and stationary centrality depends
solely on the node delay factor T . A centrality profile is a
curve of stationary centrality values for each node given a
spreading operator. Figure 1 shows the centrality profiles of
network nodes. To improve visualization, nodes are ordered
by their centrality according to the normalized Laplacian
matrix, and they are rescaled to fall within the same range.

Except for “House of Representatives” and “Power Grid”
networks, the centrality profiles on the other four data sets
are very similar. They all have heavy-tailed degree distribu-
tions, thus their centralities under the normalized Laplacian
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Figure 1: Centrality profiles for different networks
Comparison of stationary centrality on all six networks. The
x-axes represent node indices which has been fixed for all dy-
namics on each network in descending order of the “Nor-
malized Laplacian” centrality. On the y-axes, the convergent
centrality has been normalized to the interval [0,1] for all
dynamics on all networks.

Figure 2: Optimal bisections for L (left) and R
(right) on Political Blogs
Laplacian has the exact same bisection as Normalized Lapla-

cian, while Unbiased Adjacency leads to similar results as
Replicator. Notice the correspondence to their sweep pro-
files.
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Table 1: Specifications of benchmark networks
Name #nodes #edges Diameter Clustering Properties
Zachary’s Karate Club 34 78 5 0.588 A toy social network
Word Adjacency 112 425 5 0.19 A disassortative network
House of Representatives 434 51033 4 0.882 A dense network with even degrees
Political Blogs 1490 16714 9 0.21 Has two “cores” with “whiskers”
Facebook Egonets 4039 88234 17 0.303 Combined ego networks
Power Grid 4941 6594 46 0.107 A large sparse network
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Figure 3: Sweep profiles for different networks
Sweep profiles produced according to Algorithm 1 on all six
networks. The x-axes indicate the sweep point, or commu-
nity size of one of the bi-sections. On the logarithmic y-axes,
the quality function has been normalized to the same range
for all dynamics on each network.

behave similarly. Replicator centralities follow largely the
same trend. There are important differences, however. For
example, in the “House of Representatives” network, nodes
in the range [1, 50] considered to be highly central according
to the normalized Laplacian are judged not as important
by the Replicator. Since centralities and communities are
closely related under our framework, this would eventually
lead to the differences in community detection, as we show
in the next subsection. The centrality scores of nodes in
the “Power Grid” network are all the same except for a few
nodes. The lack of information comes from the extreme
sparsity of the network.

5.2 Communities and Sweep Profiles
We use the sweep profile to study differences in network

partitioning using different spreading operators for the real
world networks listed in Table 1. Given a spreading op-
erator, a sweep profile is a curve of quality functions fol-
lowing Algorithm 1. Let f be the eigenvector associated
with the second smallest eigenvalue of L. The vertices are
ordered (v1, ...., vn) such that g[v1] ≥ ... ≥ g[vn] where
g[u] = f [u]/

√
dW uτu. The x-axis plots Si = {v1, ..., vi}.

The y-axis plots

hL(Si) =
cut(Si, S̄i)

min
(
volL(Si), volL(S̄i)

) .
The smallest hL(Si) gives a provably good cluster Si ac-
cording to Theorem 3.

Figure 3 shows the sweep profile for each network un-
der different dynamics. To improve visualization, we rescale
community profiles to lie within the same range. Sweep pro-
files provide us an interesting perspective into the differences
in the communities identified according to different dynam-
ics. With the exception of Zachary’s karate club, there are
large differences both in the shape of the profile and, more
importantly, in the location of its minimum, which corre-
sponds to the optimal bisection of the network.

In the “Political Blogs” network, both regular and nor-
malized versions of Laplacian split a “whisker” community
from the core (Left of Figure 2). However, the Replicator
identifies a community of more than 500 nodes (Right of Fig-
ure 2). While Replicator is less susceptible to “whiskers”, on
the “Power Grid” and “Facebook Egonets” networks, it only
identifies small communities within the “core”. Instead, un-
biased Laplacian succeeds in finding more balanced cuts of
the networks. In the “House of Representatives” network,
the Replicator puts “swing nodes” into a different commu-
nity from the other operators. Recall that this difference
was also reflected in its centrality profiles. In future work,
we plan to analyze the reasons behind these differences in
more detail and in a dynamic setting.
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6. CONCLUSION
The dynamics of a process occurring on a network can be

succinctly described in terms of a spreading operator. The
generalized Laplacian operator presented in this paper can
describe the spreading operators associated with known pro-
cesses, such as random walks and epidemics, but also new
ones, such as the unbiased Laplacian. We generalize the re-
lationships between the properties of random walks and nor-
malized graph Laplacian, to other dynamic processes. Each
operator leads to a distribution that gives centrality of nodes
with respect to that process. In addition, we show that the
generalized conductance measuring community quality with
respect to the dynamic process is related to the eigenvalues
of the spreading operator describing that process through a
Cheeger-like inequality. These relationships can be used for
spectral graph partitioning. Nodes within the same partition
interact more with each other via the dynamic process than
with nodes in other partitions. As in previous local clus-
tering algorithms of Spielman-Teng, Andersen-Chung-Lang
and Andersen-Peres [26, 3, 2], the mathematical structure
underlying the generalized Cheeger’s inequality enables effi-
cient local clustering algorithms for the more general com-
munity qualities, whose running time is essentially linear in
the size of the cluster it outputs, and does not depend on
the size of the whole graph.

While our framework is flexible enough to represent sev-
eral important types of dynamic processes, it does not rep-
resent all possible processes, for example, those that are lo-
cally non-conservative. In order to describe such dynamics,
an even more general framework is needed. We conjecture,
however, that the more general spreading operators will still
obey the Cheeger-like inequality, and that other theorems
presented in this paper can be extended to these processes.
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