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ABSTRACT
Despite the prevalence of community detection algorithms,
relatively less work has been done on understanding whether
a network is indeed modular and how resilient the commu-
nity structure is under perturbations. To address this issue,
we propose a new vertex-based metric called permanence,
that can quantitatively give an estimate of the community-
like structure of the network.

The central idea of permanence is based on the obser-
vation that the strength of membership of a vertex to a
community depends upon the following two factors: (i) the
distribution of external connectivity of the vertex to indi-
vidual communities and not the total external connectivity,
and (ii) the strength of its internal connectivity and not just
the total internal edges.

In this paper, we demonstrate that compared to other
metrics, permanence provides (i) a more accurate estimate
of a derived community structure to the ground-truth com-
munity and (ii) is more sensitive to perturbations in the
network. As a by-product of this study, we have also devel-
oped a community detection algorithm based on maximizing
permanence. For a modular network structure, the results of
our algorithm match well with ground-truth communities.

Categories and Subject Descriptors
H.2.8 [Database Application]: Data mining; E.1 [Data
Structure]: Graphs and networks

Keywords
permanence; community analysis; modularity

1. INTRODUCTION
Finding accurate community structures, i.e., groups of

vertices that have more connections within a group than
across the groups is one of the central problems in network
analysis. Several community detection algorithms have been
proposed over the last decade; these algorithms are generally
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based on optimizing certain scoring functions (for example,
modularity [21] or conductance [18]). The output of these
algorithms is an assignment of the vertices to their respec-
tive communities, for which the designated parameters are
optimal (or nearly-optimal)1. However, almost all these de-
tection techniques will always output a set of communities,
irrespective of whether the network has an inherent commu-
nity structure or not. Moreover, the optimal values of the
scoring functions do not provide any insight as to whether
a network actually possesses community structure or not.
For example, the highest modularity in the Jazz network is
0.45 [5] and that of the Western USA power grid is 0.98 [5,
13]. However, it has been observed [5, 13], that Jazz has a
much stronger community structure than the power grid.

The key reason for this is that optimization metric such
as modularity frequently enforces the detection algorithm to
make a choice by arbitrarily breaking ties. While this indeed
increases the value of the metric, each such tie-breaking ob-
fuscates the possibility of other community assignments. In
grid-like networks, where choices can occur frequently, such
tie-breaking can produce inaccurate or insignificant commu-
nities, while producing a high scoring function. Although,
methods for finding consensus communities [17] can indicate
whether the communities are significant or not, these tech-
niques are dependent on the number of algorithms used to
find the consensus.

In this paper, we propose a novel vertex-based scoring
function called permanence whose optimization encounters
much fewer tie-breaking situations in a network. The key
idea behind formulating permanence is as follows. Most op-
timization metrics consider either the degree of a vertex in
a community or the total number of external connections of
the vertex (i.e., those connections that are attached with the
other neighbors of the vertex outside the community). We
posit that the distribution of the external connections of a
vertex is equally important. In particular, our vertex assign-
ment decisions are based not on the total number of external
connections but on the maximum number of external con-
nections to any single neighboring community. To the best
of our knowledge, we are the first to make this distinction
between the total external connections and their distribu-
tion. Permanence of a vertex thus quantifies its propensity
to remain in its assigned community and the extent to which
it is “pulled” [5] by the neighboring communities.

The value of permanence ranges from 1 (vertex is strongly
connected to its assigned community) to -1 (vertex is weakly
connected to its assigned community, and possibly wrongly

1
In this paper, we consider only the non-overlapping communities.
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assigned). If the permanence is zero, this indicates that the
vertex is pulled equally by all its neighbors, all of which are
in different communities. The “pull” in the metric is mod-
eled as the maximum number of external connections to any
single neighboring community. The introduction of pull in
the formulation significantly reduces the frequency of tie-
breaking situations that the algorithm has to encounter. In
case the“pull” from all the neighboring communities is equal
for a vertex, we assign it to a singleton community (i.e., com-
munity containing only one vertex), rather than assigning it
to one of the (larger size) neighboring communities.

The sum of the permanence of all vertices, normalized
by the number of vertices, provides the permanence of the
network. It indicates to what extent, on an average, the
vertices of a network are bound to their communities. As
with permanence, this value also ranges from 1 to (nearly)
-1. Maximizing permanence can be therefore used as an
alternative method for identifying communities which con-
stitutes a by-product of the current study. This approach of
combining the microscopic (vertex-level) information to ob-
tain the mesoscopic (community-level) information provides
a more fine-grained view of the modular structure of the net-
work. As the community structure of the network degrades,
so does the value of permanence of the entire network.

The principal benefits of our approach are – (i) perma-
nence provides a quantitative estimate of the inherent com-
munity structure of the network (Section 2),(ii) permanence
is comparable (and sometimes better) than several other
popular community scoring functions in identifying good
communities (Section 4), (iii) permanence is very sensitive
to the different perturbations of the network – a desirable
property for a community scoring metric (Section 5), (iv)
for modular networks, maximizing permanence algorithm
is more successful in finding ground-truth communities as
compared to several other community detection algorithms
(Section 6), (v) community detection using maximizing per-
manence can reduce the effect of resolution limit, degeneracy
of solutions and asymptotic growth of the optimal value with
network size (Section 6).

2. DEFINITION OF PERMANENCE
In this section, we explain the concepts that lead to the

formulation of permanence followed by a definition of the
formula.

2.1 Distribution of External Connections
In contrast to most optimization metrics that either con-

sider the degree of the vertex in a community or the total
number of external neighbors of the vertex, in permanence
we consider the distribution of external connections of the
vertex to its neighboring communities. A vertex that has
equal number of connections to all its external communi-
ties (e.g., a vertex with total 6 external connections with
2 to each of 3 neighboring communities) has equal “pull”
from each community whereas a vertex with more exter-
nal connections to one particular community (e.g., a vertex
with total 6 external connections with 1 connection each
to two neighboring communities and 4 connections to the
third neighboring community), will experience more “pull”
from that community due to large number of external con-
nections to it.

This property is demonstrated by a toy example in Fig-
ure 1(a). If the edge (a, b) is deleted and the edge (a, c) is

added, then the number of external connections remains the
same, and the value of modularity, conductance and cut-
ratio are also the same for this change. However, in the
initial graph, vertex a had more “pull” from the community
of b, in fact proportional to the number of its internal con-
nections, whereas in the modified version a has equal pull
from both the communities of b and c. Our permanence
formula, defined in Section 2.3, takes this distinction into
account.

Figure 1(b) shows a histogram of the fraction of vertices
versus the ratio between the number of total (Esum) and
maximum (Emax) external connections for two representa-
tive networks. We notice that – (i) very few vertices have
(closely) similar values of Esum and Emax (i.e., ratio=1);
the majority have significantly different Esum and Emax (ii)
the ratio between these two quantities is not constant; it
is spread over a wide range of values. Therefore, we can-
not estimate Emax from the value of Esum. Consequently,
metrics that are based on total number of external connec-
tions lack the information as to what extent a vertex may
be “pulled” by the neighboring communities which can bet-
ter estimated by Emax. Using Esum can potentially result
in frequent ties that need to be arbitrarily resolved by the
community detection algorithms based on such metrics.

When computing permanence, we use the maximum num-
ber of external connections, i.e., the maximum pull, to any
one external community, instead of combining all the exter-
nal connections.

2.2 Strength of Internal Connections
The internal connections of a community are generally

considered together as a whole. However, how strongly a
vertex is connected to its internal neighbors can differ. The
toy example of Figure 1(c) shows two networks each having
two communities. Both the networks have the same number
of edges; and the modularity, conductance and cut-ratio for
the two divisions are exactly the same. However, the vertices
on the left-hand graph are more tightly connected to each
other than the vertices on the right-hand graph. To measure
this internal connectedness of a vertex, one can compute the
clustering coefficient of the vertex with respect to its internal
neighbors. The higher this internal clustering coefficient, the
more tightly the vertex is connected to its community.

As an empirical study, we further obtain the internal clus-
tering coefficient per vertex of the benchmark networks for
their ground-truth communities. Figure 1(d) shows a his-
togram of the internal clustering coefficient versus the num-
ber of vertices corresponding to a specific range of internal
clustering coefficient. As can be seen from the histogram,
for most vertices the internal clustering coefficients are gen-
erally towards the high range. However, for LFR (µ=0.6)
there is a reverse trend. In this network, there are more ver-
tices with lower internal clustering coefficient. This network
by construction has a weaker community structure than the
other networks in the set, and thus quite a few of its vertices
are loosely connected internally (see more in Section 6).

To represent whether vertices are tightly connected within
their communities, we include the internal clustering coeffi-
cient as a factor in computing permanence.

2.3 Formulation of Permanence
Based on our observations on the distribution of external

connections and the internal clustering coefficient, we for-
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Figure 1: (Color online) Toy examples and empirical
observations demonstrating the drawbacks of exist-
ing community scoring metrics. The communities in
(a) and (c) are distinguished by different colors.

Figure 2: Toy example depicting permanence of a
vertex v (here I(v)=4, D(v)=7, Emax(v)=2, cin(v)= 5

6
).

mulate permanence of a vertex based on the following two
criteria that measure the possibility of the vertex remaining
in its own community:

(i) The internal connections, I(.), of the vertex v should
be more than the maximum connections to a single exter-
nal community, Emax(.), which results more internal pull
than the maximum external pull. This criteria is repre-
sented in the permanence computation as the ratio of I(v)
and Emax(v) (indicated by F1 in Equation 1). If the vertex
has no external connections, F1 is just the value of the inter-

nal connections. We normalize this value by the total degree
of the vertex, D(v) (indicated by F2 in Equation 1), which
ensures that the product of F1 and F2 will be between 0 (no
internal connections) and 1 (no external connections).

(ii) Within a specific community, the internal neighbors of
the vertex v should be highly connected among each other
(i.e., its internal clustering coefficient2, cin(v), should be
high). This criteria emphasizes that a vertex is likely to be
within a community if it is part of a near-clique substruc-
ture. For computing cin(v), we assume that each community
should have at least three vertices and three internal connec-
tions; otherwise, cin(v) is set to 0. When computing perma-
nence, we impose a penalty based on low internal clustering
coefficient (indicated by F3 in Equation 1). The less the
internal clustering coefficient, the more the penalty imposed
to the final outcome of the community score. This value also
ranges from 0 (no penalty) to 1 (maximum penalty).

We aggregate these two criteria to formulate permanence
of a vertex v as follows:

Perm(v) =
[ I(v)

Emax(v)︸ ︷︷ ︸
F1

× 1

D(v)︸ ︷︷ ︸
F2

]
−

[
1− cin(v)︸ ︷︷ ︸

F3

]
(1)

Figure 2 depicts a toy example for measuring permanence
of a vertex v. Note that, this formula actually differentiates
between the two cases in Figure 1(a) with higher perma-
nence value for the case where the external pull is uniform.
Similarly, the formula differentiates between the two cases in
Figure 1(c) by imposing more penalty on the network that
has a less tightly knit internal substructure.

2.4 Boundary Conditions of Permanence
For vertices that do not have any external connections,

Perm(v) is considered to be equal to the internal clustering
coefficient (i.e., Perm(v) = cin(v)). The maximum value of
Perm(v) is 1 and is obtained when vertex v is an internal
node and part of a clique. The lower bound of Perm(v)
is close to -1. This is obtained when I(v) � D(v), such

that I(v)
D(v)Emax(v)

≈ 0 and cin(v) = 0. Therefore for every

vertex v, −1 < Perm(v) ≤ 1. The permanence of a graph
G(V,E), where V is the set of vertices and E is the set of
edges, is given by Perm(G) = 1

|V |
∑
v∈V Perm(v). For a

graph G(V,E), the range is −1 < Perm(G) ≤ 1.
Perm(G) will be closer to 1 as more vertices have high

permanence, that is more vertices are in well-defined com-
munities. This can happen only if the network has a strong
community structure. The maximum value obtained is when
G consists of a series of disconnected cliques. If there is a
vertex bridging between two cliques, then the highest overall
permanence will be obtained if each clique acts as a separate
community and bridging vertex forms a singleton commu-
nity. For a grid, the best value of Perm(G) will be zero, i.e.,
each vertex is assigned to a singleton community.

3. EXPERIMENTAL SETUP
In this section, we provide a brief overview of the datasets,

metrics and comparative methods that we use for our exper-
iments.

2
Note that, internal clustering coefficient of v is obtained by consid-

ering the ratio of the existing connections and the total number of

possible connections among the internal neighbors of v.
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3.1 Test Suite of Networks
We use the LFR benchmark model [15] to generate syn-

thetic networks along with their ground-truth communities.
Users can specify the following properties: number of nodes
(n), average (< k >) and maximum (kmax) degree, the de-
gree distribution, the community size distribution, and the
mixing-coefficient (µ). The mixing coefficient represents the
ratio (in average) between the external connections of a node
to its degree. Thus the lower the value of µ, the stronger
the community in the network. For our experiments, we
set the number of nodes as 1000, and µ as 0.1, 0.3 and 0.6
(unless mentioned otherwise). For the rest of the param-
eters, we use the default values mentioned in the authors’
implementation3 [15].

We also use three real-world networks4 whose true com-
munity structures are known a-priori and whose properties
are summarized in Table 1.
Football network was proposed by Girvan and Newman
[10] which contains the network of American football games
between Division IA colleges during regular season Fall of
2000. The vertices in the graph represent teams (identified
by their college names), and edges represent regular-season
games between the two teams they connect.
Indian Railway network proposed by Ghosh et al. [9] con-
sists of nodes representing stations, where two stations si
and sj are connected by an edge if there exists at least one
train-route such that both si and sj are scheduled halts on
that route. The weight of the edge between si and sj is
the number of train-routes on which both these stations are
scheduled halts. We filter out the low-weight edges and then
make the resultant network unweighted. We tag each station
based on the state in India5 to which that station belongs.
The states act as communities since the number of trains
within each state is much higher than the number of trains
between two states.
Co-authorship network is derived from the citation dataset6

developed by Chakraborty et al. [4]. This dataset contains
the metadata (title, author(s), related field(s)7 of the pa-
per, publication venue, year of publication, references and
abstract) of all the papers of computer science published be-
tween 1960 to 2009 and archived in DBLP repository. We
build an aggregated undirected coauthorship network where
each node represents an author, and an undirected edge be-
tween a pair of authors is drawn if they were co-authors at
least once. Since each paper is marked by its related field, we
assume this field as the research area of the author(s) writing
that paper. Therefore, an author may possess more than one
area of research interests. We resolve this by tagging each
author by the major field on which she has written most of
the papers. These fields act as the ground-truth communi-
ties. Besides the aggregated network, we also create some
intermediate networks mentioned in Table 8 by cumulatively
aggregating all the vertices and edges over each year, e.g.,
1960-1971, 1960-1972, ..., 1960-1980.

3
https://sites.google.com/site/santofortunato/inthepress2

4
All the datasets are publicly available at http://cnerg.org/

permanence.
5
http://irfca.org/apps/station_codes

6
http://cnerg.org

7
Note that, the different sub-branches like Algorithms, AI, Operat-

ing Systems etc. constitute the different “fields” of computer science

domain.

Note that, the principles for constructing the Indian rail-
way network and the co-authorship network are the same –
there is an underlying bipartite structure in each case; for
railway network, it is the station-train interaction network
with an edge denoting if a particular train passes through a
station, while for the co-authorship network it is the article-
author interaction network with an edge denoting the au-
thorship of a researcher in a scientific article. The railway
network is therefore the one-mode projection of the train-
station network and the co-authorship network is similarly
the one-mode projection of the article-author network. Note
that, although the principles of construction are same for
both the networks (one clique per train/article is imposed
in the one-mode projection), the results, as we shall see in
Section 6 are far better for the railway network since the
ground-truth here is much more fine-grained in comparison
to the co-authorship network.

Table 1: Properties of real-world networks; n and e
are the number of nodes and edges, c is the number
of communities, <k> and kmax its average and max-
imum degree, nminc and nmaxc the sizes of its smallest
and largest communities.

Networks n e <k> kmax c nminc nmaxc

Football 115 613 10.57 12 12 5 13
Railway 301 1224 6.36 48 21 1 46
Coauthorship 103677 352183 5.53 1230 24 34 14404

3.2 Scoring Functions for Evaluating Commu-
nity Structure

The goodness of a community is often measured by how
well certain scoring functions are optimized. Here we com-
pare the optimal value of permanence for the obtained com-
munities versus three popular scoring functions, namely mod-
ularity (Mod) [21], conductance (Con) [18] and cut-ratio
(Cut) [19]. In order to make the higher the better, we mea-
sure (1-Con) and (1-Cut) for conductance and cut-ratio re-
spectively.

3.3 Metrics to Compare with Ground-truth
A stronger test of the correctness of the community de-

tection algorithm, however, is by comparing the obtained
community with a given ground-truth structure. We use
three standard validation metrics, namely Normalized Mu-
tual Information (NMI) [7], Adjusted Rand Index (ARI) [12]
and Purity (PU) [20] to measure the accuracy of the de-
tected communities with respect to the ground-truth com-
munity structure. [14] argues that these measures have cer-
tain drawbacks in that they ignore the connectivity of the
network. We therefore also use the weighted versions of
these measures, namely Weighted-NMI (W-NMI), Weighted-
ARI (W-ARI) and Weighted-Purity (W-PU) as proposed
in [14]. Note that, all the metrics are bounded between 0
(no matching) and 1 (perfect matching).

3.4 Community Detection Algorithms
We use the following community detection algorithms for

comparison with our proposed algorithm discussed in Sec-
tion 6:
(i) Modularity-based: FastGreedy [22], Louvain [3] and
CNM [6].
(ii) Random walk-based: WalkTrap [24].
(iii) Compression-based: InfoMod [25] and InfoMap [26].
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Table 2: For football network, the values of the scoring functions on the output obtained from different
algorithms and the scores of the validation metrics with respect to the ground-truth communities. The ranks
of the algorithms (using dense ranking) are shown within parenthesis. The average ranks of all the normal
(weighted) validation measures are shown in column 9 (column 13).

Algorithms Mod Perm 1-Con 1-Cut NMI ARI PU Avg W-NMI W-ARI W-PU Avg
(N) (W)

Louvain 0.60(1) 0.36(1) 0.77(5) 0.44(5) 0.93(1) 0.99(1) 0.89(2) 1.33 0.99(2) 0.93(2) 0.99(1) 1.67
FastGreedy 0.58(2) 0.25(3) 0.81(3) 0.59(3) 0.93(1) 0.99(1) 0.91(1) 1.00 1.00(1) 0.94(1) 0.99(1) 1.00

CNM 0.55(3) 0.20(4) 0.85(1) 0.86(1) 0.67(4) 0.75(4) 0.42(5) 4.33 0.55(5) 0.63(5) 0.71(3) 4.33
WalkTrap 0.60(1) 0.36(1) 0.82(2) 0.69(2) 0.90(2) 0.98(2) 0.84(3) 2.33 0.98(3) 0.91(3) 0.99(1) 2.33
Infomod 0.60(1) 0.35(2) 0.82(2) 0.69(2) 0.89(3) 0.97(3) 0.82(4) 3.33 0.97(4) 0.89(4) 0.98(2) 3.33
Infomap 0.60(1) 0.35(2) 0.79(4) 0.51(4) 0.89(3) 0.97(3) 0.82(4) 3.33 0.97(4) 0.89(4) 0.98(2) 3.33
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Figure 3: (Color online) Heat maps depicting the pairwise Spearman’s rank correlation between four scoring
functions with six validation measures for six different networks. Avg(N) and Avg(W) are the averages of
the ranks of three normal and three weighted validation measures respectively as shown in Table 2.

4. PERMANENCE AS A COMMUNITY
SCORING FUNCTION

In this section, we demonstrate the effectiveness of per-
manence as a scoring function for evaluating the goodness
of detected communities, and compare it with modularity,
1-Con and 1-Cut. To do this, we perform the following ex-
periment, on the same lines as that of [27].

These are the steps in our experiment: (i) We apply sev-
eral community detection algorithms on a specified network
and obtain the vertex-to-community assignment as given by
each algorithm; (ii) We compute the values of all the com-
munity scoring functions for these communities; (iii) For
each scoring function we rank the algorithms based on which
one of these produces the most optimal (highest) value; (iv)
We then compare the obtained community with the known
ground-truth community and compute the respective valida-
tion measures, namely NMI, ARI, Purity and their weighted
versions; (v) For each validation metric, we rank the algo-
rithms based on the one that produces the highest value,
i.e., best match with ground-truth.

Table 2 shows the results of the experiment performed on
football network. Scoring functions (columns 2-5) are mea-
sures of goodness of the community set obtained. The vali-
dation metrics (columns 6-8, 10-12) measure the concurrence
of the communities with the ground-truth communities. We
posit that since these two types of measures are orthogo-
nal, and because the validation metrics generally provide a
stronger measure of correctness after measuring similarity
with the ground-truth structure, the values of a good scor-
ing function should “match” those of the validation metrics.
That is, if a scoring function indeed identifies the correct

communities, then when its value is high (low), the values
of the corresponding validation metrics would also be high
(low).

To compute this correlation, we compare the relative ranks,
because the range of the values is not commensurate across
the quantities and we are more interested in observing the
“up” or “down” direction, rather than the absolute values.
For each network, we measure the Spearman’s rank corre-
lation between all pairs of scoring functions and validation
measures. Note that, it is not always possible to assign ranks
uniquely. We used different ranking schemes to break ties.
Here, we present the results using dense ranking; we have
also used standard competition ranking and fractional rank-
ing (see in [1]) and our results are consistent across all the
different methods.

Results. Table 2 shows the values and ranks for the dif-
ferent metrics for football network. For all the networks,
the rank correlations of the scoring functions and the vali-
dation metrics are shown as heat maps in Figure 3. Lighter
color indicates higher correlation and hence more similarity
between the scoring function and the validation metric. For
the networks having distinct community structure such as
LFR (µ = 0.1), football and railway networks, permanence
shows comparable performance as that of other scoring func-
tions. However for LFR network, with the increase of µ, the
inter-community connection density starts increasing, and
it is difficult for any community detection algorithm and/or
scoring function to capture the ground-truth communities.
Interestingly, we observe that the rank correlation obtained
through the permanence scores and those through valida-
tion metrics is exceptionally high for LFR (µ = 0.6) and
coauthorship networks which seem to have poor community
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Figure 4: (Color online) Change in the value of the scoring functions with the increase of perturbation
intensity (p) in (a) edge-based, (b) random and (c) community-based perturbation strategies. The values are
normalized by the maximum value obtained from each function.

structure compared to the other networks (see Table 1 and
Table 5). Since the ground-truth communities are not well
formed, there is a wide variance in the type of community
structures identified by different algorithms. Permanence
score can capture this variability much better than other
scoring functions. To summarize the results, in Table 3 we
present the average rank correlations of these community
scoring functions across all the validation metrics for each
network. We observe that for all the networks, permanence
on an average produces the best ranking followed by modu-
larity, conductance and cut-ratio in order.

Table 3: Average rank correlations (over different
validation metrics) of the community scoring func-
tions for all the networks. For each network, the
highest (best) correlation is in bold font.

Networks Modularity Permanence Conductance Cut
LFR(µ=0.1) 0.88 0.88 0.88 0.02
LFR(µ=0.3) 0.61 0.74 0.72 0.28
LFR(µ=0.6) 0.87 0.96 -0.18 -0.44

Football 0.25 0.43 -0.29 -0.41
Railway 0.43 0.46 0.08 -0.48

Coauthorship 0.92 0.92 0.76 0.86

5. SENSITIVITY OF PERMANENCE
We now evaluate the sensitivity of permanence under dif-

ferent perturbations of the ground-truth community struc-
ture. We posit that a good metric for evaluating commu-
nities should be stable under small perturbations of the
ground-truth communities (i.e., groups of nodes that dif-
fer very slightly from the ground-truth communities). This
indicates that the scoring function is robust to noise. How-
ever, if the perturbation is beyond a threshold, i.e., when
the ground-truth community structure is perturbed to such
an extent that it resembles a random set of nodes, then a
good scoring function should assign it a low score.

Given a graph G =< V,E > and perturbation intensity
p, we start with the ground-truth community S and then
modify it (i.e., change its members) by executing the per-
turbation strategy p · m times. The value of m is based
on different strategies, as described below. For our experi-
ments, we adopt three perturbation strategies motivated by
the methods proposed in [28]:

(i)Edge-based perturbation picks a random inter-comm-
unity edge (u, v) where u ∈ S and v ∈ S′ (where S 6= S′) and
then swaps the memberships (i.e., assign u to S′ and v to

S). It continues until p · |E| iterations are completed (here,
m = |E|). This strategy preserves the size of S. However, if
v is not connected to any other nodes in S except u, then it
makes S disconnected.

(ii) Random perturbation takes community members
and replaces them with random non-members. We pick two
random nodes u ∈ S and v ∈ S′ (where S 6= S′) and then
swap their memberships. It continues until p · |V | itera-
tions are completed (here, m = |V |). Random perturbation
maintains the size of S but may disconnect S. Generally,
it degrades the quality of S faster than edge-based strat-
egy, since edge-based strategy only affects the “fringe” of
the community.

(iii) Community-based perturbation adopts a similar
mechanism as in the edge-based strategy. However, it con-
siders each community S from the ground-truth community
structure one by one and continues the perturbation until
p · |S| constituent nodes of the community are swapped with
the other non-constituent nodes (here, m = |S|). This pro-
cess is repeated for all the communities separately. This
perturbation decreases the quality of the ground-truth com-
munities the fastest among the three since the number of
swaps is much higher than the others.

We perturb different networks using these three perturba-
tion strategies for values of p ranging between 0.01 to 0.5.
We compute the values of four community scoring functions,
i.e., modularity, permanence, 1-Con and 1-Cut. For small
values of p, small change of the original value of the scoring
function is desirable since it indicates that the scoring func-
tion is robust to noise. For high perturbation intensities
(i.e., for larger values of p), the value should drop signifi-
cantly since the communities become more random.

Results. Figure 4 shows the results of our experiments.
For a commensurate comparison, we rescale the values of
each parameter by normalizing with the maximum value ob-
tained from that function. For all three strategies, the values
of the scoring functions tend to decrease with the increase
of p, and the effect is most prominent in community-based
strategy followed by random and edge-based strategies. For
each network, once p has reached a certain threshold, the
decrease is much faster in permanence. On more careful
inspection, we find that this happens because the internal
structure of a community completely breaks down if pertur-
bation is taken beyond a point and thus has an avalanche ef-
fect on the value of the clustering coefficient (cin(v) in Equa-
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tion (1)). This in turn quickly pulls the value of permanence
down. Summarizing, the results indicate that permanence is
a better measure for distinguishing true communities from
randomized sets of nodes than the other parameters.

6. PERMANENCE MAXIMIZATION
Inspired by the effectiveness of permanence as a scoring

function and its sensitivity to perturbations, we develop a
community detection algorithm called Max Permanence8

(pseudocode in Algorithm 1) that identifies communities by
maximizing permanence.

Our algorithm is a heuristic, that strives to obtain a high
value of permanence. In this algorithm, we begin with ini-
tializing every vertex to a singleton community. A vertex
is moved to a community only if this movement results in a
net increase in the number of internal connections and/or a
net decrease in the number of external connections to any of
the neighboring communities. If such a move is not possible,
then either the vertex remains as a singleton (such as in the
case where moving to any one of the candidate communi-
ties will give equal permanence) or moves to the community
where it is more tightly connected with its neighbors (this
causes the vertex to have positive permanence). This pro-
cess is repeated for each vertex and the entire relocation of
all vertices is repeated over several iterations until the per-
manence value converges. However, convergence is not the-
oretically guaranteed, but we observed that the algorithm
converges with high probability.

6.1 Performance Evaluation
Table 4 shows results of the improvement of our method

(as differences) compared to the average and best perfor-
mances of six competing algorithms (given in Section 3.4)
based on six ground-truth based validation metrics.

Comparable results - in LFR (µ = 0.1) and football net-
works, since the communities are well-separated, most algo-
rithms efficiently capture these partitions and our method
is comparable to the other algorithms as well.

Improved results - in LFR (µ = 0.3) and railway networks,
our method significantly outperforms other algorithms. More-
over in railway network, we observe that our algorithm de-
tects three singleton communities (i.e., communities each
containing only one vertex), one of which is also present in
the ground-truth structure. None of the community detec-
tion algorithms is able to capture this singleton community.

Moderate results - our method does not work well for the
LFR (µ = 0.6) network. For coauthorship network, we ob-
serve that though our algorithm outperforms the average
performance of the competing algorithms, it performs less
well than that of the two information-theoretic approaches
(Infomod and Infomap).

Reasons behind moderate performance
LFR (µ=0.6) – To understand why our algorithm is not as

competitive for LFR (µ = 0.6), we further observe the qual-
ity of the ground-truth communities in three LFR networks.
We observe that while the average internal clustering coeffi-
cient of vertices in LFR (µ = 0.1) is 0.78, it deteriorates to
0.36 for LFR (µ = 0.6). Moreover, 97% of vertices in ground-
truth communities of LFR (µ=0.6) have less internal con-
nections than the external connections (while LFR (µ=0.1)

8
The code is available at http://cnerg.org/permanence.

Algorithm 1 Max Permanence
Input: A graph G.
Output: Permanence of G; Detected communities

procedure Max Permanence(G(V,E))
Each vertex is assigned to its seed community
Set value of maximum iteration as maxIt
vertices← |V |
Sum← 0
Old Sum← −1
Itern← 0
while Sum 6= Old Sum and Itern < maxIt do

Itern← Itern + 1
Old Sum← Sum
Sum← 0
for all v ∈ V do

(compute current permanence of v)
cur p← Perm(v)
if cur p == 1 then

Sum← Sum + cur p
continue;

cur p neig ← 0 . Neig(v)=set of neighbors of v
for all u ∈ Neig(v) do

(compute current permanence of u)
cur p neig ← cur p neig + Perm(u)

. Comm(v) is the set of neighboring communities of v
for all C ∈ Comm(v) do

Move v to community C
(compute permanence of v in community C)
n p← Perm(v)

. Neighbors of v are affected for this movement
n p neig ← 0
for all u ∈ Neig(v) do

(compute new permanence of u)
n p neig ← n p neig + Perm(u)

if (cur p < n p) and (cur p neig < n p neig) then
cur p← n p

else
replace v to its original community

Sum← Sum + cur p

Netw perm = Sum/vertices . Permanence of G
return Netw perm

and LFR (µ=0.3) hardly have any such nodes). This indi-
cates that LFR (µ = 0.6) does not have modular structure
in the ground-truth communities.

To further strengthen this claim, we also measure the sim-
ilarity of the communities obtained by different community
detection algorithms (as listed in Section 3.4) across differ-
ent validation measures. The results in Table 5 clearly show
the degradation of the similarity values with the increase in
µ. The reason is that with the increase in µ, the commu-
nities in LFR network tend to be less well-knit, and thus
the agreement of the outputs of different algorithms is also
less. Therefore, the output of a good community detection
algorithm should reflect such absence of modular structure
in the network (hence shows poor performance).
Coauthorship network – To explain the permanence-based
results obtained from coauthorship network, we further an-
alyze the communities obtained from our algorithm. We
check the title and the abstract of the papers written by the
authors in each community of coauthorship network, and
notice that our method splits large ground-truth commu-
nities into denser submodules. This splitting is mostly no-
ticed in older research areas such as Algorithms and Theory,
Databases etc. These submodules are actually the subfields
(sub-communities) of a field (community) in computer sci-
ence domain. Few examples of such sub-communities ob-
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Table 4: Improvement of Max Permanence with respect to the average (left-hand value) and the best (right-
hand value) performances of the six competing algorithms (separated by semicolon). Positive (negative)
values indicate that Max Permanence outperforms (underperforms) the corresponding performances of the
competing algorithms.

Validation metrics LFR (µ=0.1) LFR (µ=0.3) LFR (µ=0.6) Football Railway Coauthorship
NMI 0.04; 0.00 0.15; 0.05 -0.31; -0.78 0.04; 0.00 0.15; 0.11 0.04; -0.06
ARI 0.06; 0.00 0.21; 0.02 -0.39; -0.76 0.07; 0.00 0.03; 0.04 0.03; -0.08
PU 0.04; 0.00 0.17; 0.00 -0.38; -0.72 0.01; 0.00 0.13; 0.00 0.03; -0.06

W-NMI 0.02; 0.00 0.14; 0.00 -0.41; -0.78 0.09; 0.00 0.26; 0.00 0.05; -0.01
W-ARI 0.05; 0.02 0.19; 0.05 -0.35; -0.72 0.05; 0.00 0.02; -0.15 0.04; -0.06
W-PU 0.03; 0.01 0.17; 0.00 -0.45; -0.79 0.00; 0.00 0.05; -0.04 0.02; -0.15

tained from our algorithm are noted in Table 6. Thus, our
algorithm, in addition to identifying well-defined communi-
ties, is also able to unfold the hierarchical organization of a
network.

Table 5: Average values among pairwise similarities
between outputs of the community detection algo-
rithms on different LFR networks.

Validation LFR LFR LFR
measures (µ=0.1) (µ=0.3) (µ=0.6)

NMI 0.95 0.82 0.53
ARI 0.98 0.79 0.48
PU 0.99 0.85 0.56

W-NMI 0.94 0.85 0.54
W-ARI 0.97 0.78 0.50
W-PU 0.98 0.83 0.57

Table 6: Example of communities and sub-
communities obtained from coauthorship network
using Max Permanence algorithm.

Communities Sub-communities
Algorithms Theory of computation; Formal methods; Data structure;
and Theory Information & coding theory; Computational geometry
Databases Models; Query optimization; Database languages;

storage; Performance, security, and availability

Comparison of largest community size. Many op-
timization algorithms have the tendency to underestimate
smaller size communities (known as the resolution limit prob-
lem [11]) and sometimes tend to produce very large size
communities. In our test suite, we observe the similar ten-
dency in all the competing algorithms whereas the com-
munities obtained by permanence are smaller in size. In
Table 7, we show for two representative networks that the
size of the largest communities detected by the other algo-
rithms is much larger than the size of the largest commu-
nity present in the ground-truth structure. We also measure
the maximum similarity (using Jaccard coefficient) between
the largest-size community detected by each algorithm with
the communities in ground-truth structure and notice that
Max Permanence is able to detect largest size community
which is most similar to the ground-truth structure. There-
fore, we hypothesize that our algorithm has the potentiality
to reduce the effect of resolution limit.

6.2 Handling Modularity Maximization Issues
As discussed earlier, modularity maximization algorithms

suffer from the issues including (a) resolution limit, (b) de-
generacy of solution and (c) dependence on the size of the
graph [11]. We now discuss how each of these problems are
ameliorated by maximizing permanence.

We demonstrate that community assignments are different
in a modularity-based algorithm vis-a-vis Max Permanence

Table 7: Size of the largest communities obtained
from different community detection algorithms and
their similarities with the ground-truth structure for
two networks (LFR (µ=0.3, N=1000) and football).

Largest community size Similarity
LFR Football LFR Football

(µ = 0.3) (µ = 0.3)
Ground-truth 49 12 – –

Louvain 62 24 0.70 0.41
FastGreedy 95 18 0.32 0.65

CNM 91 32 0.52 0.31
Walktrap 83 15 0.51 0.57
Infomod 61 16 0.79 0.86
Infomap 59 16 0.74 0.86

Max Permanence 49 13 1 0.92

algorithm using the example in Figure 5. In this figure, we
assume that apart from the edges through v, there is no
connection between the communities A and B.

Figure 5: (Color online) An illustrative example to
show the community assignment of vertex v.

Terminology. Let vertex v be connected to α (β) nodes
in community A (B), and these α (β) nodes form the set Nα
(Nβ). The number of vertices in community A is (x+α), and
in community B is (y + β). Let the average internal degree
of a vertex a ∈ Nα and a vertex b ∈ Nβ , before v is assigned
to any of the communities, be Iα and Iβ respectively. Let
the average internal clustering coefficient of the neighboring
nodes in communities A and B be CA and CB respectively.
If v is added to communities A (B) then the average internal
clustering coefficient of v becomes CvA (CvB), and the average
internal clustering coefficient of the nodes inNα(Nβ) become
Cα (Cβ).

We assume that the communities A and B are tightly con-
nected internally such that the values of CA and CB are very
high (> 0.5). To simplify the explanations, we consider the
case where none of the neighbors of v are connected to each
other. If v does not add any new edges to the group of neigh-

bors, then Cα = CA
(Iα−1)
(Iα+1)

(similarly, Cβ = CB
(Iβ−1)

(Iβ+1)
).

Given this scenario, we can determine the conditions (due
to the lack of space detailed calculations are provided in an
online appendix [1]) for which a particular assignment of v
to any of the communities will give the highest permanence.
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Table 8: Change in scoring functions with the (near-)symmetric growth of coauthorship network obtained in
each year by adding vertices and edges till that year. N : number of nodes, c: number of communities, < I >:
average internal degree, < k >: average degree, < cin >: average internal clustering coefficient, < Emax >:
average maximum external connectivity. The value of permanence is less affected by the growth.

C
o
a
u
th

o
rs

h
ip

Year 60-71 60-72 60-73 60-74 60-75 60-76 60-77 60-78 60-79 60-80

Network

n 964 1515 1991 2681 3386 4836 6284 7814 9001 10386

properties

c 24 24 24 24 24 24 24 24 24 24
<I>
<k>

0.082 0.095 0.093 0.091 0.089 0.104 0.111 0.112 0.115 0.113
1

<Emax>
(×10−4) 3.8 3.2 2.9 3.9 2.8 2.11 2.39 2.92 2.69 3.22

< (1− cin) > 0.239 0.248 0.246 0.251 0.251 0.260 0.265 0.269 0.270 0.274
Modularity 0.369 0.374 0.395 0.392 0.421 0.422 0.465 0.471 0.493 0.501
Permanence 0.094 0.092 0.092 0.096 0.095 0.095 0.097 0.097 0.097 0.098

Using these conditions, we show how permanence overcomes
some of the issues related to modularity maximization.
Degeneracy of solution is a problem where a community
scoring function (e.g., modularity) admits multiple distinct
high-scoring solutions and typically lacks a clear global max-
imum, thereby, resorting to tie-breaking [11]. For our exam-
ple, when α = β, modularity maximization algorithm will
assign v arbitrarily to A or B. However, in the case of per-
manence, v will remain as a separate community so long as
the following condition is maintained:

Condition. If α = β, Cβ = CB
Iβ−1

Iβ+1
, then communities

A, B and v will remain separate rather than v joining com-
munity A, if α( 2CA−1

Iα+1
) + (1− CvA) ≥ 1

2α
.

We observe that when α = β = 1, then CvA = 0 and the
communities will always remain separate. Furthermore, as
α increases, the left-hand side of the above condition will
become larger than the right, thus increasing the chance of
separate communities.
Resolution limit is a problem where communities of cer-
tain small size are merged into larger ones [11]. A classic
example where modularity cannot identify communities of
small size is a cycle of m cliques. Here maximum modularity
is obtained if two neighboring cliques are merged.

In the case of permanence, we can determine that whether
two communities A and B would merge (as in modularity)
or whether v would join community A (we select A, but
similar analysis can also be done for the case when v joins
B), by the following condition:

Condition. Joining v to community A gives higher per-
manence than merging the communities A, B and v if Cβ =

CB, and ( γ
(γ+1)β

+
CvA(2γ+1)−CvB

(γ+1)2
− β
Iβ+1

)>1; where γ = α/β

and also if Cβ = CB
Iβ−1

Iβ+1
, and ( γ

(γ+1)β
+

CvA(2γ+1)−CvB
(γ+1)2

+
β(2CB−1)
Iβ+1

) > 1.

This result is independent of the size of the communities.
Moreover, so long as A and B are almost cliques (internal
clustering coefficients > 0.5), CvA is sufficiently high and CvB
is sufficiently small (e.g., CvA >2/3 and CvB=0), v will join
community A rather than merging. Thus, in general, the
highest permanence is obtained if v joins the community to
which it is very tightly connected rather than the one to which
it is loosely connected.
Asymptotic growth of value of a metric implies a strong
dependence on the size of the network and the number of
modules the network contains [11]. Rewriting Equation 1,
we get the permanence of the entire network G as follows:
Perm(G) = 1

|V |
∑
v∈V

[
I(v)

D(v)Emax(v)

]
− 1

|V |
∑
v∈V [(1− cin(v))].

We can notice that most of the parameters in the above
formula are independent of the network size and the num-

ber of communities. Table 8 illustrates the change in mod-
ularity and permanence with the symmetric growth of the
network size in coauthorship network. Note that, the inter-
mediate networks are formed by cumulatively aggregating
all the vertices and edges of coauthorship network over the
years, e.g., 1960-1971, 1960-1972,..., 1960-1980. We observe
that the modularity increases consistently with the symmet-
ric growth, while the value of permanence remains almost
constant.

7. RELATED WORK
A huge volume of work has been devoted to finding com-

munities in large networks, including diverse methods such
as modularity optimization [3, 6], spectral graph-partitioning
[23], random-walk [24], information-theoretic [25, 26], con-
sensus clustering [17] and many others (see [8] for the re-
view). Recently, Chakraborty et al. [5] pointed out how
vertex ordering influences the results of the community de-
tection algorithms. They identify invariant groups of ver-
tices (named as “constant communities”) whose assignment
to communities are not affected by vertex ordering.

On the other hand, several metrics for evaluating the
quality of community structure have been proposed. The
most popular is modularity [21]. However, community de-
tection using modularity has certain issues including reso-
lution limit, degeneracy of solutions and asymptotic growth
[11]. To address these issues, multi-resolution versions of
modularity [2] were proposed to allow researchers to specify
a tunable target resolution limit parameter. Furthermore,
Lancichinetti and Fortunato [16] stated that even those multi-
resolution versions of modularity are not only inclined to
merge the smallest well-formed communities, but also to
split the largest well-formed communities.

8. DISCUSSIONS AND FUTURE WORK
In this paper, we have introduced a new vertex-based met-

ric, permanence for evaluating the goodness of communities
in networks. From our experiments we observe that the per-
manence score has a good correlation with the quality of
the ground-truth communities (Section 4) and is sensitive
to perturbations in the community structure (Section 5). In
addition, permanence also provides some significant advan-
tages compared to other popular community scoring func-
tions.

The value of permanence strongly correlates to the com-
munity like structure of the network. For example, the power
grid network, which is not at all modular [13], has a mod-
ularity of 0.98 and a permanence of -0.16. In contrast,
community-rich networks such as a circle of 30 cliques gen-
erate permanence (modularity) of 0.92 (0.87). Therefore,
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permanence can also be used to identify whether the net-
work is at all suitable for community detection.

We believe that the advantages of permanence arise be-
cause it is a local vertex-based metric as opposed to the more
common global/mesoscopic metrics. At the same time, per-
manence also derives the benefits of a global metric to a
certain extent by looking into the exact community assign-
ments of the external neighbors of the vertex considered.
Perfectly global metrics tend to aggregate the effect of the
connections of all the vertices in a community. As we have
seen in Section 2 we can lose information by aggregation,
particularly if the distribution of the connections is skewed.
A vertex-based metric is more fine-grained, and therefore al-
lows partial estimation of communities in a network whose
entire structure is not known.

In this paper we have empirically demonstrated the ad-
vantages of permanence. As an immediate future work, we
plan to extend permanence metric to evaluate the quality of
overlapping communities and communities in dynamic and
weighted networks. We believe that this metric will help in
formulating a strong theoretical foundation for identifying
community structures where the ground-truth is not known.
All the codes, datasets and supporting materials are publicly
available at http://cnerg.org/permanence/.
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